比和比例应用题专项训练2
比和比例应用题 经典练习题

比和比例应用题经典练习题
例1.某市的第三纺织厂有252人,男职工和女职工的比是2:7,这个纺织厂男、女职工各有多少人?
例2.一种火药是由硫磺、硝石和木炭按照一定的比例配制而成,其中硫磺、硝石和木炭的比是2:3:4,。
现在要配制这种火药3600千克,三种原料各需要多少千克?如果现在有80千克木炭,需要硫磺和硝石各多少千克?
例3.某农场有水田102公顷,旱田54公顷,现在计划把一部分旱田改为水田,使两者的比是1:5,需要把多少公顷的旱田改为水田?
例4.在比例尺0 40 80 120千米的地图上,量得甲乙两地的距离是2.5厘米。
在另一幅地图上量得甲乙两地的距离是4厘米,两幅地图,哪一幅地图看得清晰一些?
例5.有840吨货物,分给甲乙两个运输队完成。
甲队友载重5吨的汽车12辆,乙队有载重3吨的汽车15辆,按两队的运输能力分配,甲乙两队各应运输多少吨?
例6.甲、乙、丙三个数的和是210.甲和乙的比是2:3,乙和丙的比是4:5,甲、乙、丙各是多少?
例7.如果一辆汽车从甲地开往乙地,每小时行驶60千米,4.5小时到达,画在一幅的地图上,甲乙两地画多少厘米?
例8.一批图书按4:5:6分配给甲、乙、丙三个班,结果甲班比丙班少分24本,这批图书共有多少本?
例9.为了减少不必要的开支,节约用纸,学校准备用单面A4纸装订练习本发给学生。
每本24页,每人一本可以发给216名同
学,还有72名同学没有领到,学校要求必须每人一本,则每
本应该装订多少页纸?
例10.某修路队修一条公路,用边长4分米的方砖来铺,需要900块,如果改用边长为5分米的方砖需要多少块?
(待续)。
苏教版数学六年级下册应用题特训~比和比例(专项训练)【含答案】

苏教版数学六年级下册应用题特训:比和比例(专项训练)1.在比例尺是1∶500的一幅地图上,量得一块长方形菜地的周长是28厘米,已知这块菜地的长和(1)第一天和第二天行驶的路程分别与时间的比能组成比例吗?为什么?如能组成比例,请写出来.(2)两天行驶路程的比和两天行驶时间的比能组成比例吗?为什么?如能,把组成的比例写出来.9.按要求完成问题.比例尺1:20000(1)如果要从小区修一条通向学校和医院之间的公路的小路,怎样修才能使小路最短?请在途中用线段画出来.(2)医院大约在学校的()方向,它们之间的实际距离约是()米.10.甲、乙、丙三人进行200米的赛跑,甲跑到终点时,乙还剩20米未跑完,丙还剩25米未跑完.问,当乙跑到终点时,丙还剩多少米未跑完?11.在1:1800000的地图上一段6cm长的公路,在另外一幅地图上同样的这条公路长8cm,求另外这幅地图的比例尺.12.张老师到京东文具店买28支同样的钢笔,要付448元.照这样计算,如果陈老师想再多买同样的钢笔30支,他一共带了900元,够吗?13.在比例尺是1∶25000000的地图上标出甲、乙两地.已知甲、乙两地的实际距离是4500千米,图上两地相距多少厘米?14.把左边的长方形按比放大后得到右边的长方形,请写出比例,并求出x的值。
(单位:cm)15.淘气和笑笑收集的邮票张数的比是3∶5,淘气收集了36张邮票,笑笑收集了多少张邮票?【用比例解】16.学校图书馆科技书本数与故事书本数的比是3∶2,故事书有180本,科技书有多少本?(用比例方法解)17.在标有的地图上,量得甲、乙两地相距9厘米.一参考答案:9.(1);(2)18【详解】圆内正方形图上对角线表示6cm,则实际长度为6m,实际面积为18m2.19.2.5小时【详解】略20.12天【详解】解:设x天可以完成任务.10x=8×15解得x=12答:12天可以修完.。
小升初专项训练比和比例应用题

小升初专项训练比和比例应用题练习1.三个分数的和是214,它们的分母相同,分子的比为3∶5∶7,这三个最简分数是______。
2.五年级甲、乙两班人数的比是5∶4,在义务劳动中,如果从甲班调21人到乙班后,甲、乙两班人数的比是2∶3,甲、乙两班原来各有_____人。
3.在3∶5里,如果前项加上6,要使比值不变,后项应加上_______。
4.光明小学有三个年级,一年级学生人数占全校学生总人数的25%,二年级与三年级学生人数的比是3∶4。
已知一年级学生比三年级学生少40人,一年级有学生______人。
5.甲、乙两人同时从A 、B 两地相向而行,甲行完全程要6小时。
两人相遇时,所行距离之比是3∶2,这时甲比乙多行18千米,乙每小时行_____千米。
6.甲、乙两人步行的速度之比是13∶11,如果甲、乙两人分别由A 、B 两地同时出发,相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要_____小时。
7.甲、乙两数的和是1.98,如果把乙数的小数点向右移动一位,这两个数的比是1∶1,原来甲数是_____,乙数是_______。
8.甲、乙两人同时骑自行车从东、西两镇相向而行,甲和乙的速度比为3∶4,已知甲行了全程的13离相遇地点还有20千米,相遇时甲比乙少行_____千米。
9.小军行走的路程比小红多14,而小红行走的时间比小军多110,小军与小红速度比是_______。
10.车过河交费3元,马过河交费2元,人过河交费1元。
某天,车、马过河数的比为2∶9,马、人过河数的比为3∶7,这天共收到过河费945元,求这天渡过河的车、马、人各是___________。
11.王师傅制造一种机器零件,制造每个所用的时间,由过去的9分钟,减少到5分钟。
过去每天制造80个零件。
现在每天制造_____个机器零件。
12.一个车间有两个小组,第一小组与第二小组人数的比是5∶3;如果第一小组14人到第二小组时,第一小组与第二小组的比则是1∶2。
(完整版)六年级数学比和比例应用题专项

比和比例应用题1、房产博览会上,某楼盘的模型是按照1:500的比例尺制作的,该楼盘1号楼模型高7厘米,它的实际高度是多少?2、兰州到乌鲁木齐的铁路长约1900千米,在比例尺是1:40000000的地图上,它的长是多少?3、修一条长12千米的公路,开工3天修了1.5千米。
照这样计算,修完这条路还要多少天?4、专业户刘大伯家养鸡、鸭、鹅共1800只,这三种家禽的只数比是5:3:1。
刘大伯家养鸡、鸭、鹅各多少只?5、把一批书按4:5:6的比例分给甲、乙、丙三个班,已知甲班比丙班少分到24本,三个班各分到多少本书?6、亮亮家造了新房,准备用边长是0.4米的正方形地砖装饰客厅地面,这样需要180块,装修老师建议改用边长0.6米的正方形地砖铺地。
请你算一算需要多少块?7.一艘轮船以每小时40千米的速度从甲港开往乙港,行了全程的20 后,又行驶了1小时,这时未行路程与已行路程的比是3:1。
甲乙两港相距多少千米?8.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?1.2.一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是3:8,这两种拖拉机各有多少台?3.用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。
这个三角形的三条边各是多少厘米?4.甲、乙、丙三个数的平均数是84,甲、乙、丙三个数的比是3:4:5,甲、乙、丙三个数各是多少?5.乙两个数的平均数是25,甲数与乙数的比是3:4,甲、乙两数各是多少?6.一个直角三角形的两个锐角的度数比是1:5,这两个锐角各是多少度?7.一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验田的面积是多少平方米?8. 一种药水是用药物和水按3:400配制成的。
(1) 要配制这种药水1612千克,需要药粉多少千克?(2) 用水60千克,需要药粉多少千克? (3) 用48千克药粉,可配制成多少千克的药水?9. 商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?10. 纸箱里有红绿黄三色球,红色球的个数是绿色球的43,绿色球的个数与黄色球个数的比是4:5,已知绿色球与黄色球共81个,问三色球各有多少个?11. 一幅地图,图上20厘米表示实际距离10千米,求这幅地图的比例尺?12. 甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?13. 在一幅比例尺是1:300的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?14. 朝阳小学的操场是一个长方形,长120米,宽75米,用30001的比例尺画成平面图,长和宽各是多少厘米?15. 在比例尺是1:6000000的地图上,量得两地之间的距离是3厘米,这两地之间的实际距离是多少千米?16. 右图是一个梯形地平面图(单位:厘米),求它的实际面积17. 修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)18. 同学们做操,每行站20人,正好站18行。
比和比例应用题

比和比例应用题例1 甲、乙两个仓库原有粮食吨数的比是5:4,甲仓库运走36吨后,两仓库粮食的吨数的比是3:4,甲仓库原有粮食多少吨?练习1 甲、乙两个仓库存放的货物重量比是4:3,把甲仓库货物的1/3运到乙仓库,这时乙仓库的货物重量比甲仓库多100吨,甲仓库原有货物多少吨?练习2 甲乙两人各加工100个零件,甲比乙迟1 1/2小时开工,结果同时完成,甲乙两人的工作效率比是5:2。
甲每小时加工多少个零件练习3 两个相同的瓶子装满酒精溶液,一个瓶中酒精和水的体积之比是3:1,而另一个瓶中酒精与水的比是4:1,若把两瓶酒精溶液混合,混合液中酒精和水的体积比是多少?例2 甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1,乙瓶中酒精与水的体积比是4:1,现在把两瓶溶液倒入大瓶中混合,这时酒精与水的体积比是多少?练习1 某班在一次考试中,平均成绩是78分,男、女生各自的平均成绩是75.5分和81分,这个班男、女生人数的比是多少?练习3 一个长方形和一个正方形的周长比为6:5,长方形的长是宽的521倍,求这个长方形与正方形的面积之比。
例3甲和乙同时从A、B两地相向走来,甲每小时走7.5千米,两人相遇后,再走22.5千米到米到A地,甲再走2小时到B地,乙每小时走多少千米?练习1 甲、乙两人步行的速度比是7:5,甲、乙分别由A、B两地同时出发,如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?练习2 一批货物已经运走的65%,还剩下280吨,这批货物运走了多少吨?练习3 甲、乙两人进行百米赛跑,当甲到达终点时,乙距终点还有6米。
如果甲在起跑线后面6米,与乙同时跑,谁先到达终点?这时另一个距终点还有几米?例4化肥厂经过改革日产量比原来的20吨提高了25%,原来30天的产量,现在需要多少天能完成?练习1 有一项搬运砖的任务,25个人去搬需6小时可以完成。
如果相同工效的人数增加到30人,运完这批砖能减少几小时?练习2 甲、乙两辆汽车同时从A、B两个城市相对开出,经过12小时相遇后,甲车继续向前开到B城还要6小时,已知甲车每小时比乙车块25千米,求A、B两个城市间的公路长多少千米练习3 师徒两人加工一批零件,徒弟共加工3小时,师傅再参加工作,完成时,徒弟加工了这批零件的83,已知师徒工效比为2:5,师徒单独加工各要几小时例5 在一群学生中,如果走了15名学生,那么剩下的男女人数比为2:1。
比和比例练习题

比和比例练习题题目一某小组有10个苹果和5个梨,求这两种水果的比例。
解答:苹果和梨的比例为10:5,可以简化为2:1。
题目二班级里有30个男生和20个女生,求男生和女生的比例。
解答:男生和女生的比例为30:20,可以简化为3:2。
题目三某个城市有4000辆汽车和1000辆自行车,求汽车和自行车的比例。
解答:汽车和自行车的比例为4000:1000,可以简化为4:1。
题目四若两个数的比例为3:4,且其中一个数为12,求另一个数。
解答:假设另一个数为x,则有3/4 = 12/x。
通过交叉相乘可得:x = 16。
因此,另一个数为16。
题目五班级里有30个男生和40个女生,求男生和女生的比例,并将其写成百分数。
解答:男生和女生的比例为30:40,可以简化为3:4。
将这个比例转化为百分数,得到男生和女生的比例为3/7,女生占比56.2%,男生占比43.8%。
题目六若两个数的比例为4:5,且其中一个数为20,求另一个数。
解答:假设另一个数为x,则有4/5 = 20/x。
通过交叉相乘可得:x = 25。
因此,另一个数为25。
题目七某个城市有2000辆汽车和500辆自行车,求汽车和自行车的比例,并将其写成百分数。
解答:汽车和自行车的比例为2000:500,可以简化为4:1。
将这个比例转化为百分数,得到汽车和自行车的比例为4/5,汽车占比80%,自行车占比20%。
题目八若两个数的比例为2:3,且其中一个数为6,求另一个数。
解答:假设另一个数为x,则有2/3 = 6/x。
通过交叉相乘可得:x = 9。
因此,另一个数为9。
题目九班级里有20个男生和15个女生,求男生和女生的比例,并将其写成百分数。
解答:男生和女生的比例为20:15,可以简化为4:3。
将这个比例转化为百分数,得到男生和女生的比例为4/7,男生占比57.1%,女生占比42.9%。
题目十若两个数的比例为5:8,且其中一个数为40,求另一个数。
解答:假设另一个数为x,则有5/8 = 40/x。
六年级 比与比例练习(8套)

比和比例(一)一、 精学精用1、 填空(1) 两个数相除,又叫做( );( )叫做比值。
(2) 比号前面的数叫做比的( ),比号后面的数叫做比的( )。
(3) 比的前项和比的后项同时( ),( )不变,这就是比的基本性质。
(4) 把比化简成最简单的整数比,通常叫做( )。
(5) 填写下面比与除法、分数之间的关系表:(6) 甲正方体的棱长是5分米,乙正方体的棱长是甲正方体的4倍:① 甲乙两个正方体的棱长的比是( ); ② 甲乙两个正方体底面周长的比是( ); ③ 甲乙两个正方体的底面积的比是( ); ④ 甲乙两个正方体的表面积的比是( ); ⑤ 甲乙两个正方体的体积的比是( )。
2、求下列各比的比值105:35 2.4:8 70:0.5 12:48 105:51:二、 活学活用1、 求比的未知项X:18.4=141 1255:x=0.26 x:531212= 158542=X :2、 化简下列各比 8:0.5 69232.5:23.1:18.6 51:173、 求下列各比的比值3:45 18:4 0.25:12 6:61 3192:4、 配制一种糖水,在150克的水中,放了25克的糖。
(1)写出糖和水的质量的比,并化简。
(2)写出糖和糖水的质量的比,并化简。
(3)写出水喝糖水的质量的比,并化简。
比和比例(二)3、精学精练(3)填空 (1)()211530÷==( )÷( )=()35(2) 一辆汽车3小时行了195千米,汽车所行的路程和所用的时间的比是( )。
(3) 某班有男生18人,女生22人,男生和全班人数的比是( )。
(4) 甲数是乙数的1.5倍,甲数和乙数的比是( )。
(5) 直角三角形的两个锐角的比是2:3,它的两个锐角分别是( )度和( )度。
(6) 男生占全班人数的60%,女生人数和男生人数的比是( )。
(7) 大圆与小圆的半径的比是2:1,小圆与大圆的面积的比是( )。
比和比例的练习题

比和比例的练习题一、选择题1. 已知A:B=2:3,B:C=4:5,那么A:B:C的比例是:A. 8:12:15B. 2:3:4C. 1:1.5:2D. 3:4:52. 如果甲数是乙数的3/4,那么乙数是甲数的:A. 4/3B. 3/4C. 1/4D. 3/13. 一个班级有40名学生,其中男生和女生的比例是5:3,那么这个班级有多少名女生?A. 15B. 18C. 20D. 224. 某工厂的工人和技术人员的比例是3:2,如果工厂有120名工人,那么工厂有多少名技术人员?A. 80B. 60C. 48D. 905. 一个长方形的长和宽的比例是4:3,如果长是24厘米,那么宽是多少厘米?A. 18B. 19C. 20D. 21二、填空题6. 如果\( x:y = 3:2 \),且 \( x = 6 \),那么 \( y \) 等于________。
7. 一个比例中两个外项的积是18,一个内项是4.5,另一个内项是________。
8. 已知 \( A:B = 3:2 \),\( B:C = 5:7 \),求 \( A:C \) 的比例是________。
9. 一个班级有50名学生,男生和女生的比例是3:2,那么这个班级有________名男生。
10. 一个长方形的长是20厘米,宽是长的4/5,那么宽是________厘米。
三、解答题11. 某校有学生1200人,其中男生和女生的比例是7:3。
求这个学校的男生和女生各有多少人?12. 一个比例尺为1:10000的地图上,一个长方形的长是6厘米,宽是4厘米。
求实际长方形的长和宽分别是多少米?13. 已知比例 \( A:B = 2:3 \),\( B:C = 4:5 \),求 \( A:C \)的比例。
14. 一个班级有60名学生,男生和女生的比例是4:5。
如果班级要选出一个由12名学生组成的篮球队,其中男生和女生的比例是3:2,问篮球队中各有多少名男生和女生?15. 一个长方形的长是宽的1.5倍,如果长是30厘米,求这个长方形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比和比例应用题
姓名:
1、房产博览会上,某楼盘的模型是按照1:500的比例尺制作的,该楼盘1号楼模型高7厘米,它的实际高度是多少?
2、兰州到乌鲁木齐的铁路长约1900千米,在比例尺是1:40000000的地图上,它的长是多少?
3、修一条长12千米的公路,开工3天修了1.5千米。
照这样计算,修完这条路还要多少天?
4、专业户刘大伯家养鸡、鸭、鹅共1800只,这三种家禽的只数比是5:3:1。
刘大伯家养鸡、鸭、鹅各多少只?
5、把一批书按4:5:6的比例分给甲、乙、丙三个班,已知甲班比丙班少分到24本,三个班各分到多少本书?
6、亮亮家造了新房,准备用边长是0.4米的正方形地砖装饰客厅地面,这样需要180块,装修老师建议改用边长0.6米的正方形地砖铺地。
请你算一算需要多少块?
7.一艘轮船以每小时40千米的速度从甲港开往乙港,行了全程的20 后,又行驶了1小时,这时未行路程与已行路程的比是3:1。
甲乙两港相距多少千米?
8.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?
1.一个长方体的棱长总和是96立方米,长宽高的比是7:3:2,求长方体的体
积?
2.一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是3:
8,这两种拖拉机各有多少台?
3.用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。
这个三角形的三条边各是多少厘米?
4.甲、乙、丙三个数的平均数是84,甲、乙、丙三个数的比是3:4:5,甲、
乙、丙三个数各是多少?
5.乙两个数的平均数是25,甲数与乙数的比是3:4,甲、乙两数各是多少?
6.一个直角三角形的两个锐角的度数比是1:5,这两个锐角各是多少度?
7.一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验田的
面积是多少平方米?
8.一种药水是用药物和水按3:400配制成的。
(1)要配制这种药水1612千克,需要药粉多少千克?
(2)用水60千克,需要药粉多少千克?
(3) 用48千克药粉,可配制成多少千克的药水?
9. 商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求
运来电冰箱多少台?
10. 纸箱里有红绿黄三色球,红色球的个数是绿色球的4
3,绿色球的个数与黄色球个数的比是4:5,已知绿色球与黄色球共81个,问三色球各有多少个?
11. 一幅地图,图上20厘米表示实际距离10千米,求这幅地图的比例尺?
12. 甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,
应画多少厘米?
13. 在一幅比例尺是1:300的地图上,量得东、西两村的距离是12.3厘米,东、
西两村的实际距离是多少米?
14. 朝阳小学的操场是一个长方形,长120米,宽75米,用
3000
1的比例尺画成平面图,长和宽各是多少厘米?
15. 在比例尺是1:6000000的地图上,量得两地之间的距离是3厘米,这两地
之间的实际距离是多少千米?
16. 右图是一个梯形地平面图(单位:厘米),求它的实际面积
17. 修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可
以修完?(用比例方法解)
18. 同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少
行?(用比例方法解)
19. 飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4
2
1小时的路程,汽车要行多少小时?(用比例方法解)
20. 修一条公路,每天修0.5千米,36天完成。
如果每天修0.6千米,多少天可
修完?(用比例方法解)
21. 一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海
水可以晒多少吨盐?(用比例方法解答)
22.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40
天完成任务,每天应装多少台?(用比例方法解)
23.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,
可以提前几天完成?(用比例方法解)
24.小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?
25.配制一种农药,药粉和水的比是1:500
(1) 现有水6000千克,配制这种农药需要药粉多少千克?
(2) 现有药粉3.6千克,配制这种农药需要水多少千克?
26.两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第
二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米?
27.园林绿化队要栽一批树苗,第一天栽了总数的15 ,第二天栽了136棵,这
时剩下的与已栽的棵数的比是3:5。
这批树苗一共有多少棵?
比的应用练习题(难点部分)
1、两个相同的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是3 :1,另一个瓶中酒精与水的体积比是4 :1。
如果把这两个瓶中酒精溶液混合,混合溶液中酒精和水的比是()。
2、五角人民币与贰角人民币的张数比为12 :35,那么伍角与贰角的总钱数比为()。
3、甲、乙、丙三个数的平均数是60。
甲、乙、丙三个数的比是3 :2 :1。
甲、乙、丙三个数各是多少?
4、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?
5、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2。
求大、小瓶里各装油多少千克?
6、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5 :4,求甲、乙、丙三人各有图书多少本?
7、一个直角三角形的三条边总和是60厘米,已知三条边的比是3 :4 :5.这个直角三角形的面积是多少平方厘米?
8、一个直角三角形的周长为36厘米,三条边的长度比是3 :4 :5,这个三角形的面积是多少平方厘米?
9、一瓶盐水,盐和水的重量比是1 :24,如果再放入75克水,这时盐与水的重量比是1 :27,原来瓶内盐水重多少千克?
10、盒子里有三种颜色的球,黄球个数与红球个数的比是2 :3,红球个数与白球个数的比是4 :5。
已知三种颜色的球共175个,红球有多少个?
11、王老师用100元去买了20支圆珠笔和10支钢笔,每支钢笔的价钱和每支圆珠笔的价钱的比是3 :1。
问买圆珠笔和钢笔各花了多少元?
12、甲、乙两包糖果的重量的比是4 :1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7 :5。
那么两包糖果重量的总和是多少?
13、某小学男、女生人数之比是16 :13,后来有几位女生转学到这所学校,男、女生人数之比变成为6 :5,这时全体学生共有880人,问转学来的女生有多少人?
14、小明读一本书,已读的和末读的页数比是1 :5。
如果再读30页,则已读的和末读的页数之比为3 :5。
这本书共有多少页?
15、运输队要运一批货物,已经运走的和剩下的比是1 :4。
如果再运走4吨,那么运走的和剩下的比为3 :7。
这批货物共多少吨?。