【金版优课】高中数学人教版选修2-1课堂练习:1-3 简单的逻辑联结词 Word版含解析
高中数学人教A版选修2-1习题:第一章1.3简单的逻辑联结词 Word版含答案

第一章常用逻辑用语1.3 简单的逻辑联结词A级基础巩固一、选择题1.已知命题p:3≥3,q:3>4,则下列判断正确的是( )A. p∨q为真,p∧q为真,綈p为假B.p∨q为真,p∧q为假,綈p为真C.p∨q为假,p∧q为假假,綈p为假D.p∨q为真,p∧q为假,綈p为假解析:因为p为真命题,q为假命题,所以p∨q为真,p∧q为假,綈p为假,应选D。
答案:D2.已知p,q为两个命题,则“p∨q是假命题”是“綈p为真命题”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:“p∨q”为假,则p与q均是假命题,綈 p为真命题,又因为綈p为真命题,则p为假命题.但若q为真命题,则推不出p∨q是假命题.答案:A3.已知p:∅⊆{0},q:{1}∈{1,2}.由它们构成的新命题“p∧q”“p∨q”“綈p”中,真命题有( )A.1个B.2个C.3个D.4个解析:容易判断命题p:∅⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p∧q是假命题.p∨q是真命题,綈p是假命题.答案:A4.已知命题p:a2+b2<0(a,b∈R);命题q:(a-2)2+|b-3|≥0(a,b∈R),下列结论正确的是( )A.“p∨q”为真B.“p∧q”为真C.“綈p”为假D.“綈q”为真解析:显然p假q真,故“p∨q”为真,“p∧q”为假,“綈p”为真,“綈q”为假.答案:A5.命题p:“方程x2+2x+a=0有实数根”;命题q:“函数f(x)=(a2-a)x是增函数”,若“p∧q”为假命题,且“p∨q”为真命题,则实数a的取值范围是( ) A.a>0 B.a≥0C.a>1 D.a≥1解析:命题p:“方程x2+2x+a=0有实数根”的充要条件为Δ=4-4a≥0,即a≤1,则綈p:a>1;命题q:“函数f(x)=(a2-a)x是增函数”的充要条件为a2-a>0,即a<0或a>1,则綈q:0≤a≤1.由“p∧q”为假命题,“p∨q”为真命题,得p,q一真一假;若p真q假,则0≤a≤1;若p假q真,则a>1.所以实数a的取值范围是a≥0.答案:B二、填空题6.命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p∨q”为________________.解析:方向相同的两个向量共线或方向相反的两个向量共线,即“方向相同或相反的两个向量共线”.答案:方向相同或相反的两个向量共线7.命题“若a<b,则2a<2b”的否命题为________________,命题的否定为________________.解析:命题“若a<b,则2a<2b”的否命题为“若a≥b,则2a≥2b”,命题的否定为“若a<b,则2a≥2b”.答案:若a≥b,则2a≥2b若a<b,则2a≥2b8.对于函数:①f(x)=|x+2|;②f(x)=(x-2)2;③f(x)=cos(x-2)有命题p:f(x+2)是偶函数;命题q:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数.能使p∧q为真命题的所有函数的序号是________.答案:②三、解答题9.已知p:x2-x≥6,q:x∈Z,若p∧q和綈q都是假命题,求x的取值集合.解:因为綈q是假命题,所以q为真命题.又p∧q为假命题,所以p为假命题.因此x2-x<6且x∈Z,解之得-2<x<3且x∈Z,故x=-1,0,1,2,所以x的取值集合是{-1,0,1,2}.10.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围. 解:(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0, 又a >0,所以a <x <3a .当a =1时,1<x <3,即p 为真时,实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,得2<x ≤3, 则q 为真时实数x 的取值范围是2<x ≤3. 若p ∧q 为真,则p 真且q 真, 所以实数x 的取值范围是2<x <3.(2)綈p 是綈q 的充分不必要条件, 即綈p ⇒綈q , 且綈q綈p .设A ={x |綈p },B ={x |綈q },则A B ,又A ={x |綈p }={x |x ≤a 或x ≥3a },B ={x |綈q }={x ≤2或x >3},则0<a ≤2,且3a >3,所以实数a 的取值范围是1<a ≤2.B 级 能力提升1.已知命题:p 1:函数y =2x-2-x在R 上为增函数;p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4答案:C2.已知命题p :x 2+2x -3>0;命题q :13-x>1,若綈q 且p 为真,则x 的取值范围是____________________________________.解析:因为綈q 且p 为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 假时有x ≥3或x ≤2.p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3.由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3. 所以x 的取值范围是x ≥3或1<x ≤2或x <-3. 答案:(-∞,-3)∪(1,2]∪[3,+∞)3.已知命题p :方程x 2+2ax +1=0有两个大于-1的实数根,命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,若“p 或q ”与“非q ”同时为真命题,求实数a 的取值范围.解:命题p :方程x 2+2ax +1=0有两个大于-1的实数根,等价于 ⎩⎪⎨⎪⎧Δ=4a 2-4≥0,x 1+x 2>-2,(x 1+1)(x 2+1)>0,⇔⎩⎪⎨⎪⎧a 2-1≥0,-2a >-2,2-2a >0,解得a ≤-1. 命题q :关于x 的不等式ax2-ax +1>0的解集为R ,等价于a =0或⎩⎪⎨⎪⎧a >0,Δ<0.即⎩⎪⎨⎪⎧a >0,a 2-4a <0. 因为“p 或q ”与“非q ”同时为真命题,即p 真且q 假, 所以⎩⎪⎨⎪⎧a ≤-1,a <0或a ≥4,解得a ≤-1.故实数a 的取值范围是(-∞,-1], 由于⎩⎪⎨⎪⎧a >0,Δ<0,⇔⎩⎪⎨⎪⎧a >0,a 2-4a <0,解得0<a <4,所以0≤a <4.。
高中数学(人教A版)选修2-1教师用书1.3 简单的逻辑联结词 Word版含答案

[核心必知].预习教材,问题导入根据以下提纲,预习教材~的内容,回答下列问题.()教材“思考”中的命题()与命题()、()之间有什么关系?联结得到的新命题.”且“使用联结词()()是由命题()命题提示:()教材“思考”中的命题()与命题()、()之间有什么关系?联结得到的新命题.”或“用联结词()()题是由命()命题提示:()教材“思考”中的命题()与命题()之间有什么关系?的否定.()是命题()命题提示:.归纳总结,核心必记()用逻辑联结词“或”“且”“非”构成新命题.”且“读作,∧记作,就得到一个新命题,和联结起来把命题”且“用联结词① .”或“读作,∨记作,就得到一个新命题,把命题和联结起来”或“用联结词② .”的否定“或”非“读作,记作,就得到一个新命题,对一个命题全盘否定③()含有逻辑联结词的命题的真假判断()“平面向量既有大小,又有方向”使用的逻辑联结词是什么?且.提示:()“≥”使用的逻辑联结词是什么?或.提示:()“方程-=没有有理根”使用的逻辑联结词是什么?非.提示:()“∨”为真是“∧”为真的什么条件?(充要、充分不必要、必要不充分、既不充分也不必要).提示:必要不充分.()命题的否定与否命题有什么不同?命题的否定只否定命题的结论,提示:而否命题,,又否定命题的结既否定命题的条件论.[课前反思]通过以上预习,必须掌握的几个知识点.()用逻辑联结词“且”、“或”、“非”构成的命题各是什么?其记法和读法各是什么?;()含逻辑联结词的命题的真假性有什么特点?;()“命题的否定”与“否命题”有什么不同?.讲一讲.指出下列命题的形式及构成它的命题.()向量既有大小又有方向;()矩形有外接圆或有内切圆;()集合⊆(∪);()正弦函数= (∈)是奇函数并且是周期函数.[尝试解答]()是“∧”形式的命题.其中:向量有大小,:向量有方向.()是“∨”形式的命题.其中:矩形有外接圆,:矩形有内切圆.()是“”形式的命题.。
高中数学选修2-1-简单的逻辑联结词

简单的逻辑联结词知识集结知识元逻辑联结词或、且、非知识讲解1.逻辑联结词“或”、“且”、“非”【或】一般地,用连接词“或”把命题和命题连接起来,就得到一个新命题,记作pⅤq,读作“p 或q”.规定:当p,q两个命题中有一个命题是真命题时,pⅤq是真命题;当p,q两个命题都是假命题时,pⅤq是假命题.例如:“2≤2”、“27是7或9的倍数”等命题都是pⅤq的命题.解题方法点拨:三个逻辑连接词“或”、“且”、“非”中,对于“或”的理解是难点.p或q表示两个简单命题至少有一个成立,它包括①p真q假②q真p假③p真q真,这一点可以结合两个集合的并集来理解.类似地,p或q或r表示三个简单命题至少有一个成立,同样我们可以结合三个集合的并集来理解.“正难则反”的转化思想在解题中的效果往往好于直接解答,有时起到比繁就简的作用.正确理解“或”,特别是与日常生活中的“或”的区别.命题方向:一般与集合、函数的定义域、函数的单调性联合命题,小题为主.【且】一般地,用连接词“且”把命题p和命题q连接起来,就得到一个新命题,记作p∧q读作“p且q”.规定:当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题.“且”作为逻辑连接词,与生活用语中“既…”相同,表示两者都要满足的意思,在日常生活中经常用“和”,“与”代替.例1:将下列命题用“且”连接成新命题,并判断它们的真假:(1)p:正方形的四条边相等,q:正方形的四个角相等;(2)p:35是15的倍数,q:35是7的倍数;(3)p:三角形两条边的和大于第三边,q:三角形两条边的差小于第三边.解题方法点拨::逻辑连接词“且”,p且q表示两个简单命题两个都成立,就是p真并且q 真.一般解题中,注意两个命题必须去交集,不可以偏概全解答.命题方向:一般与集合、函数的定义域、函数的单调性联合命题,充要条件相结合,小题为主.【非】一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定.规定:若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题.“非p”形式复合命题的真假与p的真假相反;“非p”形式复合命题的真假可以用下表表示:p¬p真假假真解题方法点拨:注意逻辑连接词的理解及“¬p“新命题的正确表述和应用,“非”是否定的意思,必须是只否定结论.“p或q”、“p且q”的否定分别是“非p且非q”和“非p或非q”,“都”的否定是“不都”而不是“都不”.另外还有“等于”的否定是“不等于”,“大(小)于”的否定是“不大(小)于”,“所有”的否定是“某些”,“任意”的否定是“某个”,“至多有一个”的否定是“至少有两个”等等.必须注意与否命题的区别.命题方向:理解逻辑连接词“或”“且”“非”的含义,平时学习中,同学往往把非p与否命题混为一谈,因此,高考或会考中,常常出现,但是多以小题的形式.例题精讲逻辑联结词或、且、非例1.已知p:x∈{x|-4<x-a<4},q:x∈{x|(x-2)(3-x)>0},若¬p是¬q的充分条件,则实数a的取值范围为_________。
高中数学人教版选修2-1 1.3简单的逻辑联结词 教案(系列一)

1.3简单的逻辑联结词1.3.1且 1.3.2或(一)教学目标1.知识与技能目标:(1)掌握逻辑联结词“或、且”的含义(2)正确应用逻辑联结词“或、且”解决问题(3)掌握真值表并会应用真值表解决问题2.过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.3.情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.(二)教学重点与难点重点:通过数学实例,了解逻辑联结词“或、且”的含义,使学生能正确地表述相关数学内容。
难点:1、正确理解命题“P∧q”“P∨q”真假的规定和判定.2、简洁、准确地表述命题“P ∧q”“P∨q”.教具准备:与教材内容相关的资料。
教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.(三)教学过程学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。
在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。
下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。
为叙述简便,今后常用小写字母p,q,r,s,…表示命题。
(注意与上节学习命题的条件p 与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?(1)①12能被3整除;②12能被4整除;③12能被3整除且能被4整除。
(2)①27是7的倍数;②27是9的倍数;③27是7的倍数或是9的倍数。
学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。
(人教)高中数学选修2-1【精品课件】1-3 简单的逻辑联结词

课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
目标导航
预习引导
3 .非 一般地,对一个命题 p 全盘否定,就得到一个新命题,记作������ p,读作 “非 p”或“p 的否定”. 若 p 是真命题,则������ p 必是假命题;若 p 是假命题,则������ p 必是真命题.
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
目标导航
预习引导
预习交流 2
1.如果 p∧q 为真命题,那么 p∨q 一定是真命题吗?反之,如果 p∨q 为真命题,那么 p∧q 一定是真命题吗? 提示:如果 p∧q 为真命题,则 p∨q 为真命题;如果 p∨q 为真命题, 则 p,q 中可能有假命题,所以 p∧q 不一定为真命题. 2.将下列命题分别用“或”联结成新命题,并判断它们的真假. (1)p: 2是无理数,q: 2大于 1;(2)p:N⊆ Z,q:0∈N. 解:(1)p∨q: 2是无理数或大于 1,真命题. (2)p∨q:N⊆ Z 或 0∈N,真命题.
预交流 3
命题的否定与否命题有什么区别? 提示:对命题的否定只是否定命题的结论.而否命题,既否定命题的 条件,又否定命题的结论.两者是不同的概念,应用时要注意区别.
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
问题导学
当堂检测
一、命题的构成 活动与探究
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
人教新课标版数学高二选修2-1练习1-3简单的逻辑联结词

1.3 简单的逻辑联结词1.3.1且(and)1.3.2或(or)1.3.3非(not)双基达标(限时20分钟)1.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是().A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词解析“x=±1”可以写成“x=1或x=-1”,故选B.答案 B2.已知命题p:2+2=5,命题q:3>2,则下列判断正确的是().A.“p或q”为假,“非q”为假B.“p或q”为真,“非q”为假C.“p且q”为假,“非p”为假D.“p且q”为真,“p或q”为假解析显然p假q真,故“p或q”为真,“p且q”为假,“非p”为真,“非q”为假,故选B.答案 B3.已知p:∅⊆{0},q:{1}∈{1,2}.由他们构成的新命题“p∧q”,“p∨q”,“綈p”中,真命题有().A.1个B.2个C.3个D.4个解析容易判断命题p:∅⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p∧q是假命题.p∨q真命题,綈p是假命题,故选A.答案 A4.命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p∨q”为________.解析方向相同的两个向量共线或方向相反的两个向量共线,即“方向相同或相反的两个向量共线”.答案方向相同或相反的两个向量共线5.若命题“綈p∨綈q”为假命题,则命题“p∧q”是______命题(用“真”、“假”填空).解析命题“綈p∨綈q”为假,其否定为“p∧q”,是真命题.答案真6.分别写出由下列各组命题构成的“p∧q”“p∨q”“綈p”形式的命题:(1)p:π是无理数,q:e是有理数;(2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任一个内角.解(1)“p∧q”:π是无理数且e是有理数.“p∨q”:π是无理数或e是有理数.“綈p”:π不是无理数.(2)“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任一个内角.“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任一个内角.“綈p”:三角形的外角不等于与它不相邻的两个内角的和.综合提高(限时25分钟)7.若命题p:x∈A∪B,则綈p是().A.x∉A或x∉B B.x∉A且x∉BC.x∈A∩B D.x∉A或x∈B解析因x∈A∪B⇔x∈A或x∈B,所以綈p为x∉A且x∉B,故选B.答案 B8.已知命题s:“函数y=sin x是周期函数且是奇函数”,则①命题s是“p∧q”命题;②命题s是真命题;③命题綈s:函数y=sin x不是周期函数且不是奇函数;④命题綈s是假命题.其中,正确叙述的个数是().A.0 B.1 C.2 D.3解析命题s是“p∧q”命题,①正确;命题s是真命题,②正确,④正确;命题綈s:函数y=sin x不是周期函数或不是奇函数,③不正确.答案 D9.命题“若a<b,则2a<2b”的否命题为________,命题的否定为________.解析命题“若a<b,则2a<2b”的否命题为“若a≥b,则2a≥2b”,命题的否定为“若a<b,则2a≥2b”.答案若a≥b,则2a≥2b若a<b,则2a≥2b10.对于函数①f(x)=|x+2|;②f(x)=(x-2)2;③f(x)=cos(x-2).有命题p:f(x+2)是偶函数;命题q:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数,能使p∧q为真命题的所有函数的序号是______.解析对于①,f(x+2)=|x+4|不是偶函数,故p为假命题.对于②,f(x+2)=x2是偶函数,则p为真命题:f(x)=(x-2)2在(-∞,2)上是减函数,在(2,+∞)上是增函数,则q为真命题,故p∧q为真命题.对于③,f(x)=cos(x-2)显然不是(2,+∞)上的增函数,故q为假命题.故填②.答案②11.已知命题p:1∈{x|x2<a},命题q:2∈{x|x2<a}.(1)若“p或q”为真命题,求实数a的取值范围;(2)若“p且q”为真命题,求实数a的取值范围.解若p为真,则1∈{x|x2<a},所以12<a,即a>1;若q为真,则2∈{x|x2<a},即a>4.(1)若“p或q”为真,则a>1或a>4,即a>1.故实数a的取值范围是(1,+∞).(2)若“p且q”为真,则a>1且a>4,即a>4.故实数a的取值范围是(4,+∞).12.(创新拓展)已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解.若p∧q是假命题,綈p也是假命题.求实数a的取值范围.解∵p∧q是假命题,綈p是假命题,∴命题p是真命题,命题q是假命题.∵x 1,x 2是方程x 2-mx -2=0的两个实根, ∴⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=-2. ∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=m 2+8, ∴当m ∈[-1,1]时,|x 1-x 2|max =3.由不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立,可得a 2-5a -3≥3. ∴a ≥6或a ≤-1,∴当命题p 为真命题时,a ≥6或a ≤-1. 命题q :不等式ax 2+2x -1>0有解,①当a >0时,显然有解;②当a =0时,2x -1>0有解;③当a <0时,∵ax 2+2x -1>0,∴Δ=4+4a >0, ∴-1<a <0.从而命题q :不等式ax 2+2x -1>0有解时,a >-1. 又命题q 是假命题,∴a ≤-1.综上所述:⎩⎪⎨⎪⎧a ≥6或a ≤-1,a ≤-1⇒a ≤-1. 所以所求a 的取值范围为(-∞,-1].。
人教版高中数学选修2-1习题课件:1.3 简单的逻辑联结词

1.已知命题p∧(¬q)是真命题,则下列命题中也是
真命题的是( )
A.(¬p)∨q
B.p∨q
C.p∧q
D.(¬p)∧(¬q)
解析:命题p∧(¬q)是真命题,则p为真命题,¬q也
为真命题,
可推出¬p为假命题,q为假命题,
故为真命题的是p∨q,故选B.
答案:B
2.已知命题p1:函数y=2x-2-x在R上为增函数,
答案:¬p
类型1 含逻辑联结词的命题的构成(自主研析) [典例1] 写出下列各组命题构成的“p或q”“p且 q”以及“非p”形式的命题. (1)p: 5是有理数,q: 5是整数; (2)p:不等式x2-2x-3>0的解集是(-∞,-1), q:不等式x2-2x-3>0的解集是(3,+∞). 解:(1)p或q: 5是有理数或 5是整数; p且q: 5是有理数且 5是整数; 非p: 5不是有理数.
温馨提示 1.命题的否定的真假与原命题的真假相反,而否命题 的真假与原命题的真假无关. 2.p∧q, 两个真才是真; p∨q, 一个真就是真; p与¬p, 一真一假. (1)如果“p∧q”为真命题,“p∨q”一定是真命题; (2)如果“p∨q”为真命题,“p∧q”不一定是真命题.
[思考尝试·夯基]
类型3 逻辑联结词的应用——求参数的取值范围 [典例3] 设p:方程x2+2mx+1=0有两个不相等的 正根;q:方程x2+2(m-2)x-3m+10=0无实根.若使 p∨q为真,p∧q为假,求实数m的取值范围. 解:由Δx11+=x42m=2--42>m0>,0,得m<-1, 所以p:m<-1. 由Δ2=4(m-2)2-4(-3m+10)<0,知-2<m<3. 所以q:-2<m<3.
人教版选修2-1.1.3简单的逻辑联结词

创设情景,引入新课
p q p q
串联电路
并联电路
且:就是两者都要、都有的意思.“且”的否定是“或” 或:就是两者至少有一个的意思(可兼有) “ 或”的否定是“且”。
非:就是否定的意思. 今后常用小写字母p,q,r,s,„表示命题。
探究新知,巩固练习 ★★ 且 (and)
1.问题1: 思考: 下列命题中,命题间有什么关系?
p∨q是真命题 p∧q为真命题
★★ 非 (not)
1.问题1 思考: 下列两组命题间有什么关系? (1)35能被5整除; (2)35不能被5整除. (3)方程 x2+x+1=0有实数根; (4)方程 x2+x+1=0无实数根 命题(2)是命题(1)的否定,命题(4)是命题 (3)的否定. 一般地,对一个命题p全盘否定,就得到一个 新命题,记作¬ p,读作“非p”或“p的否定”.
解: (2 1)p∧q )p∧q:平行四边形的对角线互相平分 ( :菱形的对角线互相垂直且平分.
有些命题如含有“……和……”、
“……与……”、“既……,又…..”等词的 命题能用“且”改写成“p∧q”的形式, 例2:用逻辑联结词“且”改写下列命题,并 判断它们的真假. (1)1既是奇数,又是素数; (2)2和3都是素数.
思考:命题P与┐p的真假关系如何? p与┐p真假性相反 填空:当p为真命题时,则┐p为 假命题;当p为假 命题时,则┐p为 真命题 .
一句话概括: 真假相反
p 真 假
¬ p
假 真
活动探究
探究1:逻辑联结词“非”的含义与集合 中学过的哪个概念的意义相同呢? 对“非”的理解,可联想到集合中的 “补集”概念,若命题p对应于集合P, 则命题非p就对应着集合P在全集U中的补 集C UP .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
03课堂效果落实
1.如果命题“p或q”与命题“非p”都是真命题,那么()
A.命题p不一定是假命题
B.命题q一定是真命题
C.命题q不一定是真命题
D.p与q的真假相同
解析:∵“非p”为真命题,∴p为假命题.又∵p或q为真命题,∴q为真命题.故选B.
答案:B
2.下列命题p的否定为真命题的是()
A.y=cos x是偶函数
B.y=|sin x|是偶函数
C.空集不是它本身的子集
D.0是自然数
解析:要使命题p的否定为真命题,则命题p为假命题.由于空集是任何集合的子集,故C中命题为假命题.
答案:C
3.[2014·重庆高考]已知命题p:对任意x∈R,总有|x|≥0;q:x =1是方程x+2=0的根.则下列命题为真命题的是()
A. p∧(綈q)
B. (綈p)∧q
C. (綈p)∧(綈q)
D. p∧q
解析:本题考查常用逻辑用语,意在考查考生对逻辑联结词和复合命题真假判断的掌握情况.先判断每个命题的真假,再判断复合命题的真假.命题p为真命题,命题q为假命题,所以命题綈q为真命
题,所以p∧(綈q)为真命题,选A.
答案:A
4.用“或”“且”填空.
(1)若x∈A∪B,则x∈A________x∈B.
(2)若x∈A∩B,则x∈A________x∈B.
(3)若ab=0,则a=0________b=0.
(4)若a2+b2=0,则a=0________b=0.
解析:(1)∵A∪B={x|x∈A或x∈B},
∴x∈A∪B时,x∈A或x∈B.
(2)∵A∩B={x|x∈A且x∈B},
∴x∈A∩B时,x∈A且x∈B.
(3)若ab=0,则a=0或b=0.
(4)若a2+b2=0,则a=0且b=0.
答案:或且或且
5.分别写出由下列各命题构成的“p∧q”,“p∨q”,“綈p”形式的命题,并判断真假:
(1)p:梯形有一组对边平行,q:梯形有一组对边相等;
(2)p:x=-1是方程x2+4x+3=0的解,q:x=-3是方程x2+4x+3=0的解.
解:(1)p∧q:梯形有一组对边平行且有一组对边相等,
∵q:梯形有一组对边相等是假命题,
∴p∧q是假命题.
p∨q:梯形有一组对边平行或有一组对边相等,
∵p:梯形有一组对边平行是真命题,
∴命题p∨q是真命题.
綈p:梯形没有一组对边平行,
∵p真,∴綈p是假命题.
(2)p∧q:x=-3与x=-1都是x2+4x+3=0的解,真命题,p∨q:x=-3或x=-1是x2+4x+3=0的解,真命题,
綈p:x=-1不是x2+4x+3=0的解,
∵p是真命题,∴綈p是假命题.。