九年级数学上册 6.1《反比例函数》教案2 (新版)北师大版
九年级数学上册 第六章 反比例函数 1 反比例函数教案 (新版)北师大版

教学反思:
教师应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。
《反Байду номын сангаас例函数》
课题
反比例函数
课时安排
共(1)课时
①求出这个反比例函数的表达式;
②根据函数表达式完成上表。
教师巡视,个别辅导,学生完毕教师给予评估。
指出:用待定系数法确定反比例函数表达式,只需代入一个已知点,可确定未知系数k的值。(由解析式可得,k=xy)
环
节
三
三、拓展应用,学科互联
例1:电流I、电阻R、电压U之间满足关系式U=IR。在照明电路中,正常电压U=220V。
例3:若是关于x的反比例函数,确定m的值,并求其函数关系式。
四、感悟收获,师生小结
通过本节课的学习,你有哪些收获?你还存在什么疑问?
课中作业
习题6.1 1-4题
课后作业设计:
《全品学练考》作业手册习题6.1
(修改人:)
板书设计:
反比例函数
反比例函数的定义
形如
其他形式:
自变量
用待定系数法确定反比例函数的表达式:
(1)求I与R之间的函数关系式?
(2)变量I是R的反比例函数吗?
(3)利用写出的关系式完成下表:
R(Ώ)
20
60
I(A)
2.2
例2:在某一电路中,保持电压U(伏)不变,电流I(安)是电阻R(欧)的反比例函数,当电阻R=5欧时,电流I=2安。
(1)求I与R之间的函数关系式。
(2)当电流I=0.5安时,求电阻R的值。
九年级数学上册 6.1 反比例函数教案 (新版)北师大版

反比例函数【教学目标】知识与技能记住反比例函数的概念,会求比例系数,能够列出实际问题中的反比例函数关系. 过程与方法1.从现实情境和已有知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。
情感、态度与价值观感受反比例函数是刻画世界数量关系的一种有效模型,函数与生活息息相关。
【教学重难点】教学重点:理解和领会反比例函数的概念教学难点:领悟反比例函数的概念【导学过程】【创设情景,引入新课】问题提出:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗?(2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢?(3)变量I 是R 的函数吗?为什么?学生小组合作讨论。
【自主探究】京沪高铁(全程约为1318km ),全程所用的时间t(h)随速度v(km/h)的变化而变化(1)完成下表:随着速度在逐渐增加,所用的时间发生怎样的变化?.(2)你能用含有v 的代数式表示t 吗?(3)速度v 是时间t 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xk y 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
【课堂探究】做一做个矩形的面积为202cm ,相邻的两条边长分别为xcm 和ycm 。
那么变量y 是变量x 的函数吗?为什么?学生先独立思考,再进行全班交流。
2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么?3.y 是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。
【当堂训练】1.xk y = (k ≠0)叫__________函数.,x 的取值范围是__________; 2.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;3.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ______;4.如果函数222-+=k k kx y 是反比例函数,那么k =________,此函数的解析式是____ ____;5、若()2311m m y m x ++=+是反比例函数,求m 的值.6、已知y 与x 成反比例,当x=3时,y=7,求当y=2时,x 的值.7、已知函数k y x=(k ≠0)过点()1,3-,求函数解析式。
九年级数学上册第六章反比例函数2反比例函数的图象与性质教案新版北师大版

2反比例函数的图象与性质1.掌握画出反比例函数图象的基本步骤,会画反比例函数的图象.2.掌握反比例函数的主要性质.3.能利用反比例函数的图象及性质解决一些实际问题.重点画反比例函数的图象,理解反比例函数的性质.难点理解反比例函数的性质,并能灵活应用.一、复习导入1.什么是反比例函数?2.画出一次函数y=4x的图象,图象是什么形状?画一次函数图象的步骤是什么?学生自主思考后给出答案,教师点评.二、探究新知1.反比例函数的图象4教师:反比例函数y=的图象会是什么形状呢?我们可以用什么方法画这个反比例函x数的图象?学生独立画图象,指名板演.教师点评,引导学生归纳画反比例函数图象的基本步骤.教师:你以为画反比例函数图象时应注意哪些问题?引导学生总结:(1)反比例函数的图象是双曲线;(2)画反比例函数的图象要经过列表、描点、连线这三个步骤;(3)双曲线的两端是无限延伸的,画的时候要“出头”;(4)画双曲线时,取的点越密集,描出的图象就越准确,但计算量会越大,故一般在原点的两侧各取3~5个点即可;(5)连线时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接.注意:两个分支不连接.4教师:观察上面的函数图象,如果点P(x,y)在函数y=的图象上,那么与点P关于x004原点成中心对称的P′的坐标应是什么?这个点在函数y=的图象上吗?x学生思考回答后,教师进一步讲解:反比例函数的图象既是一个轴对称图形,又是一个中心对称图形.对称轴有两条,分别是直线y=x与直线y=-x;对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.2.反比例函数的性质课件出示:44画出反比例函数y=与y=-的的图象,探究下列问题:x x(1)这两个反比例函数的图象有什么相同点和不同点?(2)在每个象限内,随着x值的增大y的值是怎样变化的?引导学生思考,得出:表达式图象的位置y随x的变化情况4图象在第一、三象限内在每个象限内,y的值随着x值的增大而减小-4y=图象在第二、四象限内在每个象限内,y的值随着x值的增大而增大x三、举例分析k例1反比例函数y=的图象如图所示.x(1)判断k为正数还是负数.(2)如果A(-3,y)和B(-1,y)为这个函数图象上的两点,那么y与y的大小关系是1221怎样的?学生思考回答,教师讲评并进一步讲解根据反比例函数的增减性比较函数值大小的方法:利用反比例函数的增减性来比较函数值的大小时,如果给定的两点或几点能够确定在同一象限的分支上时,可以直接利用反比例函数的性质解答;如果给定的两点或几点不能够确定在同一象限的分支上时,则不能利用反比例函数的性质比较,需要根据函数的图象和点的位置用数形结合思想来比较或利用特殊值法通过求值来比较.42例2如图,两个反比例函数y=和y=在第一象限内的图象分别是G和G,设点Px x12在G上,PA⊥x轴于点A,交G于点B,则△POB的面积是多少?12学生分小组讨论后给出答案,教师点评,并提问:双曲线的几何特性是什么呢?引导学生总结双曲线的几何特性:k过双曲线y=上的任意一点向两坐标轴作垂线,与两坐标轴围成的矩形面积等于|k|,x||k连接该点与原点,还可得出两个直角三角形,这两个直角三角形的面积都等于.2四、练习巩固1.教材第153页“随堂练习”.2.教材第155页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.反比例函数图象的画法及步骤是什么?3.反比例函数图象与位置的关系是什么?4.反比例函数有哪些性质?六、课外作业1.教材第154页习题6.2第1,3题.2.教材第157页习题6.3第1,2题.本节课的内容主要有两点:一是画反比例函数的图象,二是由图象得出反比例函数的性质.在教学中,通过学生自由探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法.学生的学习往往从问题开始,因为这样的学习具有方向性与原动力,因此,我把教学设计的主体设计成又若干个有一定逻辑顺序的问题,即通过复习反比例函数的定义——画出反比例函数的图象——根据图象得出反比例函数的性质——利用函数性质解决问题.层层深入,逐步培养学生的问题意识及利用所学知识解决问题的能力.(2)在每个象限内,随着x值的增大y的值是怎样变化的?引导学生思考,得出:表达式图象的位置y随x的变化情况4图象在第一、三象限内在每个象限内,y的值随着x值的增大而减小-4y=图象在第二、四象限内在每个象限内,y的值随着x值的增大而增大x三、举例分析k例1反比例函数y=的图象如图所示.x(1)判断k为正数还是负数.(2)如果A(-3,y)和B(-1,y)为这个函数图象上的两点,那么y与y的大小关系是1221怎样的?学生思考回答,教师讲评并进一步讲解根据反比例函数的增减性比较函数值大小的方法:利用反比例函数的增减性来比较函数值的大小时,如果给定的两点或几点能够确定在同一象限的分支上时,可以直接利用反比例函数的性质解答;如果给定的两点或几点不能够确定在同一象限的分支上时,则不能利用反比例函数的性质比较,需要根据函数的图象和点的位置用数形结合思想来比较或利用特殊值法通过求值来比较.42例2如图,两个反比例函数y=和y=在第一象限内的图象分别是G和G,设点Px x12在G上,PA⊥x轴于点A,交G于点B,则△POB的面积是多少?12学生分小组讨论后给出答案,教师点评,并提问:双曲线的几何特性是什么呢?引导学生总结双曲线的几何特性:k过双曲线y=上的任意一点向两坐标轴作垂线,与两坐标轴围成的矩形面积等于|k|,x||k连接该点与原点,还可得出两个直角三角形,这两个直角三角形的面积都等于.2四、练习巩固1.教材第153页“随堂练习”.2.教材第155页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.反比例函数图象的画法及步骤是什么?3.反比例函数图象与位置的关系是什么?4.反比例函数有哪些性质?六、课外作业1.教材第154页习题6.2第1,3题.2.教材第157页习题6.3第1,2题.本节课的内容主要有两点:一是画反比例函数的图象,二是由图象得出反比例函数的性质.在教学中,通过学生自由探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法.学生的学习往往从问题开始,因为这样的学习具有方向性与原动力,因此,我把教学设计的主体设计成又若干个有一定逻辑顺序的问题,即通过复习反比例函数的定义——画出反比例函数的图象——根据图象得出反比例函数的性质——利用函数性质解决问题.层层深入,逐步培养学生的问题意识及利用所学知识解决问题的能力.(2)在每个象限内,随着x值的增大y的值是怎样变化的?引导学生思考,得出:表达式图象的位置y随x的变化情况4图象在第一、三象限内在每个象限内,y的值随着x值的增大而减小-4y=图象在第二、四象限内在每个象限内,y的值随着x值的增大而增大x三、举例分析k例1反比例函数y=的图象如图所示.x(1)判断k为正数还是负数.(2)如果A(-3,y)和B(-1,y)为这个函数图象上的两点,那么y与y的大小关系是1221怎样的?学生思考回答,教师讲评并进一步讲解根据反比例函数的增减性比较函数值大小的方法:利用反比例函数的增减性来比较函数值的大小时,如果给定的两点或几点能够确定在同一象限的分支上时,可以直接利用反比例函数的性质解答;如果给定的两点或几点不能够确定在同一象限的分支上时,则不能利用反比例函数的性质比较,需要根据函数的图象和点的位置用数形结合思想来比较或利用特殊值法通过求值来比较.42例2如图,两个反比例函数y=和y=在第一象限内的图象分别是G和G,设点Px x12在G上,PA⊥x轴于点A,交G于点B,则△POB的面积是多少?12学生分小组讨论后给出答案,教师点评,并提问:双曲线的几何特性是什么呢?引导学生总结双曲线的几何特性:k过双曲线y=上的任意一点向两坐标轴作垂线,与两坐标轴围成的矩形面积等于|k|,x||k连接该点与原点,还可得出两个直角三角形,这两个直角三角形的面积都等于.2四、练习巩固1.教材第153页“随堂练习”.2.教材第155页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.反比例函数图象的画法及步骤是什么?3.反比例函数图象与位置的关系是什么?4.反比例函数有哪些性质?六、课外作业1.教材第154页习题6.2第1,3题.2.教材第157页习题6.3第1,2题.本节课的内容主要有两点:一是画反比例函数的图象,二是由图象得出反比例函数的性质.在教学中,通过学生自由探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法.学生的学习往往从问题开始,因为这样的学习具有方向性与原动力,因此,我把教学设计的主体设计成又若干个有一定逻辑顺序的问题,即通过复习反比例函数的定义——画出反比例函数的图象——根据图象得出反比例函数的性质——利用函数性质解决问题.层层深入,逐步培养学生的问题意识及利用所学知识解决问题的能力.。
九年级数学上册(反比例函数)教案 北师大版 教案

《反比例函数》教案一、本章知识网络图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧反比例函数与实际问题三角形矩形问题反比例函数与面积有关对称性增减性位置形状图象和性质定义及表示形式二、知识点及考点: (一)反比例函数的概念: 知识要点:1、一般地,形如 y = x k( k 是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式:(A )y = x k(k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx-1(k ≠0)例题讲解:有关反比例函数的解析式(1)下列函数,① 1)2(=+y x ②.11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x =;其中是y 关于x 的反比例函数的有:_________________。
(2)函数22)2(--=a x a y 是反比例函数,则a 的值是( )A .-1B .-2C .2D .2或-2(3)若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.(4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( )(2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( )(5)反比例函数(0ky k x =≠)的图象经过(—2,5, n ),求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.(7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.(二)反比例函数的图象和性质: 知识要点:1、形状:图象是双曲线。
九年级上册数学《 反比例函数的图象与性质(2)》教案-北师版

反比例函数的图象和性质(2)教学设计【学习目标】1、使学生进一步理解和掌握反比例函数及其图象与性质。
2、知道反比例函数中k的几何意义,并能运用它解决与面积有关的问题。
3、在熟悉反比例函数的图象和性质的基础上,能灵活运用函数图象和性质解决一些较综合的问题。
4、培养学生探究和解决数学问题的能力。
【学习重难点】理解并掌握反比例函数的图象和性质,探究k的几何意义,并能利用它们解决一些综合问题(重点);学会从图象上分析、解决问题(难点)。
【教学方法】讲练结合,小组内交流互助。
【教学思路】运用电教手段,通过问题引入,ppt展示回顾,引入本节学习目标,通过学生的自主学习和视频观看,让学生轻松学习和了解本节重点知识,极大地提高学生学习的积极性,再通过学生的小组交流展示、讨论,使学生在不断的参与中轻松掌握本节所学内容。
【教具准备】投影仪、课件、电子白板。
【教学课时】 1课时【教学过程】一、复习回顾,引入新课1、反比例函数的图象是什么?2.反比例函数有哪些性质?2、电子白板动态展示反比例函数的性质。
二、探究新知1、学生读本节学习目标。
2、通过观察已画图象探讨得出反比例函数的增减性;数形结合得出反比例函数参数k 的几何意义。
观察反比例函数x y x y x y 6,4,2===的图象,你能发现它们的共同特征吗?探索:(1)函数图象分别位于哪几个象限内?(2)在每一个象限内,随着x 值的增大,y 的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与x 轴相交吗?可能与y 轴相交吗?为什么?学生观察,同桌交流,大胆发言,发表见解。
考察当k =-2,-4,-6时,反比例函数x ky =的图象,它们有哪些共同特征?学生通过相互交流、补充和修正。
性质:反比例函数x ky =的图象,当k>0时,在每个象限内,y 的值随x值的增大而减小;当k<0时,在每一象限内,y 的值随x 值的增大而增大。
3、在一个反比例函数图象上任取两点P 、Q ,过点P 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为1S ;过点Q 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为2S ,1S 和2S 有什么关系?为什么?学生分四人小组进行操作。
北师大版数学九年级上册《反比例函数》教案

北师大版数学九年级上册《反比例函数》教案一、教学目标1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解;3.能够应用反比例函数解决实际问题;4.发展学生的数学思维能力和解决问题的能力。
二、教学重点1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解。
三、教学难点1.能够应用反比例函数解决实际问题;2.发展学生的数学思维能力和解决问题的能力。
四、教学内容及教学方法教学内容1.反比例函数的定义及其特点;2.反比例函数的表格、图像、实例;3.反比例函数的应用。
教学方法1.归纳法和演绎法相结合;2.以实例为基础进行教学;3.组织学生进行小组讨论;4.利用多种教学手段,如讲解、展示、讨论等。
五、教学步骤第一步:引入介绍本课的主题:反比例函数,通过捕捉学生的注意力引入本课。
第二步:概念的讲解1.反比例函数的定义;2.反比例函数的图像及其特点;3.反比例函数的一般式及其性质。
第三步:小组讨论案例提供 5~10 个实际问题,组织学生分组讨论如何用反比例函数来解决这些问题。
第四步:作业辅导老师根据本课教学内容布置作业,并对学生作业进行辅导。
六、教学评价1.学生通过小组讨论和作业完成任务,能够较好的理解反比例函数的定义、特点和应用;2.学生在课堂上和小组中能积极表达,互相交流,并进行了有效合作;3.学生通过课堂练习和作业完成,能够掌握所学知识,较好的掌握了课堂所学内容。
七、教学反思通过本课的教学,学生在课堂上和小组中都能积极参与讨论,并且能够掌握反比例函数的基本概念和应用,达到了本课的预期教学目标。
同时也发现了一些问题:部分学生对于难度较大的问题理解困难,需要老师进一步解释;有些学生的知识储备较少,需要老师根据学生的情况进行差异化教学。
在以后的教学中,需要更注重学生的个性化需求,实现更有效的教学效果。
九年级数学上册6.1反比例函数教案2北师大版

第六章反比例函数6.1 反比例函数(1)从现实情境和学生已有的知识经验出发,讨论两个变量之间的相互关系,加深对函数概念的理解。
(2)经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。
(3)体会数学从实践中来又到实际中去的研究、应用过程。
培养学生的观察能力,及数学地发现问题,解决问题的能力。
三、重点、难点、关键(1)重点:理解和领会反比例函数的概念;(2)难点:领悟反比例函数的概念;(3)关键:从现实情境和所学的知识入手,探索两个变量之间的相依关系.四、教学方法:小组合作、探究式五、教学过程(一)创设情境,引入新课1、把一张100元换成50元的人民币,可换几张?换成10元的人民币可换几张?依次换成5元,2元,1元的人民币,各可换几张?换得的张数y 与面值x之间有怎样的关系呢?请同学们填表:换成的元数x(元)502010521换成的张数y(张)提问:学生你会用含有x的代数式表示y吗?并提出问题:当换成的元数x变化时,换成的张数y会怎样变化呢?变量y是x的函数吗?为什么?这就是我们今天要学习的反比例函数。
我们再看课本的例子:(二)互动探究,学习新课我们知道,电流I 、电阻R 、电压U 之间满足关系式U =IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗?;(2)利用你写出的关系式完成下表:R /Ω 20406080100I /A学生填表完成,提出当R 越来越大时,I 是怎样变化的?当R 越来越小呢?(3)变量I 是R 的函数吗?为什么?我们通过控制电阻的变化来实现舞台灯光的效果.在电压一定时,当R 变大时,电流I 变小,灯光就变暗,相反,当R 变小时,电流I 变大,灯光变亮。
引导学生看课本例子,京沪高速铁路全长约为1318km ,列车沿京沪高速铁路从上海驶往北京,列车行完成全程所需的时间t (h)与行驶的平均速度v (km/h )之间有怎样的关系?变量t 是v 的函数吗?为什么?(三)学生分组交流讨论提示学生:数学来源于生活,请同学在生活中找出类似的例子。
九年级数学上册6.2.1反比例函数的图象和性质教案(新版)北师大版

九年级数学上册6.2.1反比例函数的图象和性质教案(新版)北师大版课题:6.2反比例函数的图像与性质教学目标:1.经历探索反比例函数的性质的过程,体会函数的三种表示方法的相互转换,对函数进行认识上的整合.2.会作反比例函数的图象,进一步掌握画函数图象的主要步骤.3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质.教学重点与难点:重点:画反比例函数图象并认识图象的特点.难点:体会函数的三种表示方法的相互转换.课前准备:多媒体课件.教学过程:一、复习回顾,导入新课活动内容:(多媒体出示)创设问题情景.问题:1.什么叫做反比例函数?2.反比例函数的定义中需要注意什么?(此时老师板书反比例函数的表达式.)3.函数有几种表达形式?4.大家还记得一次函数图象是什么?那反比例函数的图象又会是什么样?处理方式:1.问题1,2由学生口答完成后,教师板书反比例函数的表达式.2.学生口答完函数的表达形式有列表法、图像法、关系式法之后,教师追问:如何用表格法和图像法表示反比例函数?接着教师引导学生根据反比例函数关系式可以列表格,再根据表格描点可以得到反比例函数的图像,体会函数三种表示方法可以相互转化.3. 最后老师继续追问:一次函数图象是什么?那反比例函数的图象又会是什么样?从而引出本节课课题,导入新课.设计意图:通过问题串引导学生回归复习反比例的定义,通过追问让学生回忆根据关系式可以列表格,根据表格描点可以得到反比例函数的图像,既复习了函数图像的定义,又让学生体会三种表示方法可以相互转化.二、探究学习,感悟新知活动内容1:例1.画出xy 4 的图象.处理方式:1.让学生独立思考、尝试,然后小组之间交流.学生充分交流后教师利用投影或者课件展示以下错例.2.教师逐步引导学生思考(1)他们做的对吗?为什么?同学会发现图一选取的自变量的值太少,导致图象不具代表性;图二,取自变量的值时,取值以偏带全导致只画出一支曲线.(2)教师追问怎样取值才全面?图三画成有明确端点,图像应是延伸的,连线时习惯用线段,导致出现“硬转弯”的折线图.(3)教师继续发问,为什么图像应是延伸的?适时点拨:我们根据函数图象的定义x 可取无数个值,相应函数值y 可得无数个值,所以图象不要画成如图三.(4)你认为作反比例函数图象时应注意哪些问题?设计意图:先让学生按自己的理解尝试画反比例函数xy 4=的图象,在作图过程中学生会出现各种各样的问题,通过学生的讨论、交流,和教师的点拨让学生理解错误的原因,通过问题串的形式,逐步引导学生思考探究画图象的步骤,并且对于其中出现的错误及时纠正,然后通过对比师生共同总结作反比例函数图象注意的问题.同时在这一过程中让学生积累数学活动经验.活动内容2:看老师如何画出xy 4=图象的(几何画板演示步骤)处理方式:1.教师利用几何画板本演示画图的步骤及过程.2.教师强调作图时应注意以下问题(1)列表时,选取的自变量的值,既要易于计算,又要便于描点,尽量多取一些数值(取互为相反数的一对一对的数),多描一些点,这样既可以方便连线,又可以使图象精确.(2)连线时必须用光滑的曲线连接各点,不能用折线连接.(3)图像是延伸的,注意不要画成有明确端点.(4)曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.(5)描点时一定要养成按自变量从小到大的顺序依次画线, 从中体会函数的增减性. 设计意图:教师利用几何画板本演示画图的步骤,体现步骤的严密性,规范性.三、由此及彼,应用新知活动内容1:现在我们已经知道当K 取正数时,我们画出了反比例函数的图像,当K 取负数时它的图像又是什么形状呢?请同学们继续下面的练习. 练习:大家用同样的方法作反比例函数xy 4-= 的图象. 处理方式:然后让学生试着自己作图.教师根据学生的作图情况,期间需要做出必要引导,多媒体出示正确的作图过程,让学生参考,让学生修改自己的解题过程.设计意图:让学生进一步熟悉画函数图像的主要步骤,并在巩固训练中积累素材,通过观察发现K 决定了图象所在的象限等性质做准备.活动内容2:议一议:(1)观察 x y 4=和x y 4-= 的图象,它们有什么相同点和不同点?(2)反比例函数图像是中心对称图形吗?如果是,请找出对称中心,反比例函数是轴对称图形吗?如果是请指出它的对称轴.处理方式:(1)让学生先独立思考后再与同桌交流答案,最后师生共同小结反比例函数的性质.(教师板书)反比例函数y = x k 有下列性质:反比例函数的图象y = xk 是由两支曲线组成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数
教学过程
Ⅰ.创设问题情境,引入新课
Ⅱ.新课讲解
[师]引我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?
1.复习函数的定义
在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.
[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为(板书):y=kx+b其中k,b为常数且k≠0,正比例函数的表达式为(板书):y=kx,其中k为不为零的常数。
例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n,这是一个正比例函数.
等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.
我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.
2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.
请看下面的问题.课本(P-143)
请大家交流后回答.
[生](1)能用含有R的代数式表示I.
由IR=220,得I=.
(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.
从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.
(3)变量I是R的函数.
由IR=220得I=.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.
下面大家再思考一个问题.(课本P-143)
[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.
[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.
[师]从上面的两个例题得出关系式: I=和t=.
它们是函数吗?它们是正比例函数吗?是一次函数吗?
[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.
[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b 为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?
[生]可以.由I=与t=可知关系式为y= (k为常数且k≠0).
一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.
从y=中可知x作为分母,所以x不能为零.
3.做一做(课本P-144)
[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式,在y=kx 中.要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要—个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值,然后再根据求出的表达式分别计算.x或y的值.
Ⅲ.课堂练习
(P131)
Ⅳ.课时小结
本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数.k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变最之间的关系是否是函数,是什么函数.
Ⅴ.课后作业
习题5.1。