简单的逻辑连接词(很好用)
公文写作技巧注意使用恰当的逻辑连接词和短语

公文写作技巧注意使用恰当的逻辑连接词和短语公文作为一种正式的文书形式,其写作风格要求准确、简明、权威。
在撰写公文时,恰当使用逻辑连接词和短语可以增强文章的连贯性和条理性,提升读者的阅读体验。
本文将介绍几种常用的逻辑连接词和短语,以帮助读者提高公文写作的技巧。
一、并列连接词和短语1. 而且:用于列举并列的内容,表示累加效果,如:“公司扩大销售团队,而且增加了营销预算。
”2. 同时:表示两项或多项内容在同一时间、地点或情况下发生,如:“请同时向人力资源部和财务部报送相关材料。
”3. 不仅…而且:用于表达两个不同的或互补的方面,如:“这份报告不仅提供了详细的市场分析,而且给出了有效的推广策略。
”4. 另外:引出一个新的或附加的事实或信息,如:“为了解决这个问题,我们需要采取一些措施。
另外,我们还需要调整预算。
”二、因果连接词和短语1. 因此:用于表示因果关系,引出由前述因素导致的结果,如:“我们公司的销售额持续增长,因此我们决定扩大生产规模。
”2. 因为:表示一个可能导致结果的原因,如:“我们必须及时处理这个问题,因为它可能影响整个项目计划。
”3. 所以:表明由前述原因导致的结果,如:“这是一个重要的决策,所以我们需要对此进行充分的讨论和评估。
”4. 由于:引出一个导致结果的原因,如:“由于市场需求的改变,我们需要调整产品定价策略。
”三、递进连接词和短语1. 而且:用于递进或添加信息,增加说服力,如:“这个产品不仅具有高品质和卓越的性能,而且价格也相对较低。
”2. 此外:表示补充或说明前述内容,如:“本公司不仅拥有先进的技术设备,此外还聘请了一批经验丰富的研发人员。
”3. 甚至:用于强调一个更加出乎意料的事实或结果,如:“我们的销售团队在短短三个月内完成了销售目标,甚至超额完成。
”4. 更重要的是:用于强调一个更为重要或关键的方面,如:“我们确信这项合作将带来相互的利益,更重要的是,将提升我们在市场上的竞争力。
五种逻辑连接词中文

五种逻辑连接词中文
联结词亦称命题联结词,命题逻辑的基本概念之一,指由已有的命题构造出新命题所用的词语。
例如,由命题“二加三等于五”和“苏格拉底是人”可以构造出新命题“二加二等于五并且苏格拉底
是人”,在这里,“并且”是联结词,又例如,由命题“苏格拉底是人”可以构造出它的否命题“苏格拉底不是人”,在这个否命题中,“不”是联结词,最重要的联结词有否定“非”,合取“且”,析取“或”,蕴含“如果……则……”以及等价“当且仅当”。
一个复合命题,不论其构成多么复杂,一般都可以分析出构成该命题的原子命题。
下面介绍几种常用的逻辑联结词(LogicalConnectives),分别是“非”(否定联结词)、“与”(合取联结词)、“或”(析取联结词)、“若…则…”(条件联结词)、“…当且仅当…”(双条件联结词),通过这些联结词可以把多个原子命题复合成一个复合命题。
此外,还介绍了三种,分别是异或联结词、与非式、或非式。
考点03 逻辑联结词及数学归纳法(解析版)

考点48 逻辑联结词及数学归纳法一.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词. (2)命题p 且q 、p 或q 、非p 的真假判断二.量词2.全称量词和存在量词(1)全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示. (2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.3.全称命题、存在性命题及含一个量词的命题的否定三.数学归纳法1.由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法. 2.用数学归纳法证明一个与正整数有关的命题时,其步骤如下: (1)归纳奠基:证明取第一个自然数n 0时命题成立;(2)归纳递推:假设n =k (k ∈N *,k ≥n 0)时命题成立,证明当n =k +1时,命题成立; (3)由(1)(2)得出结论.知识理解考向一 命题的否定【例1】(2021·四川成都市·高三二模(理))命题“0x ∀>,210x x ++>”的否定为( )A .00x ∃≤,20010x x ++≤ B .0x ∀≤,210x x ++≤ C .00x ∃>,20010x x ++≤D .0x ∀>,210x x ++≤【答案】C【解析】因为全称命题的否定是特称命题,所以,命题“0x ∀>,210x x ++>”的否定是:00x ∃>,20010x x ++≤.故选:C .【举一反三】1.(2021·全国高三月考(理))命题“0x R ∃∈,002ln 0x x +≤”的否定是( ) A .x R ∀∈,2ln 0x x+≥ B .x R ∀∈,2ln 0x x+> C .0x R ∃∈,002ln 0x x +≥ D .0002,0x R lnx x ∃∈+> 【答案】B【解析】命题“0x R ∃∈,002ln 0x x +≤”为特称命题,该命题的否定为“x R ∀∈,2ln 0x x+>”. 故选:B.2.(2021·湖南岳阳市)命题“()1,x ∀∈+∞,21x e x ≥+”的否定是( ) A .()1,x ∃∈+∞,21x e x ≥+ B .()1,x ∀∈+∞,21x e x <+ C .()1,x ∃∈+∞,21x e x <+ D .()1,x ∀∈+∞,21x e x ≥+【答案】C【解析】命题“()1,x ∀∈+∞,21x e x ≥+”为全称命题,该命题的否定为“()1,x ∃∈+∞,21x e x <+”. 故选:C.考向分析3.(2021·泰州市第二中学)巳知命题p :0x ∃>,10x e x --≤,则命题p 的否定为( ) A .0x ∀≤,10x e x --> B .0x ∀>,10x e x --> C .0x ∃>,10x e x --≥ D .0x ∃≤,10x e x -->【答案】B【解析】命题p :0x ∃>,10x e x --≤,则命题p 的否定为0x ∀>,10x e x -->. 故选:B考向二 逻辑连接词求参数【例2】(2021·全国高三专题练习)若命题“200[1,2],2x x a ∃∈--+”是假命题,则实数a 的范围是( ) A .2a > B .2a C .2a >- D .2a -【答案】A【解析】若命题“200[1,2],2x x a ∃∈--+”是假命题,则命题“2[1,2],2x x a ∀∈--+<”是真命题, 当0x =时,()2max22x -+=,所以2a >.故选:A. 【举一反三】1.(2021·天水市第一中学高三月考(理))已知命题():1,3p x ∃∈-,220x a --≤.若p 为假命题,则a 的取值范围为( ) A .(),2-∞- B .(),1-∞-C .(),7-∞D .(),0-∞【答案】A 【解析】p 为假命题,∴():1,3p x ⌝∀∈-,220x a -->为真命题,故22a x <-恒成立,22y x =-在()1,3x ∈-的最小值为2-,∴2a <-. 故选:A.2.(2020·北京人大附中高三月考)若命题“x R ∃∈,使得2210ax x ++<成立”为假命题,则实数a 的取值范围是( ) A .[1,+∞) B .[0,+∞)C .(-∞,1)D .(-∞,0]【答案】A 【解析】命题“x R ∃∈,使得2210ax x ++<成立”为假命题, 则它的否定命题: “x R ∀∈,2210ax x ++≥”为真命题所以0440a a >⎧⎨∆=-≤⎩ 解得1a ≥,所以实数a 的取值范围是[1,)+∞ 故选:A.3.(2020·江西高三期中(文))存在[1,1]x ∈-,使得230x mx m +-≥,则m 的最大值为( ) A .1 B .14C .12D .-1【答案】C【解析】由不等式230x mx m +-≥,可化为23x m x≤-,设()[]2,1,13x f x x x=∈--,则()()()2226(6)33x x x x f x x x ---'==--,当[1,0)x ∈-时,()0f x '<,()f x 单调递减; 当(0,1]x ∈时,()0f x '>,()f x 单调递增,又由()11(1),142f f -==,所以函数()f x 的最大值为()112f =, 要使得存在[1,1]x ∈-,使得230x mx m +-≥,则12m ≤,则m 的最大值为12. 故选:C.考向三 数学归纳法【例3-1】(2020·全国高三专题练习(理))用数学归纳法证明不等式“1+12+13+…+121n -<n (n ∴N *,n ≥2)”时,由n =k (k ≥2)时不等式成立,推证n =k +1时,左边应增加的项数是( ) A .2k -1 B .2k -1 C .2k D .2k +1【答案】C【解析】n k =时,左边=1111 (2321)k ++++-,而n =k +1时,左边=11111111 (232122121)k k k k +++++++++-+-,增加了1111 (22121)k k k +++++-,共(2k +1-1)-(2k -1)=2k 项, 故选:C.【例3-2】.(2020·全国高三专题练习)设等比数列{}n a 满足113,34n n a a a n +==-. (1)计算23,a a ,猜想{}n a 的通项公式并加以证明; (2)求数列{}2nn a 的前n 项和n S .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-+. 【解析】(1)由题意,等比数列{}n a 满足113,34n n a a a n +==-, 可得21345a a =-= ,323427a a =-⨯=,,猜想{}n a 的通项公式为21n a n =+,证明如下:(数学归纳法)当1,2,3n =时,显然成立; ∴ 假设n k =时,即21k a k =+成立;其中*(N )k ∈, 由134k k a a k +=-3(21)4k k =+-2(1)1k =++ ∴故假设成立,综上(1)(2),数列{}n a 的通项公式21n a n =+*()n N ∈.(2)令2(21)2n nn n b a n ==+,则前项和1212...3252...(21)2n n n S b b b n =+++=⨯+⨯+++ ∴由∴两边同乘以2得:23123252...(21)2(21)2n n n S n n +=⨯+⨯++-++ ∴由∴-∴的322112(12)3222...2(21)26(21)212n n n n n S n n -++--=⨯+⨯++-+=+-+-, 化简得1(21)22n n S n +=-+. 【举一反三】1.(2020·全国高三专题练习(理))用数学归纳法证明等式123(21)(1)(21)n n n +++++=++时,从n k=到1n k =+等式左边需增添的项是( ) A .22k + B .[]2(1)1k ++ C .[(22)(23)]k k +++ D .[][](1)12(1)1k k ++++ 【答案】C【解析】当n k =时,左边123(21)k =+++++,共21k +个连续自然数相加,当1n k =+时,左边123(21)(22)(23)k k k =+++++++++,所以从n k =到1n k =+,等式左边需增添的项是[(22)(23)]k k +++. 故选:C.2.(2021·全国高三专题练习)设集合T n ={1,2,3,…,n }(其中n ≥3,n ∴N *),将T n 的所有3元子集(含有3个元素的子集)中的最小元素的和记为S n . (1)求S 3,S 4,S 5的值; (2)试求S n 的表达式.【答案】(1)S 3=1,S 4=5,S 5=15;(2)41n C + .【解析】(1)当n =3时,T 3={1,2,3},3元子集有:{1,2,3},∴S 3=1;当n =4时,T 4={1,2,3,4},3元子集有:{1,2,3},{1,2,4},{1,3,4},{2,3,4},∴S 4=1×3+2=5;当n =5时,T 5={1,2,3,4,5},3元子集有:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},222543212315S C C C ∴=⨯+⨯+⨯=.(2)由S 3=1,S 4=5,S 5=15,S 6=35…归纳猜想出41n n S C +=(n ≥3).下面用数学归纳法证明猜想:∴当n =3时,S 3=1=44C ,结论成立;∴假设n =k (k ≥3,k ∴N *)时,结论成立,即S k =41k C +,则当n =k +1时,T k +1={1,2,3,4,…,k ,k +1},()()1111111232123...21k k k k k S S C C C k C k C +---⎡⎤=+++++-+-⎣⎦()()()(){}411111122112...21k k k C k C k C k k C k k C +--=+-+-++--+--⎡⎤⎡⎤⎣⎦⎣⎦ ()(){}4111111111211231...23...1k k k C k C C C C C C k C +--⎡⎤=++++-++++-⎣⎦ ()422311k k k k C kC kC C ++⎡⎤=+--⎣⎦ ()4341111k k k C C C ++++=+=∴当n =k +1时,结论成立. 综上:由∴∴可得()413n n S C n +=≥.1.(2021·涡阳县育萃高级中学)已知命题:p x R ∀∈,2104x x -+,则p ⌝( ) A .21,04x x x ∃∈-+R B .21,04x x x ∃∈-+>R C .21,04x x x ∀∈-+>R D .21,04x x x ∀∈-+<R 【答案】B【解析】命题p 为全称命题,根据全称命题的否定为特称命题,可得:p ⌝: 21,04x x x ∃∈-+>R 故选:B2.(2021·漠河市高级中学高三月考(文))下列说法正确的是( ) A .若p q ∨为真命题,则p q ∧为真命题B .命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y ≠”C .“0x <”是“20x x ->”的充要条件强化练习D .若p :x ∀∈R ,2320x x --<,则p ⌝:0x ∃∈R ,200320x x --.【答案】D【解析】对于A 选项,若p q ∨为真命题,可能p 真q 假,则p q ∧为假,故A 选项错误.对于B 选项,命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y =”,故B 选项错误. 对于C 选项,当2x =时,20x x ->,所以“0x <”不是“20x x ->”的充要条件,C 选项错误. 根据全称量词命题的否定的知识可知,D 选项正确. 故选:D3.(2021·全国高三专题练习)下列关于命题的说法中正确的是( )∴对于命题P :x R ∃∈,使得210x x ++<,则:P x R ⌝∀∈,均有210x x ++≥ ∴“1x =”是“2320x x -+=”的充分不必要条件∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠” ∴若p q ∧为假命题,则p 、q 均为假命题 A .∴∴∴ B .∴∴∴ C .∴∴∴∴ D .∴∴【答案】A【解析】∴对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈均有210x x ++,故∴正确;∴由“1x =”可推得“2320x x -+=”,反之由“2320x x -+=”可能推出2x =,则“1x =”是“2320x x -+=”的充分不必要条件,故∴正确;∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠”,故∴正确; ∴若p q ∧为假命题,则p ,q 至少有一个为假命题,故∴错误. 则正确的命题的有∴∴∴. 故选:A4.(2021·河南高三其他模拟(文))命题:p “0,2sin 0x x x ∀≥-≥”的否定为( )A .0,2sin 0x x x ∀≥-<B .0,2sin 0x x x ∀<-<C .0000,2sin 0xx x ∃≥-< D .0000,2sin 0xx x ∃<-<【答案】C【解析】命题:p “0,2sin 0xx x ∀≥-≥”是全称命题,又全称命题的否定是特称命题,故“0x ∀≥,2sin 0x x -≥”的否定是“0000,2sin 0xx x ∃≥-<”.故选:C.5.(2021·山东菏泽市·高三一模)命题“2,0∈≥∀x R x ”的否定是( )A .2,0x R x ∃∈≥B .2,0x R x ∀∈<C .2,0x R x ∃∈<D .2,0x R x ∃∈≤【答案】C【解析】因为全称命题的否定是特称命题,所以命题:x R ∀∈,20x ≥的否定是:x R ∃∈,20x <.故选:C6.(2021·四川成都市·石室中学高三月考(理))设命题:0p x ∀≤x =-,则p ⌝为( ) A .0x ∀≤x ≠- B .00x ∃≤0x =- C .0x ∀>x =- D .00x ∃≤0x ≠-【答案】D【解析】命题p 为全称命题,该命题的否定为0:0p x ⌝∃≤0x ≠-. 故选:D.7.(2020·湖北武汉市·华中师大一附中高三期中)“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】由题意,命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题” 可得命题“x R ∀∈,2(1)2(1)30m x m x -+-+>是真命题” 当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件, 故选:B.8.(2021·全国高三专题练习)若命题“∀[]1,4x ∈时,240x x m --≠”是假命题,则m 的取值范围( ) A .[4,3]-- B .()-∞,-4 C .[4,)-+∞ D .[4,0]-【答案】D【解析】若命题“[1x ∀∈,4]时,240x x m --≠”是假命题, 则命题“[1x ∃∈,4]时,240x x m --=”是真命题, 则24m x x =-,设22()4(2)4f x x x x =-=--, 当14x 时,4()0f x -,则40m -. 故选:D .9.(2020·江苏海门市·高三月考)命题“[]21220x x a ∀∈-≤,,”为真命题的一个充分不必要条件是( )A .2a ≤B .2a ≥C .4a ≤D .4a ≥【答案】D【解析】“[]21220x x a ∀∈-≤,,”为真命题,可得2a ≥,因为[)[)4,2,+∞⊂+∞ , 故选:D .10.(2021·全国高三专题练习)已知命题“02x ∃>,20040ax ax --<”是假命题,则a 的取值范围是( )A .[)2,+∞B .()2,+∞C .(],2-∞D .(),2-∞【答案】A【解析】因为命题“02x ∃>,20040ax ax --<”是假命题,所以240ax ax --≥对2x >恒成立, 所以()242a x x x≥>-恒成立.因为2x >, 所以22x x ->,则242x x<-, 故2a ≥. 故选:A11.(2020·全国高三专题练习)用数学归纳法证明“(1)(2)()213(21)nn n n n n ++⋅⋅⋅⋅⋅+=⋅⋅⋅⋅⋅⋅⋅-”,从“k到1k +”左端需增乘的代数式为( ) A .21k + B .2(21)k +C .211k k ++ D .231k k ++ 【答案】B【解析】当n k =时,等式的左边(1)(2)()k k k k =++⋅⋅⋅⋅⋅+,当1n k =+时,等式的左边(11)(12)()(1)(2)k k k k k k k k =++++⋅⋅⋅⋅⋅+++++, 所以当从“k 到1k +”左端增乘的代数式为(1)(2)2(21)1k k k k k k ++++=++.故选:B.12.(多选)(2021·恩施市第一中学)下列命题正确的有( ) A .命题“x R ∀∈,20x ≥”的否定是“x R ∃∈,20x <”. B .函数()cos f x x =向右平移2π个单位得到函数解析式为()sin g x x =. C .函数()21f x x =-的零点为()1,0-,()1,0.D .1弧度角表示:在任意圆中,等于半径长的弦所对的圆心角. 【答案】AB【解析】对A ,根据全称命题的否定性质,A 为正确的; 对B ,()cos f x x =向右平移2π个单位得到函数()cos()sin 2g x x x π=-=;对C ,函数零点是数而不是点,故C 错误;对D ,1弧度角表示为在任意圆中,等于半径长的弧所对的圆心角,故D 错误; 故选:AB.13.(多选)(2021·全国高三专题练习)下列命题中正确的是( ) A .(0,)x ∃∈+∞,23x x >B .(0,1)x ∃∈,23log log x x <C .(0,)x ∀∈+∞,121()log 2xx >D .1(0,)3x ∀∈,131()log 2xx < 【答案】BD【解析】对于选项A :当0x >时,22133xx x ⎛⎫=< ⎪⎝⎭,所以23x x <恒成立,故选项A 不正确;对于选项B :当(0,1)x ∈时,23log lg lg 3lg 31log lg 2lg lg 2x x x x =⨯=>,且3log 0x <,所以23log log x x <,故选项B 正确;对于选项C :当12x =时,1211()()222x ==,11221log log 12x ==,则121log ()2x x >,故选项C 不正确; 对于选项D :当13x =时,131log 13=,由对数函数和指数函数的性质可知,当1(0,)3x ∈时,131()1log 2x x <<,故选项D 正确; 故选:BD14.(多选)(2021·全国高三专题练习)若01,22x ⎡⎤∃∈⎢⎥⎣⎦,使得200210x x λ-+<成立是假命题,则实数λ可能取值是( ) A .32B.C .3 D .92【答案】AB【解析】由条件可知1,22x ⎡⎤∀∈⎢⎥⎣⎦,2210x x λ-+≥是真命题, 即22112x x x xλ+≤=+,即min 112,,22x x x λ⎛⎫⎡⎤≤+∈ ⎪⎢⎥⎝⎭⎣⎦,设()112,22f x x x x ⎡⎤=+≥=∈⎢⎥⎣⎦等号成立的条件是112,222x x x ⎡⎤=⇒=∈⎢⎥⎣⎦,所以()f x的最小值是即λ≤AB. 故选:AB15.(2021·江西高三其他模拟(文))已知命题“存在x ∈R ,使220ax x -+≤”是假命题,则实数a 的取值范围是___________. 【答案】18a >【解析】因为命题“存在x ∈R ,使220ax x -+≤”是假命题, 所以命题“R x ∀∈,使得220ax x -+>”是真命题,当0a =时,得2x <,故命题“R x ∀∈,使得220ax x -+>”是假命题,不合题意;当0a ≠时,得0180a a >⎧⎨∆=-<⎩,解得18a >.故答案为:18a >16.(2021·全国高三专题练习)若“存在x ∴[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___.【答案】9(,)2-+∞【解析】存在x ∴[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数, 所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞.17.(2020·江西高三其他模拟(文))若命题:p x R ∃∈,210x mx -+<为假命题,则m 的取值范围是______. 【答案】[]22-,【解析】命题:p x R ∃∈,210x mx -+<为假命题,p ∴⌝:x R ∀∈,210x mx -+≥为真命题,则240m ∆=-≤,解得22m -≤≤,即m 的取值范围是[]22-,. 故答案为:[]22-,. 18.(2020·北京密云区·高三期中)若“01x ∃>,使得11x a x +<-.”为假命题,则实数a 的最大值为___________. 【答案】3【解析】由“∴x 0>1,使得11x a x +<-.”为假命题,可知,“11,1x x a x ∀>+≥-”为真命题, 11a x x ∴≤+-恒成立,由11111311x x x x +=-++≥=--,当且仅当2x =时取等号, 即a 的最大值为3. 故答案为:3.19.(2021·湖南永州市·高三二模)若对[]1,2x ∀∈,都有20ax x -≤,则实数a 的取值范围是___________. 【答案】1,2⎛⎤-∞ ⎥⎝⎦【解析】解:因为[]1,2x ∀∈,都有20ax x -≤,所以[]1,2x ∀∈,都有1a x≤,令()1g x x =,[]1,2x ∈,因为()1g x x=,在[]1,2x ∈上单调递减,所以()()min 122g x g ==,所以12a ≤,即实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦;故答案为:1,2⎛⎤-∞ ⎥⎝⎦20.(2020·全国高三月考(文))已知命题():0,p x ∀∈+∞,2230x mx -+>,命题:q m a <;若p 是q 的充分不必要条件,则实数a 的取值范围为______.【答案】()+∞【解析】设命题():0,p x ∀∈+∞,2230x mx -+>成立对应的m 的范围为集合A ,{}|B m m a =<若()0,x ∀∈+∞,223x mx +>,则32x m x +>,所以min 32m x x ⎛⎫<+ ⎪⎝⎭而32x x +≥32x x =,即x =时等号成立,所以min32x x ⎛⎫+= ⎪⎝⎭m <{|A m m =<,因为p 是q 的充分不必要条件,所以A B,所以a > 即实数a的取值范围为()+∞.故选答案为:()+∞21.(2020·凌海市第二高级中学高三月考)命题“2,1x R x t ∀∈>+”为真命题,则实数t 的取值范围是__________. 【答案】(),1-∞- 【解析】命题“2,1x R x t ∀∈>+”为真命题,且20x ≥,10t ∴+<,则1t <-,故实数t 的取值范围是(),1-∞-.故答案为:(),1-∞-.22.(2020·上海徐汇区·高三一模)用数学归纳法证明()2511222n n N -*++++∈能被31整除时,从k 到1k +添加的项数共有__________________项(填多少项即可). 【答案】5【解析】当n k =时,原式为:251122...2k -++++,当1n k =+时,原式为251551525354122...222222k k k k k k -+++++++++++++, 比较后可知多了55152535422222k k k k k ++++++++,共5项. 故答案为:523.(2020·浙江高三其他模拟)用数学归纳法证明:111111111234212122n n n n n-+-++-=+++-++,第一步应验证的等式是__________;从“n k =”到“1n k =+”左边需增加的等式是_________.【答案】11122-=()()1121121k k -+-+ 【解析】当1n =时,应当验证的第一个式子是11122-=,从“n k =”到“1n k =+”左边需增加的式子是()()1121121k k -+-+24.(2021·全国高三专题练习)设数列{}n a 满足11a =,12(23)n n a a n +=--. (1)计算2a ,3a .猜想{}n a 的通项公式并利用数学归纳法加以证明; (2)记2n nn b a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)23a =,35a =,21n a n =-;证明见解析;(2)1(23)26n n S n +=-⨯+.【解析】(1)由题意可得2121213a a =+=+=,3221615a a =-=-=, 由数列{}n a 的前三项可猜想数列{}n a 是以1为首项,2为公差的等差数列, 即21n a n =-, 证明如下:当1n =时,12111a =⨯-=成立; 假设n k =时,21k a k =-成立.那么1n k =+时,12(23)2(21)(23)212(1)1k k a a k k k k k +=--=---=+=+-也成立. 则对任意的*n ∈N ,都有21n a n =-成立;(2)因为(21)2n n b n =-.∴23123252(21)2n n S n =⨯+⨯+⨯++-⨯,∴ 23412123252(21)2n n S n +=⨯+⨯+⨯++-⨯,∴∴-∴得:2341222222222(21)2n n n S n +-=+⨯+⨯+⨯++⨯--⨯()211122122(21)26(23)212n n n n n -++⨯-=+--⨯=---⨯-.∴1(23)26n n S n +=-⨯+.25.(2020·全国高三专题练习)已知数列{}n a 满足:11a =,点()()*1,n n a a n +∈N 在直线21y x =+上.(1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的猜想.【答案】(1)2343,7,15a a a ===,21n n a =-;(2)证明见解析.【解析】(1)因为点()()*1,n n a a n N +∈在直线21y x =+上所以121n n a a +=+, 因为11a =,故22113a =⨯+=,32317a =⨯+=, 427115a =⨯+=,由上述结果,猜想:21nn a =-.(2)1︒,当1n =时,1211a =-=成立,2︒,假设当()1,n k k k N =≥∈时,21kk a =-成立,那么,当1n k =+时,()1121221121kk k k a a ++=+=-+=-成立,由1︒,2︒可得21nn a =-.26.(2020·黑龙江哈尔滨市·高三月考(理))已知数列{}n a 满足1a m =,2n a ≠,11210n n n a a a ++-⋅-=. (1)求2a ,3a ,4a ;(2)猜想{}n a 的通项公式,并用数学归纳法加以证明. 【答案】(1)212a m =-,3232m a m -=-,43243ma m-=-;(2)()()()121n n n m a n n m ---=--;证明见解析.【解析】1)因为11210n n n a a a ++-⋅-=,2n a ≠,所以112n na a +=-,又因为1a m = 211122a a m ==--,3212232m a a m -==--,43132243ma a m-==-- (2)()()()121n n n ma n n m---=--证明:1n =时,()1011ma m --==,结论成立 假设n k =时,结论成立,即()()()121k k k ma k k m---=--当1n k =+时:()()()()()()()()()11111122211221211k kk k m a k k m k k m k k m a k km k k m k k m+--====-------+--+------ 结论成立.综上,数列通项为()()()121n n n m a n n m---=-- 27(2020·云南师大附中高三月考(理))设数列{}n a 满足11a =,23a =,当()11112n n n n n a a a n a a -+-+=+++.(1)计算3a ,4a ,猜想{}n a 的通项公式,并加以证明. (2)求证:()()()2221244474111n a a a +++<+++. 【答案】(1)35a =,47a =,21n a n =-,证明见解析;(2)证明见解析. 【解析】(1)解:由11a =,23a =, 所以()123121225a a a a a +=++=+,()234231327a a a a a +=++=+. 猜想:21n a n =-,证明:当2n =时,由11a =,23a =,故成立;假设n k =(2k ≥)时成立,即21k a k =-, 所以()()1111221211k k k k k a a a k k k a a -+-+=++=+=+-+,即当1n k =+时成立,综上所述,21n a n =-. (2)证明:由(1)知,()22411n n a =+, 所以()()()22212444111n a a a ++++++22222211111111221311n n =+++<++++--- ()()1111132411n n =++++⨯⨯-+111111111111232435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭11117112214n n ⎛⎫=++--< ⎪+⎝⎭,证毕.。
讲课 简单的逻辑连接词25页文档

21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
讲课 简单的逻辑连接词
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动
汉语逻辑连接词

汉语逻辑连接词
1. “哎呀,我要是先写作业再玩就好了!”
- 那天放学回家,我一进门就扔下书包,叫嚷着:“我要先玩会儿游戏!”妈妈在厨房喊:“你先写作业呀!”我哪听得进去,“哎呀,等会儿嘛!”结果玩起来就忘了时间,等想起来作业还没写的时候,都快该睡觉了。
我心里那个懊悔呀,哎呀,我要是先写作业再玩就好了!
2. “然后呢,你接着说呀!”
- 在教室里,我和小伙伴们围在一起讲故事,我正讲得起劲,突然有人打断我问:“然后呢,你接着说呀!”大家都一脸期待地看着我,我清了清嗓子,继续讲下去。
3. “不但……而且……”
- 我对妈妈说:“妈妈,这次考试我不但语文考得好,而且数学也进步了呢!”妈妈笑着摸了摸我的头说:“真棒呀!”
4. “虽然……但是……”
- 我虽然很想去参加那个活动,但是那天我已经有别的安排了,真的好纠结呀!
5. “一边……一边……”
- 我一边吃着冰淇淋,一边看着电视,那感觉可太爽啦!弟弟跑过来问:“好吃吗?”我点点头,“嗯,好吃!”
6. “要么……要么……”
- 周末的时候,爸爸问我:“你要么去公园玩,要么去看电影,选一个吧。
”我想了想,“我要去公园!”
7. “既……又……”
- 我的好朋友既会唱歌又会跳舞,大家都可喜欢她啦!
8. “如果……就……”
- 我对妹妹说:“如果你乖乖听话,就给你买好吃的。
”妹妹立马点头,“我听话!”
9. “只要……就……”
- 我心里想着只要我努力学习,就一定能取得好成绩!
10. “不是……就是……”
- 这道题好难呀,我觉得答案不是这个就是那个,到底选哪个呢?哎呀!。
写作常用连接词

写作常用连接词连接词在写作中扮演着连接句子、段落和篇章的重要角色,可以提高文章的逻辑性和连贯性。
本文将介绍一些常用的连接词及其用法,帮助你提升写作表达的水平。
1. 表示并列关系的连接词首先,我们来介绍一些表示并列关系的连接词。
(1) 和:用于连接同一类或相关的事物。
例如:她和我是好朋友。
(2) 而且/并且/此外/另外:用于表示添加附加的内容。
例如:他不仅聪明,而且勤奋。
(3) 同时/同时也/一样地:表示并列的行为或状态。
例如:我喜欢读书,同时也喜欢写作。
(4) 或者/或/还是:表示选择关系。
例如:你可以选择画画或者弹钢琴。
(5) 与此同时/与此相反:表示对立或相反的关系。
例如:他一边赚钱,与此同时却忽略了家庭。
2. 表示因果关系的连接词接下来,我们来介绍一些表示因果关系的连接词。
(1) 因为/由于:表示原因。
例如:我喜欢读书,因为它让我开阔眼界。
(2) 所以/因此/因而:表示结果或推论。
例如:他努力学习,所以取得了好成绩。
(3) 既然/由此可见:表示前提或理由。
例如:既然你已经决定了,我会全力支持你。
(4) 结果/于是/这样:表示结果或反应。
例如:他没来上课,于是被老师批评了。
3. 表示转折关系的连接词然后,我们来介绍一些表示转折关系的连接词。
(1) 但是/然而/可是:用于表示相对前面部分的转折或对比。
例如:他很聪明,但是缺乏实践经验。
(2) 虽然/尽管/但是:表示虽然具有某种限制或条件,但结果仍然成立。
例如:尽管困难重重,但他从未放弃。
(3) 而:用于表示转折关系或相对前面部分的对比。
例如:她长得不漂亮,而她性格很吸引人。
(4) 反过来/相反:表示与前面部分相反的情况或观点。
例如:有的人喜欢冬天,反过来有人则喜欢夏天。
4. 表示递进关系的连接词最后,我们来介绍一些表示递进关系的连接词。
(1) 而且/不仅如此:表示除了前面已经提到的之外,还有更多的内容。
例如:这个国家人民友好,而且风景优美。
(2) 此外/另外/还有:表示除了前面提到的之外,还有其他的事物。
简单的逻辑连接词

简单的逻辑连接词1,且定义:一般地,用逻辑连接词“且”把命题p和命题q联接起来,就得到一个新的命题,记作p∧q,读着“p且q”命题p∧q的真假:命题p 命题q p∧q (p且q)真真真真假假假真假假假假总结:一假则假,全真则真。
2.或定义:一般地,用联接词“或”把命题p和命题q联接起来就得到一个新命题,记着“p∨q”,读作“p或q”.命题p或q的真假:命题p 命题q p∨q (p或q)真真真真假真假真真假假假总结:有真则真,全假则假。
3.“非”定义:一般地,对一个命题p全盘否定,就得到一个新命题,记着﹁p,读着“非p”,“或p的否定”。
命题﹁p的真假:命题p ﹁p (非p)真假假真总结:一真一假。
典型例题例1:将下列各组命题用“且”联接成新命题,并判断真假。
(1)p:π是无理数; q: π小于4;(2)p:5是17的约数; q: 5是15的约数;(3)p: 梯形的对角线相等; q: 梯形的对角线互相平分;(4)p: 2x2+3>x-5; q: 2x2+3<x-5;例2:将下列各组命题用“或”联接成新命题,并判断真假。
(1) p: 3>4, q: 3<4;(2) p: 正数的平方大于0; q;负数的平方大于0;(3) p: π是整数; q: π是分数。
例3:写出下列命题的否定,并判断它们的真假;(1)p: y=tan x是奇函数,(2)p: π=3.1415;(3)p: 2,3都是8的约数;(4)p: 一元二次方程至多有两个解。
例4:指出下列命题的形式和结构(1)45是3和15的倍数;(2)4是合数或偶数;(3)方程x2+1=0没有有理根。
例5:写出下列命题的否定及否命题(1)面积相等三角形是全等三角形;(2)若m2+n2+x2+y2=0,则实数m,n,x,y全为零;(3)若xy=0,则x=0,y=0.例6:已知:p:方程x2+mx+1=0有两个不等的负实数根;q:方程4x2+4(m-2)x+1=0无实数根,若p∨q为真,p∧q为假,求m的取值范围。
简单的逻辑连接词

05
条件关系连接词
如果、假如
用法
通常与“那么”或“就”等词语搭配使用, 构成条件句。
含义
表示某个条件或假设,通常用于引出可能的 结果或结论。
例子
如果你努力学习,那么你就会取得好成绩。
除非、只有
含义
表示某种必要条件,否则不会得到相应的结果。
用法
通常用于强调某种必要条件,否则不会达到预期 的结果。
用法
常用于句首或句中,连接两个分句,表示意思 的转折。
尽管、虽然
含义
表示承认某种事实或情况,但下文并不因此 受到影响或限制。
用法
常用于句首,连接两个分句,表示意思的转 折。
例子
尽管他很努力,但是还是没有通过考试。
不过、只是
含义
表示轻微的转折或限制,对 上文的意思进行补充或修正 。
用法
常用于句中,连接两个分句 ,表示意思的轻微转折或限 制。
简洁性
避免过度使用逻辑连接词,以免句子显得冗长和复杂 。
一致性
在整个文本中,要保持逻辑连接词使用的一致性,以 增强文本的可读性和连贯性。
提高逻辑连接词运用能力方法
1 2
多读多写
通过大量的阅读和写作练习,可以逐渐熟悉并掌 握各种逻辑连接词的使用方法和技巧。
学习优秀范文
学习一些优秀范文,观察和分析其中逻辑连接词 的使用,可以提高自己的运用能力。
例子
他们在追求梦想的同时,也注重现实 生活。
此外、另外
定义
用于引出除了之前提到的事物或情况之外的其他事物或情况,表示补充或增加的信息。
例子
除了以上提到的优点,此外,这个产品还有很高的性价比。
03
转折关系连接词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)2是素数且3是素数. (真)
探究(二):逻辑联结词“或”
命题(3)是由命
思考 下列三个命题间有什么关系? 题(1)(2)使用联
(1)27是7的倍数;
结词“或”联 结得到的新命
(2)27是9的倍数;
题.
(3)27是7的倍数 或 是9的倍数。
一般地,用逻辑联结词“ ”把命题p和命题q联结起来,
例2 写出下列命题的否定,并判断
它们的真假:
(1)p:y=sinx是周期函数;
(2)p:3<2; (3)p:空集是集合A的子集.
(1)﹁p:y=sinx不是周期函数.
假命题.
(2)﹁p:3≥2.
真命题.
(3)﹁p:空集不是集合A的子集. 假命题
例3 已知p:函数y=ax在R上是减函 数,q:不等式x+|x-2a|>1的解集为R, 若﹁(p∧q)和p∨q都是真命题,求a的取
p与﹁p必有一个是真命题, 另一个是假命题.
பைடு நூலகம்真假相反
例5 写出下列命题的否定,并判断它们的真假:
(1)p:y=sinx 是周期函数;
解: p : y=sinx不是周期函数。
假
(2)p:3 < 2
解: p : 3≥2.
真
(3) p:空集是集合A的子集
解: p : 空集不是集合A的子集。 假
符号“∧”与“∩”开口都是向下
思考4:在如图所示的串联电路中,开
关p、q处于什么状态时灯泡发亮?
pq
同真为真
其余为假
(一假必假)
思考5:如果把上述电路图中开关p、q 的闭合与断开,分别对应命题p、q的真 与假,那么灯泡发亮与命题p∧q的真假 有什么关系?
理论迁移
例1 将下列命题用“且”联结成新命题, 并判断它们的真假: (1)p:平行四边形的对角线互相平分,
解:(1)p:2=2 ;q:2<2 ∵ p是真命题,∴p∨q是真命题.
(2)p:集合A是A∩B的子集;q:集合A是A∪B的子集 ∵q是真命题, ∴p∨q是真命题.
(3)p:周长相等的两个三角形全等; q:面积相等的两个三角形全等.
∵命题p、q都是假命题, ∴ p∨q是假命题.
小结作业
1.数学上,“且”与“或”叫做逻辑 联结词,不含有逻辑联结词的命题叫做 简单命题,由简单命题和逻辑联结词构 成的命题称为复合命题.
(4)命题“A A U B ”
其中,真命题为_(__2__)__(__4_)___.
3.
命题p:“不等式x
x 1
0
的解集为
{x | x 0或x 1}”;命题q:“不等式 x2 4
的解集为{x | x 2}”,则 ( D )
A.p真q假
B.p假q真
C.命题“p且q”为真
D.命题“p或q”为假
为
.
例5:设p:方程x2+mx+1=0有两个不等的负 根,q:方程4x2+4(m-2)x+1=0无实根.若p∨q 为真, p∧q 为假,求m的取值范围.
解:若方程x2+mx+1=0有两个不等的负根 ,
则 0
x x
1
2
0
x 1
•
x 0 2
即 p: m>2
若方程4x2+4(m-2)x+1=0无实根
就得到一个新命题,记作p∨q, 读作“p或q”
注:日常生活中的“或”有两类用法:其一是 “不可兼有”的“或”;其二是“可兼有”的 “或”。逻辑连接词中的“或”为日常生活中 “可兼有”的“或”。
探究命题p∨q的真假
4:命题p:函数 y x3 是奇函数;
真
命题q:函数 y x3 在定义域内是减函数;
(2) p :菱形的对角线互相垂直, q :菱形的对角线互相平分;
解: p∧q : 菱形的对角线互相垂直且平分。
(3) p :35是15的倍数, q :35是7的倍数。
解: p∧q : 35是15的倍数且是7的倍数。
探究命题p∧q的真假
1:命题p:函数 y x3 是奇函数;
真
命题q:函数 y x3 在定义域内是增函数;
如果p∧q为真命题,那么p∨q一定是真 命题吗?反之,如果p∨q为真命题,那么 p∧q一定是真命题吗?
p∧q为真命题
p∨q是真命题
p∨q是真命题
p∧q为真命题
例题分析
例3:判断下列命题的真假: (1)2≤2; (2)集合A是A∩B的子集或是A∪B的子集; (3)周长相等的两个三角形全等或面积相等的两个三 角形全等.
命题p∧q的真假判断方法:
p
q
p∧q
真
真
真真
一
真
假
真假
假
假
真
假
假
真假 假
则 假
一句话概括:
同真为真,一假必假.
活动探究
探究:逻辑联结词“且”的含义与集合 中学过的哪个概念的意义相同呢?
对“且”的理解,可联想到集合中 “交集”的概念.
A∩B={x︱x∈A且x∈B}中的“且”, 是指“x∈A”、“x∈B”这两个条件都 要满足的意思
注:逻辑联结词“且”与日常用语中的“并且”、 “及”、“和”相当;在日常用语中常用“且”连接 两个语句。表明前后两者同时兼有,同时满足 .
例1 将下列命题用“且”联结成新命题 (1) p :平行四边形的对角线互相平分,
q :平行四边形的对角线相等;
解: p ∧q : 平行四边形的对角线互相平分 且相等。
使用逻辑词的情况是B( ) A.没有使用逻辑联结词 B.使用了逻辑联结词“或” C. 使用了逻辑联结词“且” D. 使用了逻辑联结词“或”与“且”
2.在下列命题中
(1)命题“不等式 | x 2 | 0 没有实数解”;
(2)命题“-1是偶数或奇数”;
(3)命题“ 2 既属于集合Q 也属于集合R ”;
2.若p∧q为真,则p∨q为真,反之不 成立.
探究(一):逻辑联结词“非”
思考: 下面两个命题间有什么关系? (1)、35能被5整除; (2) 、 35不 能被5整除。
一般地,对一个命题p 全盘否定 ,就能得到一个新命题,
记作 p,读作“非p”或“p的否定”
思考:命题p与﹁p的真假有什么关系?
探究(一):逻辑联结词“且”
(and)
思考 下面三个命题间有什么关系?
命题(3)是由命 题(1)(2)使用联
结词“且”联
(1)12能被3整除;
结得到的新命
(2)12能被4整除;
题.
(3)12能被3整除且能被4整除。
一般的,用逻辑联结词“ 且 ”把命题p和q连接起来, 就得到一个新命题, 记作p∧q,读作“p且q”.
解:若方程x2+mx+1=0有两个不等的负根
即 p: m>2 若方程4x2+4(m-2)x+1=0无实根 则∆=16(m-2)2-16<0,
即1<m<3
∵p或q为真,则p,q至少一个为真,又p且q为 假,则p,q至少一个为假 ∴ p,q一真一假,p真q假或者p假q真
∴
∴
练习
1.命题“方程 x 1 的解是 x 1”中,
真
命题p∧q:函数 y x3 是奇函数且在定义域
真
内是增函数。
2:命题p: 三角形三条中线相等;
假
你命能题归q:纳三角p形∧q三形条式中的线交命于题一的点真;假吗?
真
命题p∧q:三角形三条中线相等且交于一点。
假
3:命题p: 相似三角形的面积相等;
假
命题q: 相似三角形的周长相等;
假
命题p∧q:相似三角形的面积相等且周长相 假 等。
q:平行四边形的对角线相等; (2)p:菱形的对角线互相垂直,
q:菱形的对角线互相平分; (3)p:35是15的倍数,q:35是7的倍数.
(1)p∧q:平行四边形的对角线互相平分且相等.(假)
(2)p∧q:菱形的对角线互相垂直且平分.(真)
(3)p∧q:35是15的倍数且是7的倍数. (假)
例2 用逻辑联结词“且”改写下列命 题,并判断它们的真假。 (1)1既是奇数,又是素数; (2)2和3都是素数.
假
命题p∨q:函数 y x3 是奇函数或在定义域内
真
是减函数。
5:命题p: 相似三角形的面积相等;
假
你命能题q归:纳相似p 三∨角q形形的式周的长命相题等的;真假吗?
假
命题p∨q:相似三角形的面积相等或周长相等。
假
6:命题p:三边对应成比例的两个三角形相似;
真
命题q:三角对应相等的两个三角形相似;
值范围.
a (0, 1] U[1,) 2
例4 已知p:函数 f (x) (a2 a)x在
R上单调递减,q:函数 y lg(ax2 x a)
的定义域为R,如果﹁p∨q为假命题, 求实数a的取值范围.
a (0, 1 ] 2
例5:设p:方程x2+mx+1=0有两个不等的负 根,q:方程4x2+4(m-2)x+1=0无实根.若p或q 为真,p且q为假,求m的取值范围.
思考:命题p:“大于1的数是正数”的 否定是什么?其否命题是什么? ﹁p:大于1的数不是正数.
否命题:不大于1的数不是正数.
命题的否定只否定结论
否命题则既否定条件也否定结论
理论迁移 例1 已知命题p:负数有平方根,写
出命题﹁p,p的否命题,并判断其真假.
﹁p:负数没有平方根;
否命题:如果一个数是非负数,则 这个数没有平方根.