简单的逻辑联结词的练习题及答案
高二数学简单的逻辑联结词试题答案及解析

高二数学简单的逻辑联结词试题答案及解析1.已知命题,则的否定形式为()A.B.C.D.【答案】B【解析】命题为特称命题,它的否定形式为,故选B.【考点】全称命题与特称命题.2.已知命题:复数,复数,是虚数;命题:关于的方程的两根之差的绝对值小于;若为真命题,求实数的取值范围.【答案】的取值范围为.【解析】对于,为虚数的条件是且,然后将的范围求出来;对于,利用二次方程根与系数的关系并结合不等式求解出的取值范围;由为真命题可知,都为真命题,故求出为真时的的取值范围的集合的交集即可.试题解析:由题意知,2分若命题为真,是虚数,则有且所以的取值范围为且且 4分若命题为真,则有 7分而所以有或 10分由题意知,都是真命题,实数的取值范围为 12分.【考点】1.复数的概念;2.二次方程根与系数的关系;3.逻辑联结词.3.已知命题,;命题,,则下列命题中为真命题的是( ) A.B.C.D.【答案】B【解析】命题是假命题,命题是真命题,故是真命题,选B.【考点】逻辑连接词.4.(本小题满分10分)已知命题p:函数在R上是减函数;命题q:在平面直角坐标系中,点在直线的左下方。
若为假,为真,求实数的取值范围【答案】(-3,4)【解析】解:f′(x)=3ax2+6x-1,∵函数f(x)在R上是减函数,∴f′(x)≤0即3ax2+6x-1≤0(x∈R).(1)当a=0时,f′(x)≤0,对x∈R不恒成立,故a≠0.(2)当a≠0时,要使3ax2+6x-1≤0对x∈R恒成立,应满足,即,∴p:a≤-3. …………5分由在平面直角坐标系中,点在直线的左下方,得∴q:,…………7分:a≤-3;:综上所述,a的取值范围是(-3,4).…………10分【考点】本试题考查了命题的真值,函数性质。
点评:解决该试题的关键是利用函数单调性和二元一次不等式的表示的区域可知a的范围。
细节是理解且为真,或为假,得到必有一真一假,得到参数的范围,属于中档题。
1.3简单的逻辑联结词

变式:写出下列命题的否定形式和否命题,并判断 它们的真假. (1)若abc=0,则a,b,c中至少有一个为数的平方是正数.
正面 词语 否定 词语
等于 大于(>) (=) 不等于 (≠) 不大于 (≤)
小于 (<) 不小于 (≥)
是
不是
全是
不全是
正面 词语 否定 词语
练习1:
有下列结论中 , 正确的是
① “ p q ”为真是“ p q ”为真的充分不必要条件 ; ② “ p q ”为假是“ p q ”为真的充分不必要条件 ; ③ “ p q ”为真是“p ”为假的必要不充分条件 ; ④ “p ”为真是“ p q ”为假的必要不充分条件 .
练习2:
1 0, 已知条件 p :| 2 x 5 | 3 ;条件 q : 2 x x 12 试问 p 是 q 的什么条件?
小结:
(1)“p且q”,”p或q”,”非p”三种命题形式真假 性的判断; (2)命题的否定与命题的否命题的区别; (3)根据命题的真假及充要条件求参数的取值范围.
p或q 真 真 真 假
非p 假 假 真 真
(有真则真) (有假则假) 命题的“且”“或”“非”可分别对应 集合的“交”“并”“补”
2.写出下列各命题的非(否定) : 问题: (1) x, y 全为零; (2)50 既能被 2 整除,又能被 5 整除; (3)方程 f ( x) 0 至多有一个解; (4) a 0且b 0.
3 x 设命题p : 函数f ( x) (a ) 是R上的减函数 ; 2 2 命题q : 函数f ( x) x 4 x 3在[0, a]上的值域为 [1,3]. 若“ p q”为假命题, “ p q”为真命题, 求a的取值范围 .
中考英语写作逻辑连接词运用练习题40题(带答案)

中考英语写作逻辑连接词运用练习题40题(带答案)1.She likes swimming, _____ she also enjoys running.A.andB.butC.orD.so答案解析:A。
“and”表示并列关系,符合题意。
“but”表示转折关系;“or”表示选择关系;“so”表示因果关系。
2.I have a pen _____ a pencil.A.andB.butC.orD.so答案解析:A。
“a pen”和“a pencil”是并列关系,用“and”连接。
“but”转折;“or”选择;“so”因果。
3.He is good at math, _____ he is also excellent in English.A.andB.butC.orD.so答案解析:A。
前后都是在说他擅长的科目,是并列关系,“and”正确。
“but”转折不合适;“or”选择不对;“so”因果关系错误。
4.We can go to the park _____ go to the cinema.A.andB.butC.orD.so答案解析:C。
这里是选择去公园还是去电影院,“or”表示选择关系。
“and”并列不符合;“but”转折错;“so”因果不对。
5.She has a cat _____ a dog.A.andB.butC.orD.so答案解析:A。
“a cat”和“a dog”是并列关系,用“and”。
“but”转折不合适;“or”选择错误;“so”因果关系不恰当。
6.Tom likes apples, _____ his sister likes oranges.A.andB.butC.orD.so答案解析:B。
前面说汤姆喜欢苹果,后面说他妹妹喜欢橘子,是转折关系,用“but”。
“and”并列不对;“or”选择错误;“so”因果关系不合适。
7.I want to buy a book _____ a notebook.A.andB.butC.orD.so答案解析:A。
1.3 简单的逻辑联结词专项练习与答案

1.3 简单的逻辑联结词专项练习一、选择题(每小题5分,共20分) 1.命题“a ∉A 或b ∉B ”的否定形式是( ) A .若a ∉A ,则b ∉B B .a ∈A ,或b ∈B C .a ∈A 且b ∈BD .若b ∉B ,则a ∉A解析: 设命题p :a ∉A ,q :b ∉B ,则命题“a ∉A 或b ∉B ”是“p ∨q ”形式的命题,其否定形式为“¬p ∧¬q ”.答案: C2.p :点P 在直线y =2x -3上,q :点P 在抛物线y =-x 2上,则使“p 且q ”为真命题的一个点P (x ,y )是( )A .(0,-3)B .(1,2)C .(1,-1)D .(-1,1)解析: 点P (x ,y )满足⎩⎪⎨⎪⎧y =2x -3,y =-x 2.可验证各选项中,只有C 正确. 答案: C3.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(¬p 1)∨p 2和q 4:p 1∧(¬p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4解析: 根据复合函数的单调性可知命题p 1是真命题,则¬p 1为假命题;命题p 2的真假可以取特殊值来判定:当取x 1=1,x 2=2时,y 1=52,y 2=174,即x 1<x 2,且y 1<y 2,故命题p 2是假命题,则¬p 2为真命题.∴q 1:p 1∨p 2是真命题,q 2:p 1∧p 2是假命题,q 3:(¬p 1)∨p 2是假命题,q 4:p 1∧(¬p 2)是真命题.∴真命题是q 1,q 4. 答案: C4.如果命题“¬p 或¬q ”是假命题,则下列各结论:①命题“p 且q ”是真;②命题“p 且q ”是假;③命题“p 或q ”是真;④命题“p 或q ”是假.其中正确的是( ) A .①③ B .②④ C .②③D .①④解析: ¬p 或¬q 是假命题,则q 与p 全为真命题,所以p 且q 为真,p 或q 为真.所以选A.答案: A二、填空题(每小题5分,共10分)5.下列命题中,真命题个数为____________个. ①5或7是30的约数; ②方程x 2+2x +3=0无实数根;③面积相等的两个三角形一定相似或全等; ④对角线垂直且相等的四边形是正方形.解析: ①③为“或”连接的命题,①为真,③为假;②为¬p 形式的命题,为真.对角线垂直且相等(不一定互相平分)的四边形不一定是正方形.故④为假.故真命题个数为2.答案: 26.设p :函数f (x )=2|x -a |在区间(4,+∞)上单调递增;q :log a 2<1.如果“¬p ”是真命题,“p 或q ”也是真命题,那么实数a 的取值范围是____________.解析: p 为真命题时a ≤4, q 为真命题时a >2或0<a <1,¬p 为真,p 或q 为真时,即p 为假,q 为真,∴⎩⎪⎨⎪⎧a >4,a >2或0<a <1, ∴a >4.答案: (4,+∞)三、解答题(每小题10分,共20分) 7.指出下列命题的形式及其构成:(1)若α是一个三角形的最小内角,则α不大于60°;(2)一个内角为90°,另一个内角为45°的三角形是等腰直角三角形; (3)有一个内角为60°的三角形是正三角形或直角三角形. 解析: (1)是非p 形式的复合命题,其中p :若α是一个三角形的最小内角,则α>60°. (2)是p 且q 形式的复合命题,其中p :一个内角为90°,另一个内角为45°的三角形是等腰三角形, q :一个内角为90°,另一个内角为45°的三角形是直角三角形. (3)是p 或q 形式的复合命题,其中p :有一个内角为60°的三角形是正三角形, q :有一个内角为60°的三角形是直角三角形.8.分别指出由下列命题构成的“p 或q ”“p 且q ”“非p ”形式的复合命题的真假. (1)p :4∈{2,3},q :2∈{2,3}; (2)p :1是奇数,q :1是质数; (3)p :0∈∅,q :0∈{x |x 2-3x -5<0}; (4)p :5≤5,q :27不是质数;(5)p :不等式x 2+2x -8<0的解集是{x |-4<x <2},q :不等式x 2+2x -8<0的解集是{x |x <-4或x >2}.解析: (1)因为p 假q 真,所以“p 或q ”为真,“p 且q ”为假,“非p ”为真. (2)因为p 真q 假,所以“p 或q ”为真,“p 且q ”为假,“非p ”为假. (3)p 或q :0∈∅或0∈{x |x 2-3x -5<0}, p 且q :0∈∅且0∈{x |x 2-3x -5<0},非p :0∉∅.因为p 假q 真,所以“p 或q ”为真,“p 且q ”为假,“非p ”为真. (4)p 或q :5≤5或27不是质数,p 且q :5≤5且27不是质数,非p :5>5.因为p 为5<5或5=5,而5=5为真,故p 为真,又q 也为真,所以“p 或q ”为真,“p 且q ”为真,“非p ”为假.(5)p 或q :不等式x 2+2x -8<0的解集是{x |-4<x <2}或是{x |x <-4或x >2}, p 且q :不等式x 2+2x -8<0的解集是{x |-4<x <2}且是{x |x <-4或x >2}, 非p :不等式x 2+2x -8<0的解集不是{x |-4<x <2}.因为p 真q 假,所以“p 或q ”为真,“p 且q ”为假,“非p ”为假.(10分)给定两个命题,P :对任意实数x 都有ax 2+ax +1>0恒成立;Q :关于x 的方程x 2-x +a =0有实数根.如果P ∨Q 为真命题,P ∧Q 为假命题,求实数a 的取值范围.解析: 命题P :对任意实数x 都有ax 2+ax +1>0恒成立⇔a =0或⎩⎨⎧a >0Δ<0⇔0≤a <4;命题Q :关于x 的方程x 2-x +a =0有实数根⇔1-4a ≥0⇔a ≤14;P ∨Q 为真命题,P ∧Q 为假命题, 即P 真Q 假,或P 假Q 真,如果P 真Q 假,则有0≤a <4,且a >14,所以14<a <4;如果P 假Q 真,则有⎩⎪⎨⎪⎧a <0或a ≥4a ≤14⇒a <0.1所以实数a的取值范围为(-∞,0)∪⎝⎛⎭⎫4,4.。
简单的逻辑联结词(二)

注:⑴“p 且 q”─
p、q 同时为真才为真.
⑵“p 或 q” ─ 只要 p、q 中有一个为真就 为真.(p、q 同时为假才为假.)
⑶“ p”─ p 的全盘否定, p 与p 一真一假.
课本 P19 例 4 写出下列命题的否定,并断它们的真 假: ⑴ p: y sin x 是周期函数; ⑵ p: 3 < 2; ⑶ p: 空集是集合 A 的子集.
点评
命题⑸的否定:空集不是任何集合的真子集,是真命题;
课堂练习 2: 写出下列语句的否定形式:
a>0 或 b<0. (2) 实数a、b、c都大于零. (3)方程至多两个解3)方程至少三个解.
(1)
点评否定词语
作业:自学随堂通 P 18 ─P 19 第 1、3、4、6 题
p
1 0
p
0 1
p 与p 一真一假
“非 p”─ p 的全盘否定.
真值表(1─真,0─假)
p
1 0
p
0 1
p 与p 一真一假
我们知道命题的“且” 、 “或”恰好对 应集合的“交” 、 “并” ,那么命题的“非” 对应集合的什么?
三、逻辑联结词
“且”
A B x x A 或 x B “或”
2.命题“若 x2 1 ,则 x 1 ”的否定是__________________.
课堂练习 3 答案:
1 ≤ 0 或 x 2 3x 2 0 . 1.若 1 ≤ x ≤ 2 ,则 2 x 3x 2
2.若 x2 1 ,则 x 不一定等于 1.
课外练习:
1.设有两个命题, 命题 p: 关于 x 的不等式 ( x 2) x2 3x 2 ≥ 0 的解集为 {x | x ≥ 2} ,命题 q:若函数 y kx2 kx 1 的值恒 小于 0,则 4 k 0 ,那么(B ) (A)“﹁q”为假命题 (B)“﹁p”为真命题 (C)“p 或 q”为真命题 D)“p 且 q”为真命题 2.在一次投篮练习中,小王连投两次,设命题 p :“第一次 投中”命题 q :“第二次投中”.试用 p 、 q 和联接词“或、且、 ( p且q )或( p且q ) 非”表示命题“两次恰有一次投中”:________. 3.已知 c>0,设 p:函数 y c x 在 R 上递减; q:函数 f ( x) x2 cx 的 1 最小值小于 .如果“ p或q ”为真,且“ p且q ”为假, 1 16 0, 1, 则实数 c 的取值范围为__________. 2
高二数学简单的逻辑联结词试题答案及解析

高二数学简单的逻辑联结词试题答案及解析1.已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.求实数m的取值范围.【答案】{或}【解析】先化简命题转化为m的范围,再根据“p或q”为真,“p且q”为假可知p与q的真值相反,当p真且q假时解得,当p假且q真时解得,综合两种情况得的取值范围是{或}.试题解析:p:有两个不等的负根.q:无实根.因为p或q为真,p且q为假,所以p与q的真值相反.(ⅰ) 当p真且q假时,有;(ⅱ) 当p假且q真时,有.综合,得的取值范围是{或}.【考点】含逻辑联结词的命题的真假性判断2.设命题命题,如果命题真且命题假,求的取值范围。
【答案】【解析】根据题意,首先求出p为真时和q为假时,a的取值范围,然后去交集即可.试题解析:因为命题为真命题,所以因为命题为假命题,所以所以的取值范围是.【考点】(1)简易逻辑;(2)三个一元二次的关系.3.设p:实数x满足x2-4ax+3a2<0(其中a≠0),q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.【答案】(1) (2,3) (2) (1,2]【解析】(1)当a=1时,解得1<x<3,即p为真时实数x的取值范围是1<x<3. 2分由,得2<x≤3,即q为真时实数x的取值范围是2<x≤3. 4分若p∧q为真,则p真且q真,5分所以实数x的取值范围是(2,3).7分(2)p是q的必要不充分条件,即q⇒p,且p/⇒q,8分设A={x|p(x)},B={x|q(x)},则A B,又B=(2,3],由x2-4ax+3a2<0得(x-3a)(x-a)<0,9分当a>0时,A=(a,3a),有,解得1<a≤2;11分当a<0时,A=(3a,a),显然A∩B=∅,不合题意.13分所以实数a的取值范围是(1,2].15分【考点】解不等式及复合命题,集合包含关系点评:复合命题p∧q的真假由命题p,q共同决定,当两命题中有一个是真命题时复合后为真命题,由若p是q的必要不充分条件可得集合p是集合q的真子集4.否定结论“至多有两个解”的说法中,正确的是()A.有一个解B.有两个解C.至少有三个解D.至少有两个解【答案】C【解析】根据命题的否定命题的解答办法,我们结合至多性问题的否定思路:至多n个的否定为至少n+1个,易根据已知原命题“至多有两个解”得到否定命题. 解:∵至多n个的否定为至少n+1个,∴“至多有两个解”的否定为“至少有三个解”,故选C【考点】命题的否定点评:本题考查的知识是命题的否定,其中熟练掌握多性问题的否定思路:至多n个的否定为至少n+1个,是解答本题的关键.5.若命题“”为假,且“”为假,则()A.或为假B.假C.真D.不能判断的真假【答案】B【解析】∵命题“”为假,且“”为假,∴命题p为真,命题q为假,故命题“或”为真,故选B【考点】本题考查了真值表的运用点评:熟练掌握真值表是解决此类问题的关键,属基础题6.命题“x∈R,”的否定是。
高二数学简单的逻辑联结词试题答案及解析

高二数学简单的逻辑联结词试题答案及解析1.已知命题:,命题:若为假命题,则实数的取值范围为()A.B.或C.D.【答案】D【解析】:,:,若,则,均为假命题,∴.【考点】简单的逻辑联结词.2.已知命题p:任意x∈R,x2+1≥a都成立,命题q:方程表示双曲线.(1)若命题p为真命题,求实数a的取值范围;(2)若“p且q”为真命题,求实数a的取值范围.【答案】(1)(2)【解析】解:(1)根据题意,由于命题p:任意x∈R,x2+1≥a都成立,则可知a小于等于x2+1的最小值即可,而命题q:方程表示双曲线a+2>0,a>-2,故可知命题p为真命题,则 4分(2)命题q为真命题,则所以“p且q”为真命题,则说明同时成立,利用交集的运算可知,。
8分【考点】命题的真假点评:主要是考查了命题的真假的运用,属于基础题。
3.(本小题满分10分)给定两个命题,p:对任意实数x都有+ax+1>0恒成立;q:函数y=(a>0且a≠1)为增函数,若p假q真,求实数a的取值范围.【答案】【解析】解:对任意实数都有恒成立,则;即. 3分函数,()为则增函数,所以. 6分因为p假q真,所以 8分. 0分【考点】命题的真值点评:解决的关键是对于函数的单调性和不等式的恒成立问题的等价转化,属于基础题。
4.命题“若ab=0,则a=0或b=0”的逆否命题是 ()A.若ab≠0,则a≠0或b≠0B.若a≠0或b≠0,则ab≠0C.若ab≠0,则a≠0且b≠0D.若a≠0且b≠0,则ab≠0【答案】D【解析】因为命题“若ab=0,则a=0或b=0”的逆否命题是,那么ab=0的否定是ab≠0,而a=0或b=0的否定是a≠0且b≠0,因此可知其逆否命题是若a≠0且b≠0,则ab≠0,故选D.【考点】本试题考查了逆否命题的求解。
点评:解决该试题的关键是对于逆否命题的准确表示,将原命题的条件和结论否定,分别充当新命题的结论和条件即可,属于基础题。
简单的逻辑联结词(有答案)

(3)是“p∨q”的形式,其中p:不等式x2-x-2>0的解集是{x|x>2},q:不等式x2-x-2>0的解集是{x|x<-1}.
类型二 含逻辑联结词的命题真假的判断
例2、分别写出由下列各组命题构成的“p∨q”“p∧q”“綈p”形式的命题,并判断其真假.
(1)方程x2-3=0没有有理根;
(2)有两个内角是45°的三角形是等腰直角三角形;
(3)±1是方程x3+x2-x-1=0的根.
【自主解答】(1)这个命题是“非p”形式的命题,其中p:方程x2-3=0有有理根.
(2)这个命题是“p且q”形式的命题,其中p:有两个内角是45°的三角形是等腰三角形,q:有两个内角是45°的三角形是直角三角形.
(1)p:6是自然数,q:6是偶数;
(2)p:等腰梯形的对角线相等,q:等腰梯形的对角线互相平分;
(3)p:函数y=x2-2x+2没有零点,q:不等式x2-2x+1>0恒成立.
【自主解答】(1)p∨q:6是自然数或是偶数,真命题.
p∧q:6是自然数且是偶数,真命题.
綈p:6不是自然数,假命题.
(2)p∨q:等腰梯形的对角线相等或互相平分,真命题.
p∧q:等腰梯形的对角线相等且互相平分,假命题.
綈p:等腰梯形的对角线不相等,假命题.
(3)p∨q:函数y=x2-2x+2没有零点或不等式x2-2x+1>0恒成立,真命题.
p∧q:函数y=x2-2x+2没有零点且不等式x2-2x+1>0恒成立,假命题.
綈p:函数y=x2-2x+2有零点,假命题.
1.判断含有逻辑联结词的命题的真假的步骤:
“綈p”
真假相反
p真,则綈p假;p假,则綈p真
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的逻辑联结词
1、分别写出由下列命题构成的“q p ∨”、“q p ∧”、“p ⌝”式的心命题。
(1)、π:p 是无理数,e q :不是无理数;
(2)、:p 方程0122=++x x 有两个相等的实数根,:q 方程0122=++x x 两根的绝对值相等。
(3)、:p 正ABC ∆三内角相等,:q 正ABC ∆有一个内角是直角。
2、指出下列命题的构成形式及构成它的简单命题
(1)、向量0≥•b a ;(2)、分式01
22=--+x x x ;
(3)、不等式022>+-x x 的解集是{}
12-<>x x x 或
3、判断下列符合命题的真假: (1)、菱形的对角线互相垂直平分; (2)、若12=x ,则0132=++x x ; (3)、()B A A ⊆/;
4、设有两个命题。
命题:p 不等式()0112
≤++-x a x 的解集是∅;命题:q 函数()()x
a x f 1+=在
定义域内是增函数,如果q p ∧为假命题,q p ∨为真命题,求a 的取值范围。
5、已知0>a ,设命题:p 函数x a y =在R 上单调递增;命题:q 不等式012>+-ax ax 对R x ∈∀恒成立,若q p ∧为假命题,q p ∨为真命题,求a 的取值范围。
6、写出下列命题的否定和否命题
(1)、若0=abc ,则c b a ,,中至少有一个为零; (2)、等腰三角形有两个内角相等; (3)、1-是偶数或奇数;
(4)、自然数的平方是正数;
7、已知:p 方程012=++mx x 有两个不等的负根;:q 方程()012442=+-+x m x 无实根,若
q p ∨为真,q p ∧为假,求m 的取值范围。
8、设命题⎭
⎬⎫
⎩⎨⎧
++-=
∈82:2x x y y a p ,命题:q 关于x 的方程02=-+a x x 的一根大
于1,另一根小于1,命题q p ∧为假,q p ∨为真,求a 的取值范围。
简单的逻辑联结词的答案
1、(1)、q p ∨:π是无理数或e 不是无理数;q p ∧:π是无理数且e 不是无理数;
p ⌝:π不是无理数;
(2)、q p ∨:方程0122=++x x 有两个相等的实数根或两根的绝对值相等; q p ∧:方程0122
=++x x 有两个相等的实数根且两根的绝对值相等; p ⌝:方程0122=++x x 没有两个相等的实数根;
(3)、q p ∨:正ABC ∆三内角相等,或有一个内角是直角;
q p ∧:正ABC ∆三内角相等,且有一个内角是直角; p ⌝:正ABC ∆三内角不全相等;
2、(1)、是q p ∨的形式:其中0:;0:=•>•b a q b a p (2)、是q p ∧的形式:其中01:;02:2≠-=-+x q x x p ; (3)、是q p ∨的形式:其中:p 不等式022>+-x x 的解集是{}
2>x x ;:q 不等式022>+-x x 的
解集是{}
1-<x x
3、(1)、这个命题是“q p ∧”的形式,:p 菱形的对角线互相垂直;:q 菱形的对角线互相平分,因“p 真q 真”,则“p 且q 真”,所以该命题是真命题
(2)、这个命题是“q p ∨”的形式,1:=x p 时0132=++x x ;1:-=x q 时,0132=++x x ,因“p 假q 假”,则“p 或q 假”,所以该命题是假命题
(3)、这个命题是“p ⌝”形式,()B A A p ⊆:,因p 真,则“p ⌝假”,所以该命题是真命题 4、对于:p ()0112≤++-x a x 的解集是∅;()[]0412
<-+-=∆∴a ;13<<-∴a
对于:q ()()x
a x f 1+=在定义域内是增函数,11>+∴a ;0>∴a
q p ∧为假命题,q p ∨为真命题;q p 、∴必是一真一假
当p 真q 假时有03≤<-a ;当p 假q 真时有1≥a ; 综上所述,(][)+∞-∈,10,3 a
5、 x a y =在R 上单调递增,1:>∴a p
不等式012
>+-ax ax 对R x ∈∀恒成立400
4002<<⇒⎪⎩⎪⎨⎧><-⇒⎩⎨⎧><∆∴a a a a a 40:<<∴a q
若q p ∧为假命题,q p ∨为真命题,
q p 、∴中有且只有一个为真,一为假。
∴若p 真q 假,则4≥a ;若p 假q 真,则10≤<a
(][)+∞∈∴,41,0 a
6、(1)、否定:若0=abc ,则c b a ,,全都不为零; 否命题:若0≠abc ,则c b a ,,全都不为零;
(2)、否定:等腰三角形不存在两个相等的内角; 否命题:不等腰的三角形不存在两个相等的内角; (3)、否定:1-不是偶数且不是奇数;
否命题:若一个数不是1-,则它不是偶数也不是奇数; (4)、否定:自然数的平方不是正数; 否命题:不是自然数的平方不是正数; 7、:p 方程012=++mx x 有两个不等的负根
⎪⎩
⎪⎨
⎧>>-=∆∴00
42m m 解得:2>m ,即2:>m p :q 方程()012442=+-+x m x 无实根
()0162162<--=∆∴m ;解得31<<m ,即:q 31<<m
q p ∨ 为真;q p 、∴至少有一个为真; q p ∧为假;q p 、∴至少有一个为假; q p 、∴两命题一真一假;∴p 为真、q 为假或p 为假、q 为真;
⎩
⎨
⎧<<≤⎩⎨⎧≥≤>∴312
312m m m m m ,或或;解得:213≤<≥m m 或;[)(]2,1,3 +∞∈∴m 8、()[]3,0918222∈+--=++-=
x x x y ;∴命题,30:≤≤a p
令()a x x x f -+=2,则()∴>∴⎩
⎨⎧<-+>+∴⎩⎨
⎧<>∆,2,0110
41,010a a a f 命题2:>a q 命题q p ∧为假,q p ∨为真, ∴p 与q 有且只有一个真命题
[]()+∞∈∴,32,0 a。