13简单的逻辑连接词新
一轮复习-简单的逻辑联结词及全称量词与存在量词

x M , p( x)
读作:“对任意x属于M,有p(x)成
引入2:
(1)有些三角形是直角三角形; (2)如果两个数的和为正数,那么这两个数 中至少有一个是正数; (3)在素数中,有一个是偶数; 2 (4)存在实数x,使得x +x-1=0。
在以上命题中,“有些”“至少有一 个”“有一个”“存在”都有表示个别或一部 分的含义,这样的词叫作存在量词,并用符号
p 真 假
¬ p 假 真
总结
“且、或、非”真值表 p 真 真 假 假 q 真 假 真 假 p∧q 真 假 假 假 p∨q 真 真 真 假
概括为:
p
﹁
假 假 真 真
真“非”假,假“非” 真
有真“或”为真
两真“且”为真
变式2
如果p∧q为真命题,那么p∨q一定是真 命题吗?反之,如果p∨q为真命题,那么 p∧q一定是真命题吗? p∧q为真命题 p∨q是真命题
真
真 真 假 假
真 假 真 假
假 假
假
有些命题如含有“……和……”、
“……与……”、“既……,又…..”等词 的命题能用“且”改写成“p∧q”的形式, 例2:用逻辑联结词“且”改写下列命题,并 判断它们的真假. (1)1既是奇数,又是素数; (2)2和3都是素数.
解:(1) 1是奇数且1是素数 , 假命题 (2) 2是素数且3是素数,真命题
p : x0∈M, ﹁p(x0)
关键量词的否定
词语 词语的 否定
词语
是 不是
一定 是
都是 不都 是
大于
小于
且 或
一定 不是
小于或 大于或 等于 等于
至多 所有x成 所有x 必有 至少 有一 一个 有n个 立 不成立 个
1.3(2015文)简单的逻辑联结词,全称量词与存在量词(知识点)

1.3简单的逻辑联结词,全称量词与存在量词
1. 逻辑连接词
(1)一般地,用联结词“且”把命题p和q联结起来,就得到一个新命题,记作p∧q,读作“p且q”
(2)一般地,用联结词“或”把命题p和q联结起来,就得到一个新命题,记作p∨q,读作“p或q”
(3)一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定”
(4)命题p∧q,p∨q,¬p的真假判断,如下表:
2.全称量词与存在量词
(1)常见的全称量词有“任意一个”“一切”“每一个”“任给”“所有的”等. (2)常见的存在量词有“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.
(3)全称量词用符号“”表示;存在量词用符号“”表示.
3.全称命题与特称命题
(1)含有全称量词的命题,叫做全称命题.“对中任意一个有成立”可
用符号简记为
(2) 含有存在量词的命题,叫做特称命题. “中存在元素有成立”
可用符号简记为
4.含有一个量词的命题的否定
注意:(1)全称命题的否定是特称命题,特称命题的否定是全称命题
(2)命题的“否定”与命题的“否命题”是两个不同的概念.对一个命题进行否定,就是要对其结论进行否定,而否命题是既否定条件又否定结论。
简单的逻辑连接词

授课班级文117班授课时间45分钟课型新授课课题选修1-1 第一章 1.3 简单的逻辑连接词教学目标1.通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义;2.能正确地利用“或”、“且”、“非”表述相关的数学内容;3.知道命题的否定与否命题的区别.重点正确理解逻辑联结词“且”、“或”、“非”的含义,并能正确表述这“p ∧q”、“p∨q”、“⌝p”这些新命题。
难点简洁、准确地表述新命题“p∧q”、“p∨q”“⌝p”并能判断其真假性教具教学方法1.3 简单的逻辑联接词命题:可以判断真假的陈述句叫命题。
且:或:非:几种常用词的否定:教学环节教学内容教师活动学生活动设计说明复习旧知一、复习回顾命题的概念:可以判断真假的语句叫命题正确的命题叫真命题,错误的命题叫假命题(1)12>5(2)3是15的约数(3)0.5是整数(4)3是15的约数吗?(5) x>8 都不是命题。
[师]:上课,同学们,前面我们学习了命题,现在请观察黑板,然后告诉我这五个语句是不是命题,如果是,请判断真假。
[生]回答教师提问(1)是真命题(2)是真命题(3)是假命题(4)不是命题(5)不是命题(6)复习之前学过的有关命题的知识,为学生学习新课打下基础引入新知歌德是18世纪德国的一位著名文艺大师,一天,他与一位文艺批评家“狭路相逢”。
这位批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高傲地往前走,一边大声说道:“我从来不给傻子让路!”面对如此尴尬局面,但见歌德笑容可掬,谦恭地闪在一旁,一边有礼貌地回答道:“呵呵,我可恰恰相反。
”结果故作聪明的批评家,反倒自讨个没趣。
[师]很好,看来同学们已经掌握了知识,那接下来我们来看一则小故事。
提问:批评家的话是什么意思:(1)我不给傻子让路(2)你歌德是傻子(3)我不给你让路。
歌德的反击:(1)我给傻子让路(2)你批评家是傻子(3)我给你让路[生]一起阅读小故事并回答下列小问题。
1.3简单的逻辑连接词,全称量词与存在量词

解析:命题 p:存在 x∈R,使 tan x=1 是真命题,命题 q:x -3x+2<0 的解集 是{x|1<x<2}也是真命题,∴ ①命题“p 且 q”是真命题;②命题“p 且(������ q)”是假 命题;③命题“(������ p)或 q”是真命题;④命题“(������ p)或(������ q)”是假命题,故应选 D.
1 2 2
5 2
2
解析:由 sin x= >1,可得命题 p 为假;由 x +x+1= ������ +
2
5
2
+ ≥ ,可得
4 4
3
3
命题 q 为真,则命题“p 且 q”是假命题;命题“p 且(������ q)”是假命题;命题“(������ p)且 q”是真命题;命题“(������ p)或(������ q)”是真命题.
1.命题 p:x2+y2<0;q:x2+y2≥0.下列命题为假命题的是( B ). A.p 或 q C.q B.p 且 q D.������ p
第一章1.3简单逻辑连接词

C )
【例2(P6)】 (2012·杭州学军中学模拟)已知 命题p:∃x∈R,使tan x=1,命题q:x2-3x +2<0的解集是{x|1<x<2},给出下列结论: ①命题“p∧q”是真命题; ②命题“p∧┐q”是假命题; ③命题“┐p∨q”是真命题; ④命题“┐p∨┐q”是假命题. 其中正确的是( D ) A.②③ B.①②④ C.①③④ D.①②③④
题型一
含有逻辑联结词的命题的真假
【例 1(P6) 】已知命题 p1:函数 y=2x-2-x 在 R 上为增函数,p2:函数 y=2x+2-x 在 R 上为减 函数,则在命题 q1:p1∨p2,q2:p1∧p2,q3: (¬ p1)∨p2 和 q4:p1∧(¬ p2)中,真命题是( A.q1,q3 C.q1,q4 B.q2,q3 D.q2,q4
m>1
(P6)变式训练 2(1)命题 p:a +b <0 (a,b∈R); 正确的是 ( ) B.“p∧q”为真 D.“┐ q”为真
2
2
命题 q:(a-2)2+|b-3|≥0 (a,b∈R),下列结论
A
A.“p∨q”为真 C.“┐ p”为假
变式训练 2(2)已知命题 p:抛物线 y=2x2 1 的准线方程为 y=- ;命题 q:若函数 f(x+ 2 1)为偶函数, 则 f(x)关于 x=1 对称. 则下列命 题是真命题的是 A.p∧q C.(┐p)∧(┐q) (
(P7)变式训练 3 (1) 已知 a>0,设命题 p:函 数 y=a 在 R 上单调递增;命题 q:不等式 ax “p∨q”为真,求 a 的取值范围.
x 2
-ax+1>0 对∀x∈R 恒成立. 若“p∧q”为假,
(0,1]∪[4,+∞)
简单的逻辑连接词

简单的逻辑连接词1,且定义:一般地,用逻辑连接词“且”把命题p和命题q联接起来,就得到一个新的命题,记作p∧q,读着“p且q”命题p∧q的真假:命题p 命题q p∧q (p且q)真真真真假假假真假假假假总结:一假则假,全真则真。
2.或定义:一般地,用联接词“或”把命题p和命题q联接起来就得到一个新命题,记着“p∨q”,读作“p或q”.命题p或q的真假:命题p 命题q p∨q (p或q)真真真真假真假真真假假假总结:有真则真,全假则假。
3.“非”定义:一般地,对一个命题p全盘否定,就得到一个新命题,记着﹁p,读着“非p”,“或p的否定”。
命题﹁p的真假:命题p ﹁p (非p)真假假真总结:一真一假。
典型例题例1:将下列各组命题用“且”联接成新命题,并判断真假。
(1)p:π是无理数; q: π小于4;(2)p:5是17的约数; q: 5是15的约数;(3)p: 梯形的对角线相等; q: 梯形的对角线互相平分;(4)p: 2x2+3>x-5; q: 2x2+3<x-5;例2:将下列各组命题用“或”联接成新命题,并判断真假。
(1) p: 3>4, q: 3<4;(2) p: 正数的平方大于0; q;负数的平方大于0;(3) p: π是整数; q: π是分数。
例3:写出下列命题的否定,并判断它们的真假;(1)p: y=tan x是奇函数,(2)p: π=3.1415;(3)p: 2,3都是8的约数;(4)p: 一元二次方程至多有两个解。
例4:指出下列命题的形式和结构(1)45是3和15的倍数;(2)4是合数或偶数;(3)方程x2+1=0没有有理根。
例5:写出下列命题的否定及否命题(1)面积相等三角形是全等三角形;(2)若m2+n2+x2+y2=0,则实数m,n,x,y全为零;(3)若xy=0,则x=0,y=0.例6:已知:p:方程x2+mx+1=0有两个不等的负实数根;q:方程4x2+4(m-2)x+1=0无实数根,若p∨q为真,p∧q为假,求m的取值范围。
1.3简单的逻辑联结词

简记为:有假则假
p 真 真 假 假
q 真 假 真 假
p且q 真 假 假 假
例题
例1:将下列命题用“且”联结成新命题,并 判断它们的真假: (1)p:平行四边形的对角线互相平分,q:平行 四边形的对角线相等; (2)p:菱形的对角线互相垂直,q:菱形的对角 线互相平分; 平行四边形的对角线 (3)p:35是15的倍数,q:35是7的倍数. 互相平分且相等 互相平分且平行四边
p 真 ﹁p 假
假
真
例题应用
例3:写出下列命题的否定,并判断它们的真假: (1) p: y=sinx是周期函数; (2) p: 3<2; (3) p: 空集是集合A的子集. 解(1) ﹁p : y=sinx不是周期函数 命题p是真命题, ﹁p 是假命题 (2) ﹁p :3≥2 命题p是假命题, ﹁p 是真命题 (3) ﹁p :空集不是集合A的子集 命题p是真命题, ﹁p 是假命题
下列两个命题间有什么关系? (1)35能被5整除; (2)35不能被5整除. 命题(2)是命题(1)的否定.
归纳新知
一般地,对一个命题p全盘否定, 就得到一个新命题,记作:﹁p 读作“非p”或“p的否定”
思考:p与﹁p的真假关系:
若p是真命题,则﹁p必是假命题; 若p是假命题,则﹁p必是真命题.
简单的逻辑联结词
自主探索一 下列三个命题之间有什么关系? (1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除;
归纳新知
一般地,用联结词“且”把命 题p和q联结起来,就得到一个新 命题,记作:p∧q读作p且q.
如何确定命题“p且q”的真假性呢?
规定: · 当p,q都是真命题时, “p且q”是 真命题; · 当p,q两个命题中有一个是假 命题时, “ p且q”是假命题
1.3(2015理)简单的逻辑联结词,全称量词与存在量词(知识点)

1.3简单的逻辑联结词,全称量词与存在量词
1.常见的逻辑连接词:“或”“且”“非”.
一般地,用联结词“且”把命题p和q联结起来,得到一个新命题,记作p∧q,读作“p且q”;用联结词“或”把命题p和q联结起来,得到一个新命题,记作p∨q,读作“p或q”;对一个命题p全盘否定,得到一个新命题,记作¬p,读作“非p”或“p的否定”.
2.用来判断复合命题的真假的真值表:
3.全称量词与存在量词
(1)常见的全称量词有“任意一个”“一切”“每一个”“任给”“所有”等. (2)常见的存在量词有“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.
(3)全称量词用符号“”表示;存在量词用符号“”表示.
4.全称命题与特称命题
(1)含有全称量词的命题叫全称命题.
(2)含有存在量词的命题叫特称命题.
5.命题的否定
(1)全称命题的否定是特称命题;特称命题的否定是全称命题.
(2) p或q的否定:非p且非q;p且q的否定:非p或非q.
6.同一个全称命题、特称命题,由于自然语言的不同,可能有不同的表述方法,在实际应用中可以灵活地选择.
,都有成立
,
成立;
使。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 将下列命题用“且”联结成新命题 (1) p : 平行四边形的对角线互相平分,
q : 平行四边形的对角线相等; 解: p ∧q : 平行四边形的对角线互相平分且相等。
(2) p : 菱形的对角线互相垂直, q : 菱形的对角线互相平分;
解: p∧q : 菱形的对角线互相垂直且平分。
(3) p :35 是15的倍数, q :35 是7的倍数。
解:(1)p:2=2 ;q:2<2 ∵ p是真命题 ,∴p∨q是真命题 .
(2)p:集合A是A∩B的子集; q:集合A是A∪B的子集 ∵q是真命题 , ∴p∨q是真命题 .
(3)p:周长相等的两个三角形全等; q:面积相等的两个三角形全等 .
∵命题p、q都是假命题 , ∴ p∨q是假命题 .
1.3.3 非 (not)
真
5:命题p: 相似三角形的面积相等;
假
问命题题q2::相似三角形的周长相等;
假
你命能题p归∨q纳:相p 似∨三q角形形式的的面命积题相等的或真周假长吗相?等。 假
6:命题p: 三边对应成比例的两个三角形相似;
真
命题q:三角对应相等的两个三角形相似;
真
命题p∨q: 三边对应成比例或三角对应相等的两个三 真
符号“∧”与“∩”开口都是向下
例2 用逻辑联结词“且”改写下列命题,并判断它们的真
假: 既
又
(1解):1 1是是奇奇数数,且 是1 是素素数数;
假命题
和 (2)2 3 都是素数。
解: 2 是素数且 3 是素数
真命题
1.3.2 或 (or)
思考:下列三个命题间有什么关系? (1)27是7的倍数; (2)27是9的倍数;
命题(3)是由命 题(1)(2)使用联 结词“且”联 结得到的新命 题.
( 3)12能被 3整除且能被 4整除。
一般地,用逻辑联结词“
”把命题 p和q连接起来,
就得到一个新命题, 记作p∧q,读作“ p且q”.
注意:有些命题如含有“ ……和……”、“…… 与……”、“既……,又…..”等词的命题能用 “且”改写成“ p∧q”的形式。
一句话概括:
p
q p∧q
同真为真,一假必假. 真 真 真 真假 假 假真 假
假假 假
拓展延伸1 探究:逻辑联结词“且”的含义与集合 中学过的哪个概念的意义相同呢?
对“且”的理解,可联想到集合中“交集”的概念. A∩B={ x︱x∈A且x∈B}中的“且”, 是指“x∈A”、“x∈B”这两个条件都要满足的意思
思考: 下面两个命题间有什么关系? (1)、35能被5整除; (2) 、 35不 能被5整除。
一般地,对一个命题p 全盘否定 ,就能得到一个新命题,
? 记作 p,读作“非p”或“p的否定” ? ? 若p是真命题,则 p必是假命题;若p是假命题,则 p必
是真命题。真假相反
写出下表中各给定语的否定语
给定语为
命题(3)是由命 题(1)(2)使用联 结词“或”联 结得到的新命 题.
(3)27是7的倍数 或 是9的倍数。
一般地,用逻辑联结词“ ”把命题 p和命题q联结起来 ,
就得到一个新命题,记作 p∨q, 读作“p或q”
判断下列命题的真假
4:命题p:2 是偶数
真
命题q:2 是奇数
假
命题p∨q:2 是偶数或是奇数
真
(3) p:空集是集合A的子集
? 解: p : 空集不是集合A的子集。 假
逻辑联结词:或、且、非
简 单 命 题:不含逻辑联结词的命题
为叙述简便,今后常用小写字母 p,q,r,s,…表示命题
复 合 命 题:由简单命题和逻辑联结词 构成的命题
(表示形式:p或q 、 p且q、非p (也叫p的否定) )
1.3.1 且(and)
思考: 下面三个命题间有什么关系? (1)12能被3整除; (2)12能被4整除;
对“或”的理解,可联想到集合中“并集”的概 念.A∪B={ x︱x∈A或x∈B}中的“或”,它是指 “x∈A”、“x∈B”中至少一个是成立的,即x∈A且
x ? B;也可以 x ? A且x∈B;也可以x∈A且x∈B.
符号“∨”与“∪”开口都是向上
例3:判断下列命题的真假: (1)2≤2; (2)集合 A是A∩B的子集或是A∪B的子集; (3)周长相等的两个三角形全等或面积相等的两个三 角形全等 .
角形相似
命题p∨q的真假判断方法:
一般地,我们规定:当p,q两个命题中 有 一 个命题是真命题时,p∨q是 真 命题;
当p,q两个命题都是假命题时,p∨q 是假 命题.
一句话概括: 同假为假,一真必真.
p
q p∨q
真真真
真假真 假真真
假假假
拓展延伸2
探究:逻辑联结词“或”的含义与集 合中学过的哪个概念的意义相同呢?
否定语为
等于 大于 是 都是 至多有一个 至少有一个 至多有n个
不等于 小于或者等于
不是 不都是 至少有两个 一个都没有 至少有n+1个
例4 写出下列命题的否定,并判断它们的真假:
(1)p:y=sinx 是周期函数;
? 解: p : y=sinx 不是周期函数。
假
(2)p:3 < 2
? 解: p : 3≥2.
1、掌握逻辑联结词 “且”、“或”、“非”的含义; 2、正确应用逻辑联结词 “且”、“或”、“非”解决问题; 3、掌握真值表并会用真值表解决问题。
பைடு நூலகம்察下列命题: (1)6是2的倍数或6是3的倍数;
(2)6是2的倍数且6是3的倍数;
(3) 2 不是有理数.
这些命题的构成各有什么特点?
非 逻辑联结词 p或q p且q 非p (p的否定) p∨q p∧q ∟ p
解: p∧q : 35 是15的倍数且是 7的倍数。
判定下列命题真假
1:命题p: 函数 y ? x3 是奇函数;
真
命题q: 函数 y ? x 3 在定义域内是增函数; 真
命题p∧q: 函数 y ? x3 是奇函数且在定义域
真
内是增函数。
2:命题p: 三角形三条中线相等;
假
问题命1题:q:三角形三条中线交于一点;
真
你能命归题纳p∧qp:∧三q角形形式三的条命中题线的相真等且假交吗于?一点。 假
3:命题p: 相似三角形的面积相等;
假
命题q: 相似三角形的周长相等;
假
命题p∧q:相似三角形的面积相等且周长相等。 假
命题p∧q的真假判断方法:
一般地,我们规定:当p,q都是真命题 时,p∧q是 真命题;当p,q 两个命题中 有一个命题是假命题时,p∧q是 假命题.