空间中的垂直关系(带答案)
7.5 空间中的垂直关系

一、直线与平面垂直 1.直线与平面垂直的定义 如果直线l与平面α内的任意一条直线都垂直,我们 l⊥α .直线l叫做 就说直线l与平面α互相垂直,记作 平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时, 它们唯一的公共点P叫做垂足.
根据定义,过一点 有且只有一条 直线与已知平面垂 直;过一点 有且只有一个平面 与已知直线垂直.
【评析】线线垂直可由线面垂直的性质推得,直线
和平面垂直,这条直线就垂直于平面内所有直线,是寻
找线线垂直的重要依据.
*对应演练*
如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作 AE⊥SB交SB于E,过E作EF⊥SC交SC于F. (1)求证:AF⊥SC; (2)若平面AEF交 SD于G,求证:AG⊥SD.
2.判定定理和性质定理 (1)判定定理: 一条直线与一个平面内的两条相交直线都垂直,则 该直线与此平面垂直. 垂直于同一个平面的两条直线平行 . (2)性质定理:
判定 图 形
a ⊥ b, b ⊂α
性质
(b为a内的 a ⊥ m , a ⊥ n, 条 a // b, a ⊥ α a // b, a ⊂α a ⊥ b, a ⊥ α 任一条直 m n = O 件 线) m ⊂α , n ⊂α 结 论
(1)平面BDM⊥平面ACE; (2)平面DEA⊥平面ECA.
a ⊥a
a ⊥a
b⊥a
a ⊥b
a // b
3.直线和平面所成的角 一条直线PA和一个平面α相 交, 但不和这个平面垂直 ,这条直线叫做这个平面的斜 线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的 一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做 斜线在这个平面上的射影.平面的一条斜线和它在平面上 的 射影所成的锐角 ,叫做这条直线和这个平面所成的 角. 一条直线垂直于平面,我们说它们所成的角 是 直角 ;一条直线和平面平行,或在平面内,我们 0° 的角. 说它们所成的角是 二、平面与平面垂直
空间中的垂直关系知识点

空间中的垂直关系练习题
知识点小结
一.线面垂直定义:如果直线AB与平面α相交于点O,并且和这个平面内过交点O的任何直线都垂直,我们就说直线AB与平面α互相垂直,直线AB叫做平面α的垂线,平面α叫做直线L的垂面。
交点P叫做垂足。
垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做点到平面的距离。
由定义:如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直。
二.判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。
符号语言:
推论1 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面。
推论2 如果在两条直线垂直于同一平面,那么这两条直线平行。
三.平面与平面垂直的判定
1.平面与平面垂直定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直。
2.平面与平面垂直的判定定理如果一个平面过另一个平面的一条垂线,则两个平面互相垂直。
3.平面与平面垂直的性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
空间中的垂直关系(带答案)教学提纲

空间中的垂直关系(带答案)空间中的垂直关系专题训练知识梳理一、线线垂直:如果两条直线于一点或经过后相交于一点,并且交角为,则称这两条直线互相垂直.二、线面垂直:1.定义:如果一条直线和一个平面相交,并且和这个平面内的_________________,则称这条直线和这个平面垂直. 也就是说,如果一条直线垂直于一个平面,那么他就和平面内任意一条直线都 .直线l和平面α互相垂直,记作l⊥α.2.判定定理:如果一条直线与平面内的直线垂直,则这条直线与这个平面垂直.推论①:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也于这个平面.推论②:如果两条直线同一个平面,那么这两条直线平行.3.点到平面的距离:长度叫做点到平面的距离.三、面面垂直:1.定义:如果两个相交平面的交线与第三个平面,又这两个平面与第三个平面相交所得的两条交线,就称这两个平面互相垂直.平面α,β互相垂直,记作α⊥β.2.判定定理:如果一个平面经过另一个平面的___________,则这两个平面互相垂直.3.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于直线垂直于另一个平面.四、求点面距离的常用方法:1.直接过点作面的垂线,求垂线段的长,通常要借助于某个三角形.2.转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离来求解.3.体积法:利用三棱锥的特征转换位置来求解.题型一线线垂直、线面垂直的判定及性质例1.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,A C⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.【变式1】已知:正方体ABCD﹣A1B1C1D1 ,AA1=2,E为棱CC1的中点.(Ⅰ)求证:B1D1⊥AE;(Ⅱ)求证:AC∥平面B1DE.【解答】(Ⅰ)连接BD,则BD∥B1D1,∵ABCD是正方形,∴AC⊥BD.∵CE⊥平面ABCD,BD⊂平面ABCD,∴CE⊥BD.又∵AC∩CE=C,∴BD⊥面ACE.∵AE⊂面ACE,∴BD⊥AE,∴B1D1⊥AE.﹣﹣﹣(5分)(Ⅱ)证明:取BB1的中点F,连接AF、CF、EF.∵ E、F是C1C、B1B的中点,∴ CE∥B1F且CE=B1F,∴ 四边形B1FCE是平行四边形,∴ CF∥ B1E.∵ 正方形BB1C1C中,E、F是CC、BB的中点,∴ EF∥BC且EF=BC又∵ BC∥AD且BC=AD,∴ E F∥AD且EF=AD.∴ 四边形ADEF是平行四边形,可得AF∥ED,∵ AF∩CF=C,BE∩ED=E,∴ 平面ACF∥平面B1DE.又∵ AC⊂平面ACF,∴AC∥面B1DE.【变式2】如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E、G分别是CD、PC的中点,点F在PD上,且PF:FD=2:1.(Ⅰ)证明:EA⊥ PB;(Ⅱ)证明:BG∥面AFC.【解答】(Ⅰ)证明:因为面ABCD为菱形,且∠ABC=60°,所以△ ACD为等边三角形,又因为E是CD的中点,所以EA⊥AB.又PA⊥平面ABCD,所以EA⊥PA.而AB∩PA=A所以EA⊥面PAB,所以EA⊥PB.(Ⅱ)取PF中点M,所以PM=MF=FD.连接MG,MG∥CF,所以MG∥面AFC.连接BM,BD,设AC∩BD=O,连接OF,所以BM∥OF,所以BM∥面AFC.而BM∩MG=M所以面BGM∥面AFC,所以BG∥面AFC.【变式3】如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=,AA1=2.(1)证明:AA1⊥ BD(2)证明:平面A1BD∥平面CD1B1;(3)求三棱柱ABD﹣A1B1D1的体积.【解答】(1)证明:∵底面ABCD是正方形,∴BD⊥AC,又∵ A1O⊥平面ABCD且BD⊂面ABCD,∴A1O⊥BD,又∵ A1O∩AC=O,A1O⊂面A1AC,AC⊂面A1AC,∴BD⊥面A1AC,AA1⊂面A1AC,∴ AA1⊥BD.(2)∵ A1B1∥AB,AB∥CD,∴ A1B1∥CD,又A1B1=CD,∴四边形A1B1CD是平行四边形,∴ A1D∥B1C,同理A1B∥CD1,∵ A1B⊂平面A1BD,A1D⊂平面A1BD,CD1⊂平面CD1B1,B1C⊂平面CD1B,且A1B∩A1D=A1,CD1∩B1C=C,∴平面A1BD∥平面CD1B1.(3)∵ A1O⊥面ABCD,∴ A1O是三棱柱A1B1D1﹣ABD的高,在正方形ABCD中,AO=1.在Rt△A1OA中,AA1=2,AO=1,∴ A1O=,∴ V三棱柱ABD﹣A1B1D1=S△ABD•A1O=•()2•=∴三棱柱ABD﹣A1B1D1的体积为.【变式4】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=BC=AC=AA1=4,点F在CC1上,且C1F=3FC,E是BC的中点.(1)求证:AE⊥平面BCC1B1(2)求四棱锥A﹣B1C1FE的体积;(3)证明:B1E⊥AF.【解答】(1)∵ AB=AC,E是BC的中点,∴AE⊥ BC.在三棱柱ABC﹣A1B1C1,中,BB1∥ AA1,∴ BB1⊥平面ABC,∵ AE⊂平面ABC,∴ BB1⊥ AE,….(2分)又∵ BB1∩BC=B,….(3分)BB1,BC⊂平面BB1C1C,∴AE⊥平面BB1C1C,….(4分)(2)由(1)知,即AE为四棱锥A﹣B1C1FE的高,在正三角形ABC中,AE=AB=2,…在正方形BB1C1C,中,CE=BE=2,CF=1,∴=﹣﹣S△CFE=4×=11.…(6分)∴=•AE==…(7分)(3)证明:连结B1F,由(1)得AE⊥平面BB1C1C,∵ B1E⊂平面BB1C1C,∴AE⊥B1E,….(8分)在正方形BB1C1C,中,B1F==5,B1E==2,EF==,∵ B1F2=B1E2+EF2,∴ B1E⊥EF….(9分)又∵AE∩EF=E,….(10分)AE,EF⊂平面AEF,∴ B1E⊥平面AEF,….(11分)∵ AF⊂平面AEF,∴ B1E⊥AF.….(12分)【变式5】如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,G在BC上,且CG=CB(1)求证:PC⊥ BC;(2)求三棱锥C﹣DEG的体积;(3)AD边上是否存在一点M,使得PA∥平面MEG?若存在,求AM的长;否则,说明理由.【解答】(1)证明:∵PD⊥平面ABCD,∴PD⊥BC.又∵ABCD是正方形,∴BC⊥CD.又∵PD∩CD=D,∴BC⊥平面PCD.又∵PC⊂平面PCD,∴PC⊥BC.(2)∵BC⊥平面PCD,∴ GC是三棱锥G﹣DEC的高.∵ E是PC的中点,∴ S△EDC=S△PDC==×(×2×2)=1.V C﹣=V G﹣DEC=GC•S△DEC=××1=.DEG(3)连结AC,取AC中点O,连结EO、GO,延长GO交AD于点M,则PA∥平面MEG.证明:∵E为PC的中点,O是AC的中点,∴EO∥PA.又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG.在正方形ABCD中,∵O是AC的中点,BC=PD=2,CG=CB.∴△OCG≌△OAM,∴AM=CG=,∴所求AM的长为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【变式6】如图所示,在三棱柱ABC﹣A1B1C1中,BB1⊥底面A1B1C1,A1B1⊥B1C1且A1B1=BB1=B1C1,D为AC的中点.(Ⅰ)求证:A1B⊥AC1(Ⅱ)在直线CC1上是否存在一点E,使得A1E⊥平面A1BD,若存在,试确定E点的位置;若不存在,请说明理由.【解答】(Ⅰ)证明:连接AB1∵ BB1⊥平面A1B1C1∴ B1C1⊥BB1∵ B1C1⊥A1B1且A1B1∩BB1=B1∴ B1C1⊥平面A1B1BA∴ A1B⊥B1C1 . 又∵ A1B⊥AB1且AB1∩B1C1=B1∴A1B⊥平面AB1C1∴A1B⊥AC1(Ⅱ)存在点E在CC1的延长线上且CE=2CC1时,A1E⊥平面A 1BD.设AB=a,CE=2a,∴,∴,,DE=,∴,∴A1E⊥A1D…∵BD⊥AC,BD⊥CC1,AC∩CC1=C,∴BD⊥平面ACC1A1,又A1E⊂平面ACC1A1∴ A1E⊥ BD. 又BD∩A1D=D ,∴ A1E⊥平面A1BD【变式7】如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥ BC1;(2)求证:AC1∥平面CDB1.【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥ BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE。
立体几何空间中的垂直关系及答案

空间中的垂直关系1.线线垂直如果两条直线所成的角是______(无论它们是相交还是异面),那么这两条直线互相垂直.2.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,我们就说______________________,记作______.直线l叫做______________,平面α叫做______________.直线与平面垂直时,它们惟一的公共点P叫做______.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的________.(2)判定定理:一条直线与一个平面内的______________都垂直,则该直线与此平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示:a∥b,a⊥α⇒b⊥α.(3)性质定理:垂直于同一个平面的两条直线__________.3.直线和平面所成的角平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.任一直线与平面所成角θ的范围是____________.4.二面角的有关概念(1)二面角:从一条直线出发的______________________叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作______________的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是__________.5.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是____________,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的________,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于______的直线与另一个平面垂直.自查自纠:1.直角2.(1)直线l与平面α互相垂直l⊥α平面α的垂线直线l的垂面垂足距离(2)两条相交直线(3)平行3.锐角[0°,90°]4.(1)两个半平面所组成的图形(2)垂直于棱[0°,180°]5.(1)直二面角(2)垂线(3)交线(2018·广东清远一中月考)已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α⊥β⇒l∥m;②α∥β⇒l⊥m;③l⊥m⇒α∥β;④l∥m⇒α⊥β,其中正确命题的序号是() A.①②③B.②③④C.①③D.②④.(2017·全国卷Ⅲ)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC.(2017·湖北武汉模拟)如图,在正方形ABCD中,E,F分别是BC,CD的中点,连接AC,交EF于点G,沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么在这个空间图形中必有()A.AG⊥平面EFH B.AH⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF(2018·临沂检测)设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:____________.(用序号表示)(2017重庆八中适应性考试)在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中正确的是________.(2017重庆八中适应性考试)在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中正确的是________.①BC∥平面PDF;②DF⊥平面P AE;③平面PDF⊥平面ABC;④平面P AE⊥平面AB C.类型一线线垂直问题(2018·湖州模拟改编)如图所示,在四棱锥ABCDE中,底面BCDE为菱形,侧面ABE为等边三角形,且侧面ABE⊥底面BCDE,O,F分别为BE,DE的中点.求证:(1)AO⊥CD;(2)CE⊥AF.点拨:本题主要考查线线、线面位置关系.证明线线垂直,其实质是通过证明线面垂直,再化归为线线垂直.(2017武汉市武钢第三子弟中学月考)如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=6,求三棱柱ABCA1B1C1的体积.类型二线面垂直问题如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC交EF于点O,沿EF将△CEF翻折到△PEF,连接P A,PB,PD,得到五棱锥PABFED,且PB=10.(1)求证:BD⊥平面POA;(2)求四棱锥PBDEF的体积.点拨:证明线面垂直的基本思路是证明该直线和平面内的两条相交直线垂直,亦可利用面面垂直的性质定理来证明;题(2)的难点在于证明PO即是所求四棱锥的高.(2017锦州市第二高级中学月考)如图,在正方体ABCDA1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.类型三面面垂直问题如图所示,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.(1)求异面直线A1M和C1D1所成的角的正切值;(2)证明:平面ABM⊥平面A1B1M.点拨:求异面直线所成的角,一般方法是通过平移直线,把异面问题转化为共面问题,通过解三角形求出所构造的角;证明面面垂直,可转化为证明线面垂直,而线面垂直又可以转化为证明线线垂直,在证明过程中,需充分利用规则几何体本身所具有的几何特征简化问题,有时还需应用勾股定理的逆定理,通过计算来证明垂直关系,这在高考题中是常用方法之一.(2018·豫南九校质检)在四棱锥PABCD中,平面P AD⊥平面ABCD,AB∥CD,△P AD是等边三角形,已知AD=2,BD=23,AB=2CD=4.(1)设M是PC上一点,求证:平面MBD⊥平面P AD;(2)求四棱锥PABCD的体积.类型四垂直综合问题(2017大连经济技术开发区一中月考)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=2,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′BCDE,其中A′O=3.(1)证明:A′O⊥平面BCDE;(2)求二面角A′CDB的平面角的余弦值.点拨:本题主要考查线面垂直及二面角的计算等.折叠要注意不变量;作二面角,往往要通过作垂线来实现.如图1,在矩形ABCD中,AB=2,BC=4,E为AD的中点,O为BE的中点.将△ABE 沿BE折起到A′BE,使得平面A′BE⊥平面BCDE(如图2).图1图2(1)求证:A′O⊥CD;(2)求直线A′C与平面A′DE所成角的正弦值.1.判断(证明)线线垂直的方法(1)根据定义.(2)如果直线a∥b,a⊥c,则b⊥c.(3)如果直线a⊥面α,c⊂α,则a⊥c.(4)向量法:两条直线的方向向量的数量积为零.2.证明直线和平面垂直的常用方法(1)利用判定定理:两相交直线a,b⊂α,a⊥c,b⊥c⇒c⊥α.(2)a∥b,a⊥α⇒b⊥α.(3)利用面面平行的性质:α∥β,a⊥α⇒a⊥β.(4)利用面面垂直的性质:α⊥β,α∩β=m ,a ⊂α,a ⊥m ⇒a ⊥β;α⊥γ,β⊥γ,α∩β=m ⇒m ⊥γ. 3.证明面面垂直的主要方法(1)利用判定定理:a ⊥β,a ⊂α⇒α⊥β.(2)用定义证明.只需判定两平面所成二面角为直二面角.(3)如果一个平面垂直于两个平行平面中的一个,则它也垂直于另一个平面:α∥β,α⊥γ⇒β⊥γ. 4.平面与平面垂直的性质的应用当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.5.垂直关系的相互转化6.线面角、二面角求法 求这两种空间角的步骤:根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)⇒证⇒求(算)三步曲.也可用射影法:设斜线段AB 在平面α内的射影为A ′B ′,AB 与α所成角为θ,则cos θ=||A ′B ′||AB ;设△ABC 在平面α内的射影三角形为△A ′B ′C ′,平面ABC 与α所成角为θ,则cos θ=S △A ′B ′C ′S △ABC .1.(2017·唐山三模)已知平面α⊥平面β,则“直线m ⊥平面α”是“直线m ∥平面β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2018·上饶质检)已知P 是△ABC 所在平面外一点,P 到AB ,AC ,BC 的距离相等,且P 在△ABC 所在平面的射影O 在△ABC 内,则O 一定是△ABC 的 ( ) A .内心 B .外心 C .垂心 D .重心3.(2018·福建泉州)如图,在下列四个正方体ABCD A 1B 1C 1D 1中,E ,F ,G 均为所在棱的中点,过E ,F ,G 作正方体的截面,则在各个正方体中,直线BD 1与平面EFG 不垂直的是 ( )A BC D4.(2017沈阳市第一中学月考)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2018·广东模拟)如图所示是一个几何体的平面展开图,其中ABCD为正方形,E,F分别为所在棱P A,PD的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P A D.其中正确结论的个数是()A.1 B.2 C.3 D.46.(2017瓦房店市高级中学月考)如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:①SG⊥平面EFG;②SD⊥平面EFG;③GF⊥平面SEF;④EF⊥平面GSD;⑤GD⊥平面SEF.正确的是()A.①和③B.②和⑤C.①和④D.②和④7.在正方体ABCDA′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)8.(教材改编)如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中:①平面ADC⊥平面ABC;②平面ADC⊥平面ABD;③平面ADC⊥平面BD C.其中正确的是____________.(写出所有正确结论的编号)9.(2017钟祥市实验中学月考)如图,在四棱锥PABCD中,底面是边长为a的正方形,侧棱PD =a,P A=PC=2a.求证:(1)PD ⊥平面ABCD ;(2)平面P AC ⊥平面PB D .10.(2018·河北石家庄联考)如图,四棱锥P ABCD 的底面ABCD 是边长为2的菱形, ∠BAD =60°.PB =PD =2,P A =6.(1)证明:PC ⊥BD ;(2)若E 为P A 上一点,记三棱锥P BCE 的体积和四棱锥P ABCD 的体积分别为V 1和V 2,当V 1∶V 2=1∶8时,求EPAE的值.11.(2018·北京西城一模)如图1,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB =AC =25,BC =4.将△ADE 沿DE 折起到△A 1DE 的位置,使得平面A 1DE ⊥平面BCED ,F 为A 1C 的中点,如图2所示.(1)求证:EF ∥平面A 1BD ;(2)求证:平面A 1OB ⊥平面A 1OC ;(3)在线段OC 上是否存在点G ,使得OC ⊥平面EFG ?请说明理由.(2018·大连二模)如图所示,在几何体ABCDEF 中,底面ABCD 为矩形,EF ∥CD ,CD ⊥EA ,CD =2EF =2,ED=3,M 为棱FC 上一点,平面ADM 与棱FB 交于点N .(1)求证:ED ⊥CD ; (2)求证:AD ∥MN ;(3)若AD ⊥ED ,试问平面BCF 是否可能与平面ADMN 垂直?若能,求出FMFC 的值;若不能,请说明理由.空间中的垂直关系1.线线垂直如果两条直线所成的角是______(无论它们是相交还是异面),那么这两条直线互相垂直. 2.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说______________________,记作______.直线l 叫做______________,平面α叫做______________.直线与平面垂直时,它们惟一的公共点P 叫做______.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的________.(2)判定定理:一条直线与一个平面内的______________都垂直,则该直线与此平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示:a∥b,a⊥α⇒b⊥α.(3)性质定理:垂直于同一个平面的两条直线__________.3.直线和平面所成的角平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.任一直线与平面所成角θ的范围是____________.4.二面角的有关概念(1)二面角:从一条直线出发的______________________叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作______________的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是__________.5.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是____________,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的________,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于______的直线与另一个平面垂直.自查自纠:1.直角2.(1)直线l与平面α互相垂直l⊥α平面α的垂线直线l的垂面垂足距离(2)两条相交直线(3)平行3.锐角[0°,90°]4.(1)两个半平面所组成的图形(2)垂直于棱[0°,180°]5.(1)直二面角(2)垂线(3)交线(2018·广东清远一中月考)已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α⊥β⇒l ∥m;②α∥β⇒l⊥m;③l⊥m⇒α∥β;④l∥m⇒α⊥β,其中正确命题的序号是() A.①②③B.②③④C.①③D.②④解:①中l与m可能相交、平行或异面;②中结论正确;③中两平面α,β可能平行,也可能相交;④中结论正确.故选D.(2017·全国卷Ⅲ)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解:由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1,故选C.(2017·湖北武汉模拟)如图,在正方形ABCD中,E,F分别是BC,CD的中点,连接AC,交EF于点G,沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么在这个空间图形中必有()A.AG⊥平面EFH B.AH⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF解:根据折叠前AB⊥BE,AD⊥DF,得折叠后AH⊥HE,AH⊥HF,又HE∩HF=H,所以AH⊥平面EFH,B正确;因为过点A只有一条直线与平面EFH垂直,所以A不正确;因为AG⊥EF,EF⊥AH,AG∩AH=A,所以EF⊥平面HAG,又EF⊂平面AEF,所以平面HAG⊥平面AEF,过点H作直线垂直于平面AEF,所作直线一定在平面HAG内,所以C不正确;因为HG不垂直于AG,所以HG⊥平面AEF 不正确,所以D不正确.故选B.(2018·临沂检测)设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:____________.(用序号表示)解:若①②③成立,则m与α的位置关系不确定,故①②③⇒④错误;同理①②④⇒③也错误;①③④⇒②与②③④⇒①均正确.故填①③④⇒②(或②③④⇒①).(2017重庆八中适应性考试)在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中正确的是________.①BC∥平面PDF;②DF⊥平面P AE;③平面PDF⊥平面ABC;④平面P AE⊥平面AB C.解:由DF∥BC可得BC∥平面PDF,故①正确;若PO⊥平面ABC,垂足为O,则O在AE上,则DF⊥PO,又DF⊥AE,故DF⊥平面P AE,故②正确;由PO⊥平面ABC,PO⊂平面P AE,可得平面P AE⊥平面ABC,故④正确,平面PDF不过PO,故③不正确.故填①②④.类型一线线垂直问题(2018·湖州模拟改编)如图所示,在四棱锥ABCDE中,底面BCDE为菱形,侧面ABE为等边三角形,且侧面ABE⊥底面BCDE,O,F分别为BE,DE的中点.求证:(1)AO⊥CD;(2)CE⊥AF.证明:(1)因为△ABE为等边三角形,O为BE 的中点,所以AO⊥BE.又因为平面ABE⊥平面BCDE,平面ABE∩平面BCDE=BE,AO⊂平面ABE,所以AO⊥平面BCDE.又因为CD⊂平面BCDE,所以AO⊥C D.(2)连接BD,因为四边形BCDE为菱形,所以CE⊥B D.因为O,F分别为BE,DE的中点,所以OF∥BD,所以CE⊥OF.由(1)可知,AO⊥平面BCDE,因为CE⊂平面BCDE,所以AO⊥CE.因为AO∩OF=O,所以CE⊥平面AOF.又AF⊂平面AOF,所以CE⊥AF.点拨:本题主要考查线线、线面位置关系.证明线线垂直,其实质是通过证明线面垂直,再化归为线线垂直.(2017武汉市武钢第三子弟中学月考)如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=6,求三棱柱ABCA1B1C1的体积.解:(1)证明:取AB的中点O,连接OC,OA1,A1B.因为CA=CB,所以OC⊥A B.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥A B.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C.(2)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1=3.又A1C=6,则A1C2=OC2+OA21,故OA1⊥O C.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABCA1B1C1的高.又△ABC的面积S△ABC=3,故三棱柱ABCA1B1C1的体积为V=S△ABC×OA1=3.类型二线面垂直问题如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC交EF于点O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到五棱锥PABFED,且PB =10.(1)求证:BD⊥平面POA;(2)求四棱锥PBDEF的体积.解:(1)证明:如图,因为点E,F分别是题图中菱形ABCD的边CD,CB的中点,所以BD∥EF.因为菱形ABCD的对角线互相垂直,所以BD⊥AC,所以EF⊥A C.所以EF⊥AO,EF⊥PO.因为AO⊂平面POA,PO⊂平面POA,AO∩PO =O,所以EF⊥平面POA,所以BD⊥平面PO A.(2)如图,设AO∩BD=H,连接BO.因为∠DAB=60°,所以△ABD为等边三角形.所以BD=4,BH=2,HA=23,HO=PO=3.在Rt△BHO中,BO=7.在△PBO中,BO2+PO2=10=PB2,所以PO⊥BO.因为PO⊥EF,EF∩BO=O,EF⊂平面BFED,BO⊂平面BFED,所以PO⊥平面BFE D.因为梯形BFED的面积为S=12(EF+BD)·HO=33,所以四棱锥PBFED的体积V=13S·PO=3.点拨:证明线面垂直的基本思路是证明该直线和平面内的两条相交直线垂直,亦可利用面面垂直的性质定理来证明;题(2)的难点在于证明PO即是所求四棱锥的高.(2017锦州市第二高级中学月考)如图,在正方体ABCDA1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.证明:(1)如图,连接AD1,由ABCDA1B1C1D1是正方体,知AD1∥BC1,因为F,P分别是AD,DD1的中点,所以FP∥AD1,从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连接AC,BD,则AC⊥B D.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥B D.又AC∩CC1=C,所以BD⊥平面ACC1A1.而AC1⊂平面ACC1A1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.类型三面面垂直问题如图所示,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.(1)求异面直线A1M和C1D1所成的角的正切值;(2)证明:平面ABM⊥平面A1B1M.解:(1)因为C1D1∥B1A1,所以∠MA1B1为异面直线A1M和C1D1所成的角,因为A1B1⊥平面BCC1B1,所以∠A1B1M=90°.而A1B1=1,B1M=B1C21+MC21=2,故tan∠MA1B1=B1MA1B1=2.(2)证明:由A1B1⊥平面BCC1B1,BM⊂平面BCC1B1,得A1B1⊥BM.①由(1)知,B1M=2,又BM=BC2+CM2=2,B1B=2,B1M2+BM2=B1B2,从而BM⊥B1M.②又A1B1∩B1M=B1,由①②得BM⊥平面A1B1M.而BM⊂平面ABM,所以平面ABM⊥平面A1B1M.点拨:求异面直线所成的角,一般方法是通过平移直线,把异面问题转化为共面问题,通过解三角形求出所构造的角;证明面面垂直,可转化为证明线面垂直,而线面垂直又可以转化为证明线线垂直,在证明过程中,需充分利用规则几何体本身所具有的几何特征简化问题,有时还需应用勾股定理的逆定理,通过计算来证明垂直关系,这在高考题中是常用方法之一.(2018·豫南九校质检)在四棱锥PABCD中,平面P AD⊥平面ABCD,AB∥CD,△P AD是等边三角形,已知AD=2,BD=23,AB=2CD=4.(1)设M是PC上一点,求证:平面MBD⊥平面P AD;(2)求四棱锥PABCD的体积.解:(1)证明:在△ABD中,AD=2,BD=23,AB=4,由勾股定理可得AD⊥B D.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,所以BD⊥平面P AD,又BD⊂平面MBD,所以平面MBD⊥平面P A D.(2)取AD的中点O,连接PO,则PO是四棱锥PABCD的高,易得PO=3,底面四边形ABCD的面积是12×(2+4)×2×234=33,所以四棱锥PABCD的体积为13×33×3=3.类型四垂直综合问题(2017大连经济技术开发区一中月考)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=2,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′BCDE,其中A′O=3.(1)证明:A′O⊥平面BCDE;(2)求二面角A′CDB的平面角的余弦值.解:(1)证明:在图1中,易得OC=3,AC=32,AD=22.如图示,连接OD,OE,在△OCD 中,由余弦定理可得OD=OC2+CD2-2OC·CD cos45°=5.由翻折不变性可知A ′D =22,易得A ′O 2+OD 2=A ′D 2,所以A ′O ⊥O D .同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE . (2)过O 作OH ⊥CD 交CD 的延长线于H ,连接A ′H ,因为A ′O ⊥平面BCDE ,易知A ′H ⊥CD ,所以∠A ′HO 为二面角A ′CD B 的平面角.结合图1可知,H 为AC 中点,又O 为BC 中点,故OH =12AB =322,从而A ′H =OH 2+OA ′2=302, 所以cos ∠A ′HO =OH A ′H=155.所以二面角A ′CD B 的平面角的余弦值为155.点 拨:本题主要考查线面垂直及二面角的计算等.折叠要注意不变量;作二面角,往往要通过作垂线来实现.如图1,在矩形ABCD 中,AB =2,BC =4,E 为AD 的中点,O 为BE 的中点.将△ABE 沿BE 折起到A ′BE ,使得平面A ′BE ⊥平面BCDE (如图2).图1 图2 (1)求证:A ′O ⊥CD ;(2)求直线A ′C 与平面A ′DE 所成角的正弦值. 解:(1)证明:如图1,在矩形ABCD 中,因为AB =2,BC =4,E 为AD 中点,所以AB =AE =2,因为O 为BE 的中点,所以AO ⊥BE .由题意可知,A ′O ⊥BE ,平面A ′BE ⊥平面BCDE .因为平面A ′BE ∩平面BCDE =BE ,A ′O ⊂平面A ′BE ,所以A ′O ⊥平面BCDE . 因为CD ⊂平面BCDE ,所以A ′O ⊥C D . (2)取BC 中点为F ,连接OF ,由矩形ABCD 性质,可知OF ⊥BE ,由(1)可知,A ′O ⊥BE , A ′O ⊥OF ,以O 为原点,建立如图所示空间直角坐标系,在Rt △BAE 中,由AB =2,AE =2,则BE =22,OA =2,所以A ′(0,0,2),E (0,2,0),F (2,0,0),B (0,-2,0),C (22,2,0),D (2,22,0),则A ′C →=(22,2,-2),ED →=(2,2,0),A ′E →=(0,2,-2).设平面A ′DE 的一个法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·A ′E →=0,m ·ED →=0,⇒⎩⎪⎨⎪⎧2y -2z =0,2x +2y =0,令y =1,则x =-1,z =1,所以m =(-1,1,1).设直线A ′C 与平面A ′DE 所成角为θ,sin θ=|cos 〈A ′C →,m 〉|=|A ′C →·m ||A ′C →|·|m |=23,所以直线A ′C 与平面A ′DE 所成角的正弦值为23.1.判断(证明)线线垂直的方法(1)根据定义. (2)如果直线a ∥b ,a ⊥c ,则b ⊥c . (3)如果直线a ⊥面α,c ⊂α,则a ⊥c . (4)向量法:两条直线的方向向量的数量积为零. 2.证明直线和平面垂直的常用方法 (1)利用判定定理:两相交直线a ,b ⊂α,a ⊥c ,b ⊥c ⇒c ⊥α.(2)a ∥b ,a ⊥α⇒b ⊥α.(3)利用面面平行的性质:α∥β,a ⊥α⇒a ⊥β. (4)利用面面垂直的性质:α⊥β,α∩β=m ,a ⊂α,a ⊥m ⇒a ⊥β;α⊥γ,β⊥γ,α∩β=m ⇒m ⊥γ.3.证明面面垂直的主要方法(1)利用判定定理:a ⊥β,a ⊂α⇒α⊥β.(2)用定义证明.只需判定两平面所成二面角为直二面角.(3)如果一个平面垂直于两个平行平面中的一个,则它也垂直于另一个平面:α∥β,α⊥γ⇒β⊥γ.4.平面与平面垂直的性质的应用当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.5.垂直关系的相互转化6.线面角、二面角求法 求这两种空间角的步骤:根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)⇒证⇒求(算)三步曲.也可用射影法:设斜线段AB 在平面α内的射影为A ′B ′,AB 与α所成角为θ,则cos θ=||A ′B ′||AB ;设△ABC 在平面α内的射影三角形为△A ′B ′C ′,平面ABC 与α所成角为θ,则cos θ=S △A ′B ′C ′S △ABC.1.(2017·唐山三模)已知平面α⊥平面β,则“直线m ⊥平面α”是“直线m ∥平面β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解:若α⊥β,且m ⊥α,则m ∥β或m ⊂β;若α⊥β,且m ∥β,则m ∥α或m 与α相交或m ⊂α.故选D .2.(2018·上饶质检)已知P 是△ABC 所在平面外一点,P 到AB ,AC ,BC 的距离相等,且P 在△ABC 所在平面的射影O 在△ABC 内,则O 一定是△ABC 的 ( )A .内心B .外心C .垂心D .重心解:因为P 到AB ,AC ,BC 三边的距离相等,且P 在△ABC 所在平面的射影O 在△ABC 内,则O 到AB ,AC ,BC 三边的距离也相等,即点O 为△ABC 的内切圆的圆心,即△ABC 的内心.故选A .3.(2018·福建泉州)如图,在下列四个正方体ABCD A 1B 1C 1D 1中,E ,F ,G 均为所在棱的中点,过E ,F ,G 作正方体的截面,则在各个正方体中,直线BD 1与平面EFG 不垂直的是 ( )ABC D解:如图,在正方体ABCDA1B1C1D1中,E,F,G,M,N,Q均为所在棱的中点,图形EFMNQG是一个平面图形,直线BD1与平面EFMNQG垂直,而选项A,B,C中的平面EFG与这个平面重合,D中EF∥BB1,而BB1与BD1不垂直,即BD1与平面EFG不垂直.故选D.4.(2017沈阳市第一中学月考)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当α⊥β时,由面面垂直的性质定理知b⊥α,则b⊥a.所以“α⊥β”是“a⊥b”的充分条件.而当a⊂α,且a∥m时,因为b⊥m,所以b⊥a,而此时平面α与平面β不一定垂直.所以“α⊥β”不是“a⊥b”的必要条件.故选A.5.(2018·广东模拟)如图所示是一个几何体的平面展开图,其中ABCD为正方形,E,F分别为所在棱P A,PD的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P A D.其中正确结论的个数是()A.1 B.2 C.3 D.4解:画出该几何体的直观图,如图所示,①因为E,F分别是P A,PD的中点,所以EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线,故①不正确;②直线BE与直线AF满足异面直线的定义,故②正确;③由E,F分别是P A,PD的中点,可知EF∥AD,所以EF∥BC,因为EF⊄平面PBC,BC⊂平面PBC,所以直线EF∥平面PBC,故③正确;④无法判定平面BCE⊥平面P AD,故④不正确.故选B.6.(2017瓦房店市高级中学月考)如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:①SG⊥平面EFG;②SD⊥平面EFG;③GF⊥平面SEF;④EF⊥平面GSD;⑤GD⊥平面SEF.正确的是()A.①和③B.②和⑤C.①和④D.②和④解:因为正方形中折叠前后都有SG⊥GE,SG ⊥GF,所以SG⊥平面EFG.①正确,②错误.因为SG⊥GF,SG⊥GD,所以GF并不垂直于SF,GD并不垂直于SD,即③⑤错误.因为EF⊥GD,EF⊥SG,GD∩SG=G,所以EF⊥面GS D.④正确.故选C.7.在正方体ABCDA′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)解:根据两平面平行的性质定理可得BFD′E为平行四边形,①正确;若四边形BFD′E是正方形,则BE⊥ED′,又A′D′⊥EB,A′D′∩ED′=D′,所以BE⊥面ADD′A′,与已知矛盾,②错;易知四边形BFD′E在底面ABCD内的投影是正方形ABCD,③正确;当E,F分别为棱AA′,CC′的中点时,EF ∥AC,又AC⊥平面BB′D,所以EF⊥面BB′D,④正确.故填①③④.8.(教材改编)如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中:①平面ADC⊥平面ABC;②平面ADC⊥平面ABD;③平面ADC⊥平面BD C.其中正确的是____________.(写出所有正确结论的编号)解:在四边形ABCD中,由已知可得BD⊥C D.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,所以平面ACD⊥平面ABD,所以CD⊥A B.又AD⊥AB,AD ∩CD=D,所以AB⊥平面ADC,从而平面ABC⊥平面AD C.故填①②.9.(2017钟祥市实验中学月考)如图,在四棱锥PABCD中,底面是边长为a的正方形,侧棱PD=a,P A=PC=2a.求证:(1)PD ⊥平面ABCD ;(2)平面P AC ⊥平面PB D .证明:(1)因为PD =a ,DC =a ,PC =2a , 所以PC 2=PD 2+DC 2,所以PD ⊥D C . 同理可证PD ⊥AD ,又AD ∩DC =D , 所以PD ⊥平面ABC D . (2)由(1)知PD ⊥平面ABCD ,所以PD ⊥AC ,而四边形ABCD 是正方形, 所以AC ⊥BD ,又BD ∩PD =D ,所以AC ⊥平面PD B .同时AC ⊂平面P AC , 所以平面P AC ⊥平面PB D .10.(2018·河北石家庄联考)如图,四棱锥P ABCD 的底面ABCD 是边长为2的菱形, ∠BAD =60°.PB =PD =2,P A =6.(1)证明:PC ⊥BD ;(2)若E 为P A 上一点,记三棱锥P BCE 的体积和四棱锥P ABCD 的体积分别为V 1和V 2,当V 1∶V 2=1∶8时,求EPAE的值.解:(1)证明:连接AC 交BD 于点O ,连接PO . 因为四边形ABCD 是菱形,所以BD ⊥AC ,且O 为BD 的中点,因为PB =PD ,所以PO ⊥BD ,又AC ∩PO =O ,所以BD ⊥平面P AC ,又 PC ⊂平面P AC ,所以BD ⊥P C .(2)因为AB =PB =2,AD =PD =2,BD =BD ,所以△ABD ≌△PBD ,所以AO =PO =3,因为P A =6,所以P A 2=OA 2+OP 2,所以PO ⊥A C .又PO ⊥BD ,AC ∩BD =O ,所以PO ⊥平面ABC D .过点E 作EF ∥PO ,交AC 于点F ,所以EF ,PO 分别是三棱锥E ABC 和四棱锥P ABCD 的高.又V 1=V P ABC -V E ABC =13S △ABC ·(PO -EF ),V 2=13S 菱形ABCD ·PO ,由V 1V 2=18,得S △ABC ·(PO -EF )S 菱形ABCD ·PO =18,即4(PO -EF )=PO ,所以PO EF =43.因为EF ∥PO ,所以△AEF ∽△APO , 所以PO EF =AP AE =AE +EP AE =43,所以EP AE =13.11.(2018·北京西城一模)如图1,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB =AC =25,BC =4.将△ADE 沿DE 折起到△A 1DE 的位置,使得平面A 1DE ⊥平面BCED ,F 为A 1C 的中点,如图2所示.(1)求证:EF ∥平面A 1BD ;(2)求证:平面A 1OB ⊥平面A 1OC ;(3)在线段OC 上是否存在点G ,使得OC ⊥平面EFG ?请说明理由.解:(1)证明:如图,取线段A 1B 的中点H ,连接HD ,HF .因为在△ABC 中,D ,E 分别为AB ,AC 的中点,所以DE ∥BC ,且DE =12B C .因为H ,F 分别为A 1B ,A 1C 的中点,所以HF ∥BC ,且HF =12BC ,所以HF ∥DE ,且HF =DE .所以四边形DEFH 为平行四边形,所以EF ∥H D .因为EF ⊄平面A 1BD ,HD ⊂平面A 1BD ,所以EF ∥平面A 1B D .(2)证明:因为在△ABC 中,AB =AC ,D ,E 分别为AB ,AC 的中点,所以AD =AE ,所以A 1D =A 1E ,又O 为DE 的中点,所以A 1O ⊥DE . 因为平面A 1DE ⊥平面BCED ,且平面A 1DE ∩平面BCED =DE ,A 1O ⊂平面A 1DE , 所以A 1O ⊥平面BCED ,所以CO ⊥A 1O . 又易求得OB =OC =22,所以OB 2+OC 2=BC 2,所以CO ⊥BO , 又A 1O ∩BO =O ,A 1O ⊂平面A 1OB ,BO ⊂平面A 1OB ,所以CO ⊥平面A 1OB ,又CO ⊂平面A 1OC ,所以平面A 1OB ⊥平面A 1O C .(3)在线段OC 上不存在点G ,使得OC ⊥平面EFG .理由如下:假设在线段OC 上存在点G ,使得OC ⊥平面EFG ,连接GE ,GF ,则必有OC ⊥GF ,OC ⊥GE .在Rt △A 1OC 中,由F 为A 1C 的中点,得G 为OC 的中点.在△EOC 中,因为OC ⊥GE ,所以EO =EC ,这显然与EO =1,EC =5矛盾. 所以在线段OC 上不存在点G ,使得OC ⊥平面。
空间中的垂直关系

空间中的垂直关系巩固1.PA垂直于正方形ABCD所在平面,连结PB,PC,PD,AC,BD,则下列垂直关系正确的是( )①面PAB⊥面PBC②面PAB⊥面PAD③面PAB⊥面PCD④面PAB⊥面PACA.①② B.①③C.②③ D.②④解析:选A.易证BC⊥平面PAB,则平面PAB⊥平面PBC;又AD∥BC,故AD⊥平面PAB,则平面PAD⊥平面PAB,因此选A.2.设a、b、c表示三条直线,α、β表示两个平面,则下列命题的逆命题不成立的是( )A.c⊥α,若c⊥β,则α∥βB.b⊂α,c⊄α,若c∥α,则b∥cC.b⊂β,若b⊥α,则β⊥αD.b⊂β,c是a在β内的射影,若b⊥c,则b⊥a解析:选C.C选项的逆命题为b⊂β,若β⊥α则b⊥α.不正确,因为根据平面垂直的性质定理,如果两个平面垂直,其中一个平面内的直线只有垂直于交线的才垂直另一个平面.故选C.3.若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( ) A.若α∥β,l⊂α,n⊂β,则l∥nB.若α⊥β,l⊂α,则l⊥βC.若l⊥n,m⊥n,则l∥mD.若l⊥α,l∥β,则α⊥β解析:选D.选项A中,l除平行n外,还有异面的位置关系,则A不正确.选项B中,l与β的位置关系有相交、平行、在β内三种,则B不正确.选项C中,l与m的位置关系还有相交和异面,故C不正确.故选D.4.已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若a⊥α,a⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若α∥β,a⊂α,b⊂β,则a∥b;④若α∥β,α∩γ=a,β∩γ=b,则a∥b.其中正确命题的序号有________.解析:垂直于同一直线的两平面平行,①正确;α⊥β也成立,②错;a、b也可异面,③错;由面面平行性质知,a∥b,④正确.答案:①④5.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足__________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)6.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点,求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.证明:(1)在△ABD中,因为E、F分别是AB、BD的中点,所以EF∥AD.又AD⊂平面ACD,EF⊄平面ACD,所以直线EF∥平面ACD.(2)在△ABD中,因为AD⊥BD,EF∥AD,所以EF⊥BD.在△BCD中,因为CD=CB,F为BD的中点,所以CF⊥BD.因为EF⊂平面EFC,CF⊂平面EFC,EF与CF交于点F,所以BD⊥平面EFC.又因为BD⊂平面BCD,所以平面EFC⊥平面BCD.练习1.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是( ) A.若m⊂β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若α⊥γ,α⊥β,则β∥γD.若m⊥β,m∥α,则α⊥β解析:选D.对于选项D,若m∥α,则过直线m的平面与平面α相交得交线n,由线面平行的性质定理可得m∥n,又m⊥β,故n⊥β,且n⊂α,故由面面垂直的判定定理可得α⊥β.2.设a、b是不同的直线,α、β是不同的平面,则下列四个命题中正确的是( )A.若a⊥b,a⊥α,则b∥αB.若a∥α,α⊥β,则a⊥βC.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β解析:选D.A中,b可能在α内;B中,a可能在β内,也可能与β平行或相交(不垂直);C中,a可能在α内;D中,a⊥b,a⊥α,则b⊂α或b∥α,又b⊥β,∴α⊥β.3.如图,在斜三棱柱ABC—A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A.∵BA⊥AC,BC1⊥AC,BA∩BC1=B,∴AC⊥平面ABC1.∵AC⊂平面ABC,∴平面ABC⊥平面ABC1,且交线是AB.故平面ABC1上一点C1在底面ABC的射影H必在交线AB上.4.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB中点,PM垂直于△ABC所在平面,那么( )A.PA=PB>PCB.PA=PB<PCC.PA=PB=PCD.PA≠PB≠PC解析:选C.∵M是Rt△ABC斜边AB的中点,∴MA=MB=MC.又∵PM⊥平面ABC,∴MA、MB、MC分别是PA、PB、PC在平面ABC上的射影.∴PA=PB=PC.应选C.5.在二面角α-l-β的两个面α,β内,分别有直线a,b,它们与棱l都不垂直,则( ) A.当该二面角是直二面角时,可能a∥b,也可能a⊥bB.当该二面角是直二面角时,可能a∥b,但不可能a⊥bC.当该二面角不是直二面角时,可能a∥b,但不可能a⊥bD.当该二面角不是直二面角时,不可能a∥b,也不可能a⊥b解析:选B.当该二面角为直二面角时(如图),若a ⊥b ,∵b 与l 不垂直,在b 上取点A ,过A 作AB ⊥l ,AB ∩b =A ,由 ⎭⎪⎬⎪⎫a ⊥b AB ⊥αa ⊂α⇒⎭⎪⎬⎪⎫b ⊥a AB ⊥a AB ⊂β⇒a ⊥β⇒a ⊥l .这和a 与l 不垂直相矛盾.∴不可能a ⊥b .故A 错误, ∴B 正确.6.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不.成立的是( ) A .BC ∥平面PDFB .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC解析:选C.如图,∵BC ∥DF ,∴BC ∥平面PDF.∴A 正确.由题设知BC ⊥PE ,BC ⊥AE ,∴BC ⊥平面PAE.∴DF ⊥平面PAE.∴B 正确.∴平面ABC ⊥平面PAE(BC ⊥平面PAE).∴D 正确.7.已知m ,n 是直线,α、β、γ是平面,给出下列命题:①α⊥γ,β⊥γ,则α∥β;②若n ⊥α,n ⊥β,则α∥β;③若n ⊄α,m ⊄α且n ∥β,m ∥β,则α∥β;④若m ,n 为异面直线,n ⊂α,n ∥β,m ⊂β,m ∥α,则α∥β.则其中正确的命题是_______.(把你认为正确的命题序号都填上)解析:依题意可构造正方体ABCD-A 1B 1C 1D 1,如图所示,在正方体中逐一判断各命题易得正确的命题是②④.答案:②④8.在正四棱锥P -ABCD 中,PA =32AB ,M 是BC 的中点,G 是△PAD 的重心,则在平面PAD 中经过G 点且与直线PM 垂直的直线有________条.由PM⊥BC,∴PM=(32a)2-(a2)2=22a.连结PG并延长与AD相交于N点,则PN=22a,MN=AB=a,∴PM2+PN2=MN2,∴PM⊥PN,又PM⊥AD,∴PM⊥面PAD,∴在平面PAD中经过G点的任意一条直线都与PM垂直.答案:无数9.如图所示,正方体ABCD-A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,垂足为点H,有下列三个命题:①点H是△A1BD的中心;②AH垂直于平面CB1D1;③AC1与B1C所成的角是90°.其中正确命题的序号是.解析:由于ABCD-A1B1C1D1是正方体,所以A-A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故①正确;又因为平面CB1D1与平面A1BD平行,所以AH⊥平面CB1D1,故②正确;从而可得AC1⊥平面CB1D1,即AC1与B1C垂直,所成的角等于90°.答案:①②③10.(2010年南京模拟)如图,已知矩形ABCD中,AB=10,BC=6,沿矩形的对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.求证:(1)BC⊥A1D;(2)平面A1BC⊥平面A1BD.证明:(1)由于A1在平面BCD上的射影O在CD上,则A1O⊥平面BCD,又BC⊂平面BCD,则BC⊥A1O,又BC⊥CO,A1O∩CO=O,则BC⊥平面A1CD,又A1D⊂平面A1CD,故BC⊥A1D.(2)因为ABCD为矩形,所以A1B⊥A1D.由(1)知BC ⊥A 1D ,A 1B ∩BC =B ,则A 1D ⊥平面A 1BC ,又A 1D ⊂平面A 1BD .从而有平面A 1BC ⊥平面A 1BD .11.如图所示,△ABC 是正三角形,AE 和CD 都垂直于平面ABC ,且AE=AB=2a ,CD=a ,F 是BE 的中点.(1)求证:DF ∥平面ABC ;(2)求证:AF ⊥BD.证明:(1)取AB 的中点G ,连结FG ,可得FG ∥AE ,FG =12AE ,又CD ⊥平面ABC ,AE ⊥平面ABC ,∴CD ∥AE ,CD =12AE ,∴FG ∥CD ,FG =CD ,∵FG ⊥平面ABC ,∴四边形CDFG 是矩形,DF ∥CG ,CG ⊂平面ABC ,DF ⊄平面ABC ,∴DF ∥平面ABC .(2)Rt△ABE 中,AE =2a ,AB =2a ,F 为BE 中点,∴AF ⊥BE ,∵△ABC 是正三角形,∴CG ⊥AB ,∴DF ⊥AB ,又DF ⊥FG ,∴DF ⊥平面ABE ,DF ⊥AF ,∴AF ⊥平面BDF ,∴AF ⊥BD .12.如图所示,在直四棱柱ABCD-A 1B 1C 1D 1中,DB=BC ,DB ⊥AC ,点M 是棱BB 1上一点.(1)求证:B 1D 1∥面A 1BD ;(2)求证:MD ⊥AC ;(3)试确定点M 的位置,使得平面DMC 1⊥平面CC 1D 1D.解:(1)证明:由直四棱柱,得BB 1∥DD 1且BB 1=DD 1,所以BB 1D 1D 是平行四边形,所以B 1D 1∥BD .而BD ⊂平面A 1BD ,B 1D 1⊄平面A 1BD ,所以B 1D 1∥平面A 1BD .(2)证明:因为BB 1⊥面ABCD ,AC ⊂面ABCD ,所以BB 1⊥AC ,又因为BD⊥AC,且BD∩BB1=B,所以AC⊥面BB1D,而MD⊂面BB1D,所以MD⊥AC.(3)当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D取DC的中点N,D1C1的中点N1,连结NN1交DC1于O,连结OM.因为N是DC中点,BD=BC,所以BN⊥DC;又因为DC是面ABCD与面DCC1D1的交线,而面ABCD⊥面DCC1D1,所以BN⊥面DCC1D1.又可证得,O是NN1的中点,所以BM∥ON且BM=ON,即BMON是平行四边形,所以BN∥OM,所以OM⊥平面CC1D1D,因为OM⊂面DMC1,所以平面DMC1⊥平面CC1D1D.。
【人教B版】数学必修2同步练习:1.2.3-空间中的垂直关系第1课时(含答案)

1.将直线与平面垂直的判定定理“如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面”用集合符号语言表示为().A.mα,m n=B,l⊥n,l⊥m l⊥αB.mα,nα,m n=B,l⊥m,l⊥n l⊥αC.mα,nα,m n=B l⊥n,l⊥m,l⊥αD.mα,nα,l⊥m,l⊥n l⊥α2.过平面α外一点P,⊥存在无数条直线与平面α平行;⊥存在无数条直线与平面α垂直;⊥有且只有一条直线与平面α平行;⊥有且只有一条直线与平面α垂直.A.1 B.2 C.3 D.4⊥若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;⊥直线a不垂直于平面α,则α内与a垂直的直线有无数条;⊥垂直于同一直线的两条直线相互平行;⊥在空间中,过一点与已知直线垂直的直线有无数条.A.⊥和⊥ B.⊥和⊥C.⊥和⊥ D.⊥和⊥4.与空间四边形ABCD的四个顶点距离相等的平面共有().A.1个B.5个C.6个D.7个5.如图,已知矩形ABCD中,AB=1,BC=a,P A⊥平面ABCD,若在BC边上只有一个点Q满足PQ⊥QD,则a的值为______.6.如图所示,下列五个正方体图形中,l是正方体的一条体对角线,点M、N、P分别为其所在棱的中点,能得出l⊥平面MNP的图形的序号是______.(写出所有符合要求的图形的序号)7.如图(1),矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′1的三等分点,将矩形纸片沿BB1、CC1折成图(2)所示的三棱柱,若面对角线AB1⊥BC1,求证:A1C⊥AB1.8.如图所示,在矩形ABCD中,AB BC=3,沿对角线BD将⊥BCD折起,使点C移到点C′,且C′O⊥平面ABD于点O,点O恰在AB上.(1)求证:BC′⊥平面ADC′;(2)求点A到平面BC′D的距离.9.如图所示的多面体上,位于同一条棱两端的顶点称为相邻的顶点.正方体的一个顶点A在平面α内,其余顶点在α的同侧.正方体上与顶点A相邻的三个顶点到α的距离分别为1、2、4.P是正方体中不与A相邻的四个顶点中的一个,则P到平面α的距离可能是:⊥3;⊥4;⊥5;⊥6;⊥7.以上结果正确的为________.(写出所有正确结果的编号)参考答案1.答案:B2.答案:B解析:只有⊥⊥正确.3.答案:D4.答案:D解析:连接空间四边形的对角线,共有6条线,取这六条线的中点,由这六个中点所确定的平面即满足条件,它们共可确定7个平面.5.答案:2解析:⊥P A⊥平面ABCD,⊥P A⊥QD,又⊥PQ⊥QD,⊥QD⊥平面P AQ,⊥AQ⊥QD.即Q 在以AD为直径的圆上,当圆与BC相切时,点Q只有一个,故BC=2AB=2.6.答案:⊥⊥⊥解析:⊥正方体的体对角线与其不相交的面对角线垂直,⊥可得⊥中直线l垂直于平面MNP中的两条相交直线,⊥由⊥能得出l⊥平面MNP;但⊥⊥中平面MNP不与⊥中的平面MNP平行,这样由⊥⊥不能得到l⊥平面MNP;⊥中易得l⊥MP,而MN也与下底面对角线平行,所以⊥同样可得l⊥平面MNP;问题⊥不易判断,这里略证一下:如图,E、F、G是正方体棱的中点,则过P、M、N的截面就是六边形PGMENF.⊥l⊥PF,l⊥FN,⊥l⊥平面PFN,即l⊥平面PGMENF,即l⊥平面PMN.7.证明:分别取AB及A1B1的中点D和D1,连接CD、C1D1、BD1、A1D,由题设⊥ABC 及⊥A1B1C1为正三角形,故C1D1⊥A1B1,CD⊥AB,又AA1⊥A1B1,AA1⊥A1C1,A1B1A1C1=A1,故AA1⊥平面A1B1C1,⊥C1D1平面A1B1C1,⊥AA1⊥C1D1,又AA1A1B1=A1,⊥C1D1⊥平面ABB1A1,故C1D1⊥AB1.⊥AB1⊥BC1,又C1D1BC1=C1,⊥AB1⊥平面BC1D1,又BD1平面BC1D1,⊥AB1⊥BD1,⊥A1D⊥BD1,C1D1平面BC1D1,⊥A1D⊥AB1,AB1⊥C1D1.⊥CD⊥C1D1,⊥AB1⊥CD,又A 1D CD =D ,⊥AB 1⊥平面A 1DC ,⊥A 1C平面A 1DC ,⊥A 1C ⊥AB 1. 8. 证明:(1)因为C ′O ⊥平面ABD ,AD 平面ABD ,所以C ′O ⊥AD ,又因为AD ⊥AB ,AB C ′O =O ,所以AD ⊥平面ABC ′,所以AD ⊥BC ′,又因为BC ′⊥DC ′,DC ′AD =D ,所以BC ′⊥平面ADC ′.(2)V A -BC ′D =V C ′-ABD ,即1111333232h CO ⨯⨯⨯=⨯⨯⋅' .所以h =C ′O ,在Rt⊥AC ′B 中,AB =BC ′=3,故'AC ==⊥C'O ==h = 9.答案:⊥⊥⊥⊥解析:任何一个面都是平行四边形,对角线的交点都是该线段的中点.不与A 相邻的四个顶点到平面α的距离为如下结果1+2=3、1+4=5、2+4=6,还有一个是3+4=7.。
高考数学一轮总复习:空间中的垂直关系

空间中的垂直关系[基础梳理] 1.直线与平面垂直(1)定义:直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直.(2)判定定理与性质定理:⎭⎬⎫a ,b αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角. (2)范围:⎣⎢⎡⎦⎥⎤0,π2.3.平面与平面垂直 (1)二面角的有关概念:①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫作二面角的平面角. (2)平面和平面垂直的定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直. (3)平面与平面垂直的判定定理与性质定理:⎭⎪⎬⎪⎫l ⊥αl β⇒α⊥β⎭⎪⎬⎪⎫α⊥βl βα∩β=al ⊥a⇒l ⊥α1.判定定理的理解若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.a ∥b ,a ⊥α⇒b ⊥α. 2.性质定理α⊥β,P ∈β,PQ ⊥α⇒PQβ时垂直于第三个平面,[四基自测]1.下列命题中不正确的是( )A .如果平面α⊥平面β,且直线l ∥平面α,则直线l ⊥平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ答案:A2.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为() A.bαB.b∥αC.bα或b∥αD.b与α相交答案:C3.已知互相垂直的平面α,β交于直线l.若直线m、n满足m∥α,n⊥β,则() A.m∥l B.m∥nC.n⊥l D.m⊥n答案:C4.如图所示,在三棱锥V ABC中,∠VAB=∠VAC=∠ABC=90°,则构成三棱锥的四个三角形中直角三角形的个数为________.答案:4考点一线面垂直的判定与性质◄考基础——练透[例1](2019·河南商丘模拟)如图所示,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是A在PB、PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是________.解析:由P A⊥平面ABC,BC平面ABC,可得P A⊥BC,又AB是圆O的直径,C是圆O上一点,则有BC⊥AC,又P A∩AC=A,所以BC⊥面P AC,又AF面P AC,所以BC⊥AF,故③正确;因为AF⊥PC,PC∩BC=C,所以AF⊥面PBC,又PB面PBC,所以AF⊥PB,故①正确;因为AE⊥PB,AF⊥PB,AE∩AF=A,所以PB⊥平面AEF,又EF平面AEF,所以PB⊥EF,故②正确;由于AF⊥平面PBC,AF∩AE=A,所以AE不与面PBC垂直,故④错误.综上可知正确命题的序号为①②③.答案:①②③证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理:在平面内找两条相交直线与该直线垂直.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理:在平面内找与两平面交线垂直的直线.如图所示,三棱锥P ABC中,△ABC是正三角形,PC⊥平面ABC,PC=AC =2,E为AC中点,EF⊥AP,垂足为F.(1)求证:AP⊥FB;(2)求多面体PFBCE的体积.解析:(1)证明:由题意得BE⊥AC,又PC⊥平面ABC,∴PC⊥BE.又AC∩PC=C,∴BE⊥面P AC.∴BE⊥AP.又EF ⊥AP ,EF ∩BE =E ,∴AP ⊥面BEF . ∴AP ⊥FB .(2)在△ABC 中,AB =AC =BC =2,E 为AC 中点, ∴AE =1,BE = 3.在△PCA 中,∠PCA =90°,AC =PC =2,∴∠P AC =45°.又EF ⊥P A ,∴EF =AF =22,S △AEF =12EF ·AF =14.易知,BE ⊥平面AFE .∴V ABEF=V B AFE =13BE ·S △AEF =312,又V P ABC =13PC ·S △ABC =233,∴多面体PFBCE 的体积为V P ABC -V A BEF =7312. 考点二 平面与平面垂直的判定与性质◄考能力——知法[例2] (1)如图所示,一张A4纸的长、宽分别为22a,2a ,A ,B ,C ,D 分别是其四条边的中点.现将其沿图中虚线折起,使得P 1,P 2,P 3,P 4四点重合为一点P ,从而得到一个多面体.下列关于该多面体的命题,正确的是________.(写出所有正确命题的序号)①该多面体是三棱锥; ②平面BAD ⊥平面BCD ; ③平面BAC ⊥平面ACD ; ④该多面体外接球的表面积为5πa 2.解析:由题意得该多面体是一个三棱锥,故①正确;∵AP ⊥BP ,AP ⊥CP ,BP ∩CP=P,∴AP⊥平面BCD,又∵AP平面ABD,∴平面BAD⊥平面BCD,故②正确;同理可证平面BAC⊥平面ACD,故③正确;通过构造长方体可得该多面体的外接球半径R=52a,所以该多面体外接球的表面积为5πa2,故④正确,综上,正确命题的序号为①②③④.答案:①②③④(2)(2018·高考全国卷Ⅰ)如图所示,在平行四边形ABCM中,AB=AC=3,∠ACM =90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.①证明:平面ACD⊥平面ABC;②Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.解析:①证明:由已知可得,∠BAC=90°,即BA⊥AC.又BA⊥AD,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.②由已知可得,DC=CM=AB=3,DA=3 2.又BP =DQ =23DA , 所以BP =2 2.如图所示,过点Q 作QE ⊥AC ,垂足为E ,则QE .由已知及(1)可得,DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为V Q -ABP =13×S △ABP ×QE =13×12×3×22sin 45°×1=1.应用线面垂直的判定与性质定理的思维(1)证明两个平面垂直,关键是选准其中一个平面内的一条直线,证明该直线与另一个平面垂直.这必须结合条件中各种垂直关系充分发挥空间想象综合考虑. (2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2017·高考全国卷Ⅰ)如图所示,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.解析:(1)证明:由∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 由于AB ∥CD ,故AB ⊥PD ,又AP ∩PD =P ,从而AB ⊥平面P AD . 又AB平面P AB ,所以平面P AB ⊥平面P AD .(2)如图所示,在平面P AD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,可得PE ⊥平面ABCD . 设AB =x ,则由已知可得AD =2x ,PE =22x .故四棱锥P ABCD 的体积V P ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而P A =PD =2,AD =BC =22,PB =PC =2 2.可得四棱锥P ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.考点三 空间垂直关系的探索与转化◄考基础——练透[例3] (1)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AC 1,A 1B 1的中点,点P 在其表面上运动,则总能使MP 与BN 垂直的点P 的轨迹的周长等于________.解析:分别取BB 1,CC 1的中点E ,F ,连接AE ,EF ,FD ,则BN ⊥平面AEFD ,过点M 作平面α,使α∥平面AEFD ,则平面α与正方体表面的交线即为点P 的轨迹,该轨迹为矩形,其周长与矩形AEFD 的周长相等,又矩形AEFD 的周长为2+5,所以所求轨迹的周长为2+ 5.答案:2+5(2)如图所示,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且P为AD的中点.①求证:CD⊥平面SAD;②若SA=SD,M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?并证明你的结论.解析:①证明:因为四边形ABCD为正方形,所以CD⊥AD.又平面SAD⊥平面ABCD,且平面SAD∩平面ABCD=AD,所以CD⊥平面SAD.②存在点N为SC的中点,使得平面DMN⊥平面ABCD.证明:连接PC、DM交于点O,连接PM、SP、NM、ND、NO,因为PD∥CM,且PD=CM,所以四边形PMCD为平行四边形,所以PO=CO.又因为N为SC的中点,所以NO∥SP.易知SP⊥AD,因为平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,并且SP⊥AD,所以SP⊥平面ABCD,所以NO⊥平面ABCD.又因为NO平面DMN,所以平面DMN⊥平面ABCD.探索垂直关系,常采用逆向思维一般假设存在线线垂直,所利用的关系常有:(1)等腰三角形的高、中线与底边垂直.(2)矩形的相邻边垂直.(3)直径所对的圆周角的两边垂直.(4)菱形的对角线垂直.(5)给出长度,满足勾股定理的两边垂直.(6)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路.(2019·安阳模拟)如图所示,平面ABDE⊥平面ABC,AC=BC,四边形ABDE是直角梯形,BD∥AE,BD=12AE,O,M分别为CE,AB的中点.(1)求证:OD∥平面ABC.(2)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.解析:(1)证明:取AC中点F,连接OF,FB.∵F为AC中点,O为CE中点,∴OF∥EA且OF=12EA.又BD∥AE且BD=12AE,∴OF∥DB,OF=DB,∴四边形BDOF是平行四边形,∴OD∥FB.∵FB平面ABC,OD平面ABC,∴OD∥平面ABC.(2)当N是EM中点时,ON⊥平面ABDE.取EM中点N,连接ON,CM.∵AC=BC,M为AB中点,∴CM⊥AB.又∵平面ABDE⊥平面ABC,平面ABDE∩平面ABC=AB,CM平面ABC,∴CM⊥平面ABDE.∵N是EM中点,O为CE中点,∴ON∥CM,∴ON⊥平面ABDE.直观想象——立体几何中高维与低维转化中的学科素养立体几何中的点与点、点与线、线与线、线与面、面与面之间的关系是由低维逐步到高维的转化过程,解决立体几何问题不仅用到高维、也要用到低维.其中直观想象是重点的核心素养,是培养空间想象能力的基本方法.[例]如图所示,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小为60,则点C到平面ABC1的距离为________.解析:设所求距离为d ,两次计算三棱锥C 1-ABC (即三棱锥C -ABC 1)的体积,得:13×34×32=13×12×1×3×h ,解得h =34.答案:34点评:本题将点到平面的距离问题转化为三棱锥的体积问题.课时规范练 A 组 基础对点练1.(2019·惠州模拟)P A 垂直于以AB 为直径的圆所在的平面,C 为圆上异于A ,B 两点的任一点,则下列关系不正确的是( ) A .P A ⊥BC B .BC ⊥平面P AC C .AC ⊥PBD .PC ⊥BC解析:由P A ⊥平面ACB ⇒P A ⊥BC ,故A 不符合题意;由BC ⊥P A ,BC ⊥AC ,P A ∩AC =A ,可得BC ⊥平面P AC ,所以BC ⊥PC ,故B ,D 不符合题意;无法判断AC ⊥PB ,故C 符合题意. 答案:C2.(2019·石家庄模拟)已知平面α,β,直线l ,若α⊥β,α∩β=l ,则( ) A .垂直于平面β的平面一定平行于平面α B .垂直于直线l 的直线一定垂直于平面α C .垂直于平面β的平面一定平行于直线l D .垂直于直线l 的平面一定与平面α,β都垂直解析:垂直于平面β的平面与平面α重合、平行或相交,故A不正确;垂直于直线l的直线若在平面β内,则一定垂直于平面α,否则不一定,故B不正确;垂直于平面β的平面可能垂直于直线l,故C不正确;由面面垂直的判定定理知,垂直于直线l的平面一定与平面α,β都垂直,故D正确.答案:D3.已知三条不重合的直线m,n,l和两个不重合的平面α,β,则下列命题正确的是()A.若m∥n,nα,则m∥αB.若α⊥β,α∩β=m,n⊥m,则n⊥αC.若l⊥n,m⊥n,则l∥mD.若l⊥α,m⊥β且l⊥m,则α⊥β解析:若m∥n,nα,则m∥α或mα,故A不正确;若α⊥β,α∩β=m,n⊥m,则n与α相交或n∥α或nα,故B不正确;若l⊥n,m⊥n,则l与m相交、平行或异面,故C不正确;若l⊥α,m⊥β且l⊥m,则由直线与平面垂直的性质定理和平面与平面垂直的判定定理知α⊥β.答案:D4.(2019·长春质检)如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD =45°,∠BAD=90°,将△ABD沿BD折起,使得平面ABD⊥平面BCD,构成四面体A-BCD,则在四面体A-BCD中,下列说法正确的是()A.平面ABD⊥平面ABCB.平面ACD⊥平面BCDC.平面ABC⊥平面BCDD.平面ACD⊥平面ABD解析:由题意可知,AD⊥AB,AD=AB,所以∠ABD=45°,故∠DBC=45°,又∠BCD=45°,所以BD⊥DC.因为平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,所以平面ACD⊥平面ABD.答案:D5.在正方体ABCD-A1B1C1D1中E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析:由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,所以BC1⊥平面A1B1CD,又A1E平面A1B1CD,所以A1E⊥BC1,故选C.答案:C6.(2019·南昌调研)如图所示,四棱锥P-ABCD中,△P AB与△PBC是正三角形,平面P AB⊥平面PBC,AC⊥BD,则下列结论不一定成立的是()A.PB⊥AC B.PD⊥平面ABCDC.AC⊥PD D.平面PBD⊥平面ABCD解析:如图所示,对于选项A,取PB的中点O,连接AO,CO.∵在四棱锥P -ABCD中,△P AB与△PBC是正三角形,平面P AB⊥平面PBC,∴AO⊥PB,CO⊥PB,∵AO∩CO=O,∴PB⊥平面AOC,∵AC平面AOC,∴PB⊥AC,故选项A正确;对于选项B,设AC与BD交于点M,易知M为AC的中点,若PD⊥平面ABCD,则PD⊥BD,由已知条件知点D满足AC⊥BD且位于BM的延长线上,∴点D的位置不确定,∴PD与BD不一定垂直,∴PD⊥平面ABCD不一定成立,故选项B不正确;对于选项C,∵AC⊥PB,AC⊥BD,PB∩BD=B,∴AC⊥平面PBD,∵PD平面PBD,∴AC⊥PD,故选项C正确;对于选项D,∵AC⊥平面PBD,AC平面ABCD,∴平面PBD⊥平面ABCD,故选项D正确.故选B.答案:B7.如图所示,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M 是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:如图所示,连接AC,BD,则AC⊥BD,∵P A⊥底面ABCD,∴P A⊥BD.又P A∩AC=A,∴BD⊥平面P AC,∴BD⊥PC,∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)8.如图所示,四棱锥P ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.求证:(1)AP∥平面BEF;(2)BE⊥平面P AC.证明:(1)设AC∩BE=O,连接OF,EC,如图所示.由于E为AD的中点,AB=BC=12AD,AD∥BC,所以AE∥BC,AE=AB=BC,因此四边形ABCE为菱形,所以O为AC的中点.又F为PC的中点,因此在△P AC中,可得AP∥OF.又OF平面BEF,AP平面BEF.所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC.所以四边形BCDE为平行四边形,因此BE∥CD.又AP⊥平面PCD,所以AP⊥CD,因此AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP,AC平面P AC,所以BE⊥平面P AC.9.(2019·唐山统考)已知四棱锥P ABCD的底面ABCD是矩形,PD⊥底面ABCD,E为棱PD的中点.(1)证明:PB∥平面AEC;(2)若PD=AD=2,PB⊥AC,求点P到平面AEC的距离.解析:(1)证明:如图所示,连接BD,交AC于点F,连接EF,∵底面ABCD 为矩形,∴F 为BD 中点, 又E 为PD 中点,∴EF ∥PB , 又PB平面AEC ,EF平面AEC ,∴PB ∥平面AEC . (2)∵PD ⊥平面ABCD , AC平面ABCD ,∴PD ⊥AC ,又PB ⊥AC ,PB ∩PD =P ,∴AC ⊥平面PBD , ∵BD平面PBD ,∴AC ⊥BD ,∴四边形ABCD 为正方形.又E 为PD 的中点,∴P 到平面AEC 的距离等于D 到平面AEC 的距离,设D 到平面AEC 的距离为h ,由题意可知AE =EC =5,AC =22,S △AEC =12×22×3=6,由V D AEC=V E ADC 得13S △AEC ·h =13S △ADC ·ED ,解得h =63,∴点P 到平面AEC 的距离为63.B 组 能力提升练10.直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 相交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( )A.12 B .1 C.32D .2解析:设B 1F =x ,因为AB 1⊥平面C 1DF ,DF 平面C 1DF ,所以AB 1⊥DF . 由已知可得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h , 则DE =12h .又2×2=h 22+(2)2, 所以h =233,DE =33. 在Rt △DB 1E 中,B 1E =⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫332=66.由面积相等得66× x 2+⎝ ⎛⎭⎪⎫222=22x ,得x =12.答案:A11.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,nα,则m ⊥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α解析:选项A.若m ∥α,n ∥α,则m 与n 可能平行、相交、异面,故A 错误;B .若m ⊥α,nα,则m ⊥n ,显然成立;C .若m ⊥α,m ⊥n ,则n ∥α或nα,故C 错误;D .若m ∥α,m ⊥n ,则n ⊥α或n ∥α或n 与α相交. 答案:B12.如图所示,三棱锥A -BCD 的底面是等腰直角三角 形,AB ⊥平面BCD ,AB =BC =BD =2,E 是棱CD 上的任意一点,F ,G 分别是AC ,BC 的中点,则在 下面命题中:①平面ABE ⊥平面BCD ; ②平面EFG ∥平面ABD ;③四面体FECG 体积的最大值是13.真命题的个数是( ) A .0 B .1 C .2D .3解析:①正确,因为AB ⊥平面BCD ,且AB平面ABE ,由面面垂直的判定定理可知平面ABE ⊥平面BCD ;②错误,若两平面平行,则必有AD ∥EF ,而点E 是棱CD 上任意一点,故该命题为假命题;③正确,由已知易得GF ⊥平面GCE ,且GF =12AB =1, 而S △GCE =12GC ·CE ·sin45°=24CE ≤1,故V F -GCE =13S △GCE ·FG ≤13. 故正确的命题为①③. 答案:C13.已知平面α,β和直线m .给出条件:①m ∥α;②m ⊥α;③mα;④α⊥β;⑤α∥β.(1)当满足条件________时,有m ∥β. (2)当满足条件________时,有m ⊥β. 解析:(1)当mα,且α∥β时,有m ∥β,故填③⑤.(2)当m ⊥α,且α∥β时,有m ⊥β,故填②⑤. 答案:(1)③⑤ (2)②⑤14.(2019·北京东城区模拟)如图所示,在四棱锥E -BCD 中,AE ⊥DE ,CD ⊥平面ADE ,AB ⊥平面ADE ,CD =3AB .(1)求证:平面ACE⊥平面CDE;(2)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出EFED的值;若不存在,说明理由.解析:(1)证明:因为CD⊥平面ADE,AE平面ADE,所以CD⊥AE.又AE⊥DE,CD∩DE=D,所以AE⊥平面CDE,因为AE平面ACE,所以平面ACE⊥平面CDE.(2)在线段DE上存在一点F,且EFED=13,使AF∥平面BCE.设F为线段DE上一点,且EF ED=13.过点F作FM∥CD交CE于点M,连接BM,AF,则FM=13CD.因为CD⊥平面ADE,AB⊥平面ADE,所以CD∥AB.又FM∥CD,所以FM∥AB.因为CD=3AB,所以FM=AB.所以四边形ABMF是平行四边形,所以AF∥BM.又AF平面BCE,BM平面BCE,所以AF∥平面BCE.提能练(四) 立体几何A 组 基础对点练1.(2016·高考全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π .9π2 C .6π .32π3解析:设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2, ∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2. 答案:B2.(2019·成都模拟)如图,一个三棱锥的三视图均为直角三角形,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A .4πB .16πC .24πD .25π 解析:由三视图知该几何体是一个三条侧棱两两垂直的三棱锥,三条侧棱长分别为2,2,4,将该三棱锥补成一个长方体,可知该三棱锥的外接球直径就是长方体的体对角线,所以外接球直径2R =22+22+42=26,则R =6,故该球的表面积为4πR 2=24π,故选C.答案:C3.(2019·洛阳模拟)已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( )A.823πB.833πC.863πD.1623π解析:将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长22,则球O 的体积V =43πR 3=823π,故选A.答案:A4.(2019·石家庄模拟)如图是某四棱锥的三视图,其中正视图是边长为2的正方形,侧视图是底边分别为2和1的直角梯形,则该几何体的体积为( )A.83B.43C.823D.423解析:记由三视图还原后的几何体为四棱锥A -BCDE ,将其放入棱长为2的正方体中,如图,其中点D ,E 分别为所在棱的中点,分析知平面ABE ⊥平面BCDE ,点A 到直线BE 的距离即四棱锥的高,设为h ,在△ABE 中,易知AE =BE =5,cos ∠ABE =55,则sin ∠ABE =255,所以h =455,故四棱锥的体积V =13×2×5×455=83,故选A.答案:A5.(2019·贵阳模拟)某几何体的三视图如图所示,正方形网格的边长为1,该几何体的顶点都在球O 的球面上,则球O 的表面积为( )A .15πB .16πC .17πD .18π解析:由题中的三视图可知,该几何体为如图所示的三棱锥D 1-BCD ,将其放在长方体ABCD -A 1B 1C 1D 1中,则该几何体的外接球即长方体的外接球,长方体的长、宽、高分别为2,2,3,长方体的体对角线长为9+4+4=17,球O 的直径为17,所以球O 的表面积S =17π,故选C.答案:C6.(2019·长春模拟)已知圆锥的侧面展开图是半径为3的扇形,则该圆锥体积的最大值为________.解析:由题意得圆锥的母线长为3,设圆锥的底面半径为r ,高为h ,则h =9-r 2,所以圆锥的体积V =13πr 2h =13πr 29-r 2=13π9r 4-r 6.设f (r )=9r 4-r 6(r >0),则f ′(r )=36r 3-6r 5,令f ′(r )=36r 3-6r 5=6r 3(6-r 2)=0,得r =6,所以当0<r <6时,f ′(r )>0,f (r )单调递增,当r >6时,f ′(r )<0,f (r )单调递减,所以f (r )max =f (6)=108,所以V max =13π×108=23π.答案:23π7.(2019·惠州模拟)某三棱锥的三视图如图所示,且图中的三个三角形均为直角三角形,则xy 的最大值为________.解析:将三视图还原为如图所示的三棱锥P -ABC ,其中底面ABC 是直角三角形,AB ⊥BC ,P A ⊥平面ABC ,BC =27,P A 2+y 2=102,(27)2+P A 2=x 2,所以xy =x 102-[x 2-(27)2]=x 128-x 2≤x 2+(128-x 2)2=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64.答案:648.如图,已知四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为菱形,AD =2,∠DAB =60°,E 为AB 的中点.(1)证明:平面PCD ⊥平面PDE ;(2)若PD =3AD ,求点E 到平面PBC 的距离.解析:(1)证明:因为PD ⊥底面ABCD ,所以PD ⊥AB ,连接DB ,在菱形ABCD 中,∠DAB =60°,所以△DAB 为等边三角形,又E 为AB 的中点,所以AB ⊥DE ,又PD ∩DE =D ,所以AB ⊥平面PDE ,因为CD ∥AB ,所以CD ⊥平面PDE ,因为CD 平面PCD ,所以平面PCD ⊥平面PDE .(2)因为AD =2,所以PD =23,在Rt △PDC 中,PC =4,同理PB =4,易知S △PBC =15,S △EBC =32,设点E 到平面PBC 的距离为h ,连接EC ,由V P -EBC =V E -PBC 得,13S △EBC ·PD =13S △PBC ·h , 所以h =155.B 组 能力提升练9.如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D -ABC 中,(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积. 解析:(1)证明:∵AC =AD 2+CD 2=22,∠BAC =∠ACD =45°,AB =4, ∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8,∴AB 2=AC 2+BC 2=16,∴AC ⊥BC .∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,∴BC ⊥平面ACD .(2)∵AD ∥平面BEF ,AD平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF .∵E 为AC 的中点,∴EF 为△ACD 的中位线.∵V F -BCE =V B -CEF =13×S △CEF ×BC ,∴S △CEF =14S △ACD =14×12×2×2=12,∴V F -BCE =13×12×22=23.10.(2019·南昌调研)如图,在直三棱柱ABC -A 1B 1C 1中,AC =BC =AA 1=3,AC ⊥BC ,点M 在线段AB 上.(1)若M 是AB 的中点,证明:AC 1∥平面B 1CM ;(2)是否存在点M 使得三棱锥B 1-BCM 的体积是三棱柱ABC -A 1B 1C 1的体积的19?若存在,试求BM 的长度;若不存在,请说明理由. 解析:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接ME . 因为三棱柱ABCA 1B 1C 1是直三棱柱,所以侧面BB 1C 1C 为矩形.又M 是AB 的中点,所以ME 为△ABC 1的中位线,所以ME ∥AC 1. 因为ME 平面B 1CM ,AC 1平面B 1CM ,所以AC 1∥平面B 1CM .(2)存在点M 使得三棱锥B 1BCM 的体积是三棱柱ABC A 1B 1C 1的体积的19. 理由如下:假设存在点M 使得三棱锥B 1-BCM 的体积是三棱柱ABC -A 1B 1C 1的体积的19.由题意知VB 1-BCM =13S △BCM ·BB 1,VABC -A 1B 1C 1=S △ABC ·BB 1,设BM =λBA,0<λ<1,则13λS △ABC ·BB 1=19S △ABC ·BB 1,所以λ=13,即BM =2,故当BM =2时,三棱锥B 1-BCM 的体积是三棱柱ABC -A 1B 1C 1的体积的19.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间中得垂直关系专题训练知识梳理一、线线垂直:如果两条直线于一点或经过后相交于一点,并且交角为 ,则称这两条直线互相垂直、二、线面垂直:1、定义:如果一条直线与一个平面相交,并且与这个平面内得_________________,则称这条直线与这个平面垂直、也就就是说,如果一条直线垂直于一个平面,那么她就与平面内任意一条直线都、直线l与平面α互相垂直,记作l⊥α、2、判定定理:如果一条直线与平面内得直线垂直,则这条直线与这个平面垂直、推论①:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也于这个平面、推论②:如果两条直线同一个平面,那么这两条直线平行、3、点到平面得距离: 长度叫做点到平面得距离、三、面面垂直:1、定义:如果两个相交平面得交线与第三个平面 ,又这两个平面与第三个平面相交所得得两条交线 ,就称这两个平面互相垂直、平面α,β互相垂直,记作α⊥β、2、判定定理:如果一个平面经过另一个平面得___________,则这两个平面互相垂直、3、性质定理:如果两个平面互相垂直,那么在一个平面内垂直于直线垂直于另一个平面、四、求点面距离得常用方法:1、直接过点作面得垂线,求垂线段得长,通常要借助于某个三角形、2、转移法:借助线面平行将点转移到直线上某一特殊点到平面得距离来求解、3、体积法:利用三棱锥得特征转换位置来求解、题型一线线垂直、线面垂直得判定及性质例1、如图,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E就是PC得中点、求证:(1)CD⊥AE;(2)PD⊥平面ABE、【变式1】已知:正方体ABCD﹣A1B1C1D1 ,AA1=2,E为棱CC1得中点.(Ⅰ ) 求证:B1D1⊥AE;(Ⅱ ) 求证:AC∥平面B1DE.【解答】(Ⅰ)连接BD,则BD∥B1D1,∵ABCD就是正方形,∴AC⊥ BD.∵CE⊥平面ABCD,BD⊂平面ABCD,∴CE⊥BD.又∵AC∩CE=C,∴BD⊥面ACE.∵AE⊂面ACE,∴BD⊥AE,∴B1D1⊥AE.﹣﹣﹣(5分)(Ⅱ)证明:取BB1得中点F,连接AF、CF、EF.∵ E、F就是C1C、B1B得中点,∴ CE∥B1F且CE=B1F,∴ 四边形B1FCE就是平行四边形,∴ CF∥ B1E.∵ 正方形BB1C1C 中,E、F就是CC、BB得中点,∴ EF∥BC且EF=BC又∵ BC∥AD且BC=AD,∴ E F∥AD且EF=AD.∴ 四边形ADEF就是平行四边形,可得AF∥ED,∵ AF∩CF=C,BE∩ED=E,∴ 平面ACF∥平面B1DE. 又∵ AC⊂平面ACF,∴AC∥面B1DE.【变式2】如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E、G分别就是CD、PC得中点,点F在PD上,且PF:FD=2:1.(Ⅰ )证明:EA⊥PB;(Ⅱ )证明:BG∥面AFC.【解答】(Ⅰ)证明:因为面ABCD为菱形,且∠ABC=60°,所以△ ACD为等边三角形,又因为E就是CD得中点,所以EA⊥AB.又PA⊥平面ABCD,所以EA⊥PA.而AB∩PA=A所以EA⊥面PAB,所以EA⊥PB.(Ⅱ)取PF中点M,所以PM=MF=FD.连接MG,MG∥C F,所以MG∥面AFC.连接BM,BD,设AC∩BD=O,连接OF,所以BM∥OF,所以BM∥面AFC.而BM∩MG=M所以面BGM∥面AFC,所以BG∥面AFC.【变式3】如图,四棱柱ABCD﹣A1B1C1D1得底面ABCD就是正方形,O为底面中心,A1O⊥平面ABCD,AB=,AA1=2.(1)证明:AA1⊥BD(2)证明:平面A1BD∥平面CD1B1;(3)求三棱柱ABD﹣A1B1D1得体积.【解答】(1)证明:∵底面ABCD就是正方形,∴BD⊥AC,又∵ A1O⊥平面ABCD且BD⊂面ABCD,∴ A1O⊥BD,又∵ A1O∩AC=O,A1O⊂面A1AC,AC⊂面A1AC,∴BD⊥面A1AC,AA1⊂面A1AC,∴ AA1⊥BD.(2)∵ A1B1∥AB,AB∥CD,∴ A1B1∥CD,又A1B1=CD,∴四边形A1B1CD就是平行四边形, ∴ A1D∥B1C,同理A1B∥CD1,∵ A1B⊂平面A1BD,A1D⊂平面A1BD,CD1⊂平面CD1B1,B1C⊂平面CD1B,且A1B∩A1D=A1,CD1∩B1C=C,∴平面A1BD∥平面CD1B1.(3)∵ A1O⊥面ABCD,∴ A1O就是三棱柱A1B1D1﹣ABD得高,在正方形ABCD中,AO=1.在Rt△A1OA中,AA1=2,AO=1,∴ A1O=,∴ V三棱柱ABD﹣A1B1D1=S△ABD•A1O=•2•=∴三棱柱ABD﹣A1B1D1得体积为.【变式4】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=BC=AC=AA1=4, 点F在CC1上,且C1F=3FC,E就是BC得中点.(1)求证:AE⊥平面BCC1B1(2)求四棱锥A﹣B1C1FE得体积;(3)证明:B1E⊥AF.【解答】(1)∵ AB=AC,E就是BC得中点,∴AE⊥ BC.在三棱柱ABC﹣A1B1C1,中,BB1∥ AA1,∴ BB1⊥平面ABC,∵ AE⊂平面ABC,∴ BB1⊥AE,….(2分)又∵ BB1∩BC=B,….(3分)BB1,BC⊂平面BB1C1C,∴AE⊥平面BB1C1C,….(4分)(2)由(1)知,即AE为四棱锥A﹣B1C1FE得高,在正三角形ABC中,AE=AB=2,…在正方形BB1C1C,中,CE=BE=2,CF=1,∴=﹣﹣S△CFE=4×=11.…(6分)∴=•AE==…(7分)(3)证明:连结B1F,由(1)得AE⊥平面BB1C1C,∵ B1E⊂平面BB1C1C,∴AE⊥B1E,….(8分)在正方形BB1C1C,中,B1F==5,B1E==2,EF==,∵ B1F2=B1E2+EF2,∴ B1E⊥EF….(9分)又∵AE∩EF=E,….(10分)AE,EF⊂平面AEF,∴ B1E⊥平面AEF,….(11分)∵ AF⊂平面AEF,∴ B1E⊥AF.….(12分)【变式5】如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E 为PC得中点,G在BC上,且CG=CB(1)求证:PC⊥BC;(2)求三棱锥C﹣DEG得体积;(3)AD边上就是否存在一点M,使得PA∥平面MEG?若存在,求AM得长;否则,说明理由.【解答】(1)证明:∵PD⊥平面ABCD,∴PD⊥BC.又∵ABCD就是正方形,∴BC⊥CD.又∵PD∩CD=D,∴BC⊥平面PCD.又∵PC⊂平面PCD,∴PC⊥BC.(2)∵BC⊥平面PCD,∴ GC就是三棱锥G﹣DEC得高.∵ E就是PC得中点,∴ S△EDC=S△PDC==×(×2×2)=1.V C﹣DEG=V G﹣DEC=GC•S△DEC=××1=.(3)连结AC,取AC中点O,连结EO、GO,延长GO交AD于点M,则PA∥平面MEG.证明:∵E为PC得中点,O就是AC得中点,∴EO∥PA.又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG.在正方形ABCD中,∵O就是AC得中点,BC=PD=2,CG=CB.∴△OCG≌△OAM,∴AM=CG=,∴所求AM得长为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【变式6】如图所示,在三棱柱ABC﹣A1B1C1中,BB1⊥底面A1B1C1,A1B1⊥B1C1且A1B1=BB1=B1C1,D为AC得中点.(Ⅰ )求证:A1B⊥AC1(Ⅱ )在直线CC1上就是否存在一点E,使得A1E⊥平面A1BD,若存在,试确定E 点得位置;若不存在,请说明理由.【解答】(Ⅰ)证明:连接AB1∵ BB1⊥平面A1B1C1∴ B1C1⊥BB1∵ B1C1⊥A1B1且A1B1∩BB1=B1∴ B1C1⊥平面A1B1BA∴ A1B⊥B1C1、又∵ A1B⊥AB1且AB1∩B1C1=B1∴A1B⊥平面AB1C1∴A1B⊥AC1(Ⅱ)存在点E在CC1得延长线上且CE=2CC1时,A1E⊥平面A1BD.设AB=a,CE=2a,∴,∴,,DE=,∴,∴A1E⊥A1D…∵BD⊥AC,BD⊥CC1,AC∩CC1=C,∴BD⊥平面ACC1A1 , 又A1E⊂平面ACC1A1∴ A1E⊥ BD、又BD∩A1D=D ,∴ A1E⊥平面A1BD【变式7】如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D就是AB得中点.(1)求证:AC⊥ BC1;(2)求证:AC1∥平面CDB1.【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥ BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B得中点,又∵D为AB得中点,∴DE为△BAC1得中位线.∴AC1∥DE。
又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【变式8】如图,直三棱柱ABC﹣A1B1C1中,AA1=2AC=2BC,D就是AA1得中点,CD⊥B1D.(1)证明:CD⊥B1C1;(2)平面CDB1分此棱柱为两部分,求这两部分体积得比.【解答】(1)证明:由题设知,直三棱柱得侧面为矩形,由D为AA1得中点,则DC=DC1,又AA1=2AC,可得DC12+DC2=CC12,则CD⊥ DC1,而CD⊥ B1D,B1D∩DC1=D,则CD⊥平面B1C1D,由于B1C1⊂平面B1C1D,故CD⊥ B1C1;(2)解:由(1)知,CD⊥B1C1,且B1C1⊥C1C,则B1C1⊥平面ACC1A1,设V1就是平面CDB1上方部分得体积,V2就是平面CDB1下方部分得体积,则V1=V B1﹣CDA1C1=S CDA1C1•B1C1=וB1C13=B1C13,V=V ABC﹣A1B1C1=AC•BC•CC1=B1C13,则V2=V﹣V1=B1C13=V1,故这两部分体积得比为1:1.【变式9】如图所示,在长方体ABCD﹣A1B1C1D1中,已知底面就是边长为2得正方形,高为1,点E在B1B上,且满足B1E=2EB.(1)求证:D1E⊥A1C1;(2)在棱B1C1上确定一点F,使A、E、F、D1四点共面,并求此时B1F得长;(3)求几何体ABED1D得体积.【解答】(Ⅰ)证明:连结B1D1.因为四边形A1B1C1D1为正方形,所以A1C1⊥B1D1.在长方体ABCD﹣A1B1C1D1中,DD1⊥平面A1B1C1D1,又A1C1⊂平面A1B1C1D1,所以DD1⊥A1C1.因为DD1∩B1D1=D1,DD1⊂平面BB1D1D,B1D1⊂平面BB1D1D,所以A1C1⊥平面BB1D1D.又D1E⊂平面BB1D1D,所以D1E⊥A1C1.…(4分)(Ⅱ)解:连结BC1,过E作EF∥BC1交B1C1于点F.因为AD1∥BC1,所以AD1∥EF.所以A、E、F、D1四点共面.即点F为满足条件得点.又因为B1E=2EB,所以B1F=2FC1,所以.…(8分)(Ⅲ)解:四边形BED1D为直角梯形,几何体ABED1D为四棱锥A﹣BED1D.因为==,点A到平面BED1D得距离h=,所以几何体ABED1D得体积为:=.…(13分)题型二面面垂直得判定例2、如图,在三棱锥P—ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别就是BC、CA得中点、(1)求证:平面PBE⊥平面PAC;(2)如何在BC上找一点F,使AD∥平面PEF?并说明理由、【变式1】如图,四边形ABCD为菱形,G为AC与BD得交点,BE⊥平面ABCD.证明:平面AEC⊥平面BED、【解答】证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC⊂平面AEC,∴平面AEC⊥平面BED;【变式2】如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC得中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.【解答】在三棱台DEF﹣ABC中,AB=2DE,G为AC得中点.∴,∴四边形CFDG就是平行四边形,∴DM=MC.又BH=HC,∴MH∥BD,又BD⊄平面FGH,MH⊂平面FGH,∴BD∥平面FGH;证法二:在三棱台DEF﹣ABC中,AB=2DE,H为BC得中点.∴,∴四边形BHFE为平行四边形.∴BE∥HF.在△ABC中,G为AC得中点,H为BC得中点,∴GH∥AB,又GH∩HF=H,∴平面FGH∥平面ABED,∵BD⊂平面ABED,∴BD∥平面FGH.(II)证明:连接HE,∵G,H分别为AC,BC得中点,∴GH∥AB,∵AB⊥BC,∴GH⊥BC,又H为BC得中点,∴EF∥HC,EF=HC.∴EFCH就是平行四边形,∴CF∥HE.∵CF⊥BC,∴HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,∴BC⊥平面EGH,又BC⊂平面BCD,∴平面BCD⊥平面EGH.【变式3】如图所示,已知AB⊥平面BCD,M、N分别就是AC、AD得中点,BC⊥CD.求证:平面BCD⊥平面ABC.【解答】因为AB⊥平面BCD,CD⊂平面BCD,所以AB⊥CD.又CD⊥BC,AB∩BC=B,所以CD⊥平面ABC.又CD⊂平面BCD,所以平面BCD⊥平面ABC.【变式4】如图,已知在四棱锥P﹣ABCD中,底面ABCD就是边长为4得正方形,△PAD就是正三角形,平面PAD⊥平面ABCD,E,F,G分别就是PD,PC,BC得中点.(1)求证:平面EFG⊥平面PAD;(2)若M就是线段CD上一点,求三棱锥M﹣EFG得体积.【解答】(1)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,CD⊥AD∴CD⊥平面PAD…(3分)又∵△PCD中,E、F分别就是PD、PC得中点,∴EF∥CD,可得EF⊥平面PAD∵EF⊂平面EFG,∴平面EFG⊥平面PAD;…(6分)(2)∵EF∥CD,EF⊂平面EFG,CD⊄平面EFG,∴CD∥平面EFG,因此CD上得点M到平面EFG得距离等于点D到平面EFG得距离,∴V M﹣EFG=V D﹣EFG,取AD得中点H连接GH、EH,则EF∥GH,∵EF⊥平面PAD,EH⊂平面PAD,∴EF⊥EH于就是S△EFH=EF×EH=2=S△EFG,∵平面EFG⊥平面PAD,平面EFG∩平面PAD=EH,△EHD就是正三角形∴点D到平面EFG得距离等于正△EHD得高,即为,…(10分)因此,三棱锥M﹣EFG得体积V M﹣EFG=V D﹣EFG=×S△EFG×=.…(12分)【变式5】如图,已知AB⊥平面ACD,DE∥AB,AD=AC=DE=2AB=2,且F就是CD得中点,AF=.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求此多面体得体积.【解答】证明:(1)取CE中点P,连接FP、BP,∵PF∥DE,且FP=1又AB∥DE,且AB=1,∴AB∥FP,且AB=FP,∴ABPF为平行四边形,∴AF∥BP.(2分)又∵AF⊄平面BCE,BP⊂平面BCE,∴AF∥平面BCE(4分)(2)证明:∵AD=AC,F就是CD得中点,.所以△ACD为正三角形,∴AF⊥CD∵AB⊥平面ACD,DE∥AB,∴DE⊥平面ACD,又AF⊂平面ACD,∴DE⊥AF、又AF⊥CD,CD∩DE=D,∴AF⊥平面CDE、又BP∥AF,∴BP⊥平面CDE又∵BP平面BCE, ∴平面BCE⊥平面CDE、(3)此多面体就是以C为顶点,以四边形ABED为底边得四棱锥,等边三角形AD边上得高就就是四棱锥得高(12分)【变式6】如图,三棱柱ABC﹣A1B1C1得侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.(I)求证:平面AA1B1B⊥平面BB1C1C;(II)若AB=2,求三棱柱ABC﹣A1B1C1体积.【解答】(Ⅰ)证明:由侧面AA1B1B为正方形,知AB⊥BB1.又∵AB⊥B1C,BB1∩B1C=B1,∴AB⊥平面BB1C1C,又∵AB⊂平面AA1B1B,∴平面AA1B1B⊥BB1C1C.(Ⅱ)由题意,CB=CB1,设O就是BB1得中点,连接CO,则CO⊥BB1.由(Ⅰ)知,CO⊥平面AB1B1A,且CO=BC=AB=.连接AB1,则=•CO=×AB2•CO=.∵====,∴V三棱柱=2.【变式7】如图,四边形ABCD为梯形,AB∥CD,PD⊥平面ABCD,∠BAD=∠ADC=90°,DC=2AB=2a,DA=,E为BC中点.(1)求证:平面PBC⊥平面PDE;(2)线段PC上就是否存在一点F,使PA∥平面BDF?若有,请找出具体位置,并进行证明;若无,请分析说明理由.【解答】(1)证明:连结BD,∠BAD=90°,;∴BD=DC=2a,E为BC中点,∴BC⊥DE;又PD⊥平面ABCD,BC⊂平面ABCD;∴BC⊥PD,DE∩PD=D;∴BC⊥平面PDE;∵BC⊂平面PBC,∴平面PBC⊥平面PDE;(2)如上图,连结AC,交BD于O点,则:△AOB∽△COD;∵DC=2AB;∴;∴;∴在PC上取F,使;连接OF,则OF∥PA,而OF⊂平面BDF,PA⊄平面BDF;∴PA∥平面BDF.题型三:面面垂直性质应用例3、如图所示,在四棱锥P—ABCD中,底面ABCD就是∠DAB=60°且边长为a得菱形,侧面PAD 为正三角形,其所在平面垂直于底面ABCD,若G为AD边得中点、(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB、【变式1】如图,已知在四棱锥P﹣ABCD中,底面ABCD就是边长为4得正方形,△PAD就是正三角形,平面PAD⊥平面ABCD,E,F,G分别就是PD,PC,BC得中点.(1)求证:平面EFG⊥平面PAD;(2)若M就是线段CD上一点,求三棱锥M﹣EFG得体积.【解答】(1)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,CD⊥AD,∴CD ⊥平面PAD。