1 不等关系 练习1
不等关系

1.不等关系我们学过等式,知道利用等式可以解决许多问题,同时,我们也知道现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题,本章我们就来了解不等式有关的内容。
既然不等式关系在实际生活中并不少见,大家肯定能举出不少例子。
通过测量一棵树围(树干的周长)可以计算出它的树龄。
通常规定以树干离地面1.5米的地方作为测量部位,某树栽种时的树围为5㎝,以后树围每年增加约为3㎝,这棵树至少生长多少年其树围才能超过2.4米?(只列关系式)这些关系式都是用不等号连接的式子,由此可知:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.试举几个用不等式表示的例子。
1.用适当的符号表示下列关系:(1)a是非负数;(2)直角三角形斜边c比它的两直角边a,b都长;(3)x与17的和比它的5倍小。
2.用不等式表示:(1) x 与5的差不小于x 的2倍: ;(2)小明的身高h 超过了160cm : .3.用不等号连接下列各组数: (1)π 3.14 ; (2)(x -1)2 0 ; (3)。
2.不等式的基本性质还记得等式的基本性质吗?等式的基本性质1:用字母可以表示为:_________________________________________, 那么不等式的基本性质1是什么?先猜一猜。
如果在不等式的两边都加上或都减去同一个整式,结果会怎样?请举几例试一试,并与同伴交流。
不等式的基本性质1与等式的基本性质1类似,不等式的基本性质1:______________________________________________________ 用字母可以表示为:_________________________________________等式的基本性质2: 用字母可以表示为:_____________________________________ 对应的大家能不能归纳出不等式的基本性质2是什么呢?13-14-例如:商场A 种服装的标价高于B 种服装的标价,如果都打八折出售,那么还是A 种服装价格高。
不等式-不等关系

不等式—不等关系,一元二次不等式一、目标要求:1、掌握不等式关系、不等式及一元二次不等式的概念;2、理解不等式的性质及不等式的分类;3、掌握实数比较大小的方法;4、能运用不等式的性质证明简单的不等式;5、理解一元二次不等式、二次函数、一元二次方程的关系;6、会解一元二次不等式、含参数的不等式、分式不等式、简单的高次不等式;二、例题讲解:例题1、已知,a b的大小;例题2、在ABC 中,,,a b c 分别是角,,A B C 的对边,S是其面积,求证:222a b c S ++≥;例题3、设函数()122,1,1log ,1,x x f x x x -⎧≤=⎨-〉⎩,求满足()2f x ≤的x 的取值范围;例题4、解关于x 的不等式: (1)()2110;ax a x +--〉 (2)220;x kx k +-≤例题5、解关于x 的不等式: ()22210,1;x x x a a a a a +-+〈+〉≠且例题6、解不等式()()22120;x x x +--〉例题7、解不等式2225560;11x x x x +-〈++例题8、已知不等式22412ax x a x ++〉-对一切实数x 恒成立,求实数a 的取值范围;三、巩固练习:1、解下列不等式: (1)2220;3x x -+-〉 (2)2414;x x -≥-2、已知某种商品的定价上涨x 成,其销售量便相应的减少2x 成,按规定,税金是从销售额中按一定的比例缴纳,如果这种商品的定价无论如何变化,从销售额中扣除税金后的金额总比涨价前的销售额少,是列出此时税率p 满足的不等关系。
3、某蔬菜收购点租用车辆,将100t 新鲜辣椒运往某市销售,可租用的大卡车和农用车分别为10辆和20辆,若每辆大卡车载重8t ,运费960元,每辆农用车载重2.5t ,运费360元,运输成本之和不能超过10000元,据此安排两种车型,应当满足那些不等关系?请列出来。
4、解不等式:22;x x -≥5、解不等式:(1)()()1130;2x x x ⎛⎫--+〈 ⎪⎝⎭(2)()()()231120x x x x -++≥。
高二数学-不等式与不等关系(

二、题型探究
考点二 比较大小
【比较大小的常用方法】
(1)作差法,步骤:作差⇒变形(因式分解)⇒判断差与 0 的大小⇒得出结论.
(2)作商法,步骤:作商⇒变形(因式分解)⇒判断商与 1 的大小⇒得出结论.(同号)
(3)构造函数法:构造函数,利用函数单调性比较大小.
(4)赋值法和排除法:可以多次取特殊值,根据特殊值比较大小,从而得出 结论. (5)中间量法:一般选取 0,1 或 -1 作为中间值.
三、随堂练习
1. 思考辨析,判断正误 (1)两个实数 a,b 之间,有且只有 a>b,a=b,a<b 三种关系中的一种. √
(2)一个不等式的两边同时加上或乘同一个数,不等号方向不变. × (3)一个非零实数越大,则其倒数就越小. ×
(4)a>b⇔ac2>bc2. ×
(5)若 a>b 且 ab<0,则1<1. ab
二、题型探究
考点二 比较大小
例 4(1)已知实数 a=2ln2,b=2+2ln2,c=(ln2)2,则 a,b,c
的大小关系是( B )
A.c<b<a B.c<a<b
C .b <a <c
D.a<c<b
∵a=2ln2∈(1,2),b=2+2ln2>2,c=(ln2)2∈(0,1)∴b>a>c,选 B.
一、知识回顾
[ 常用结论]
1.倒数性质的几个必备结论 (1)a>b,ab>0⇒1a<1b. (3)a>b>0,d>c>0⇒ac>bd .
(2)a<0<b⇒1a<1b. (4)0<a<x<b 或 a<x<b<0⇒1b<1x<1a.
2.两个重要不等式 若 a>b>0,m>0,则 (1)ba<ba+ +mm;ba>ba- -mm(b-m>0). (2)ab>ab+ +mm;ab<ab- -mm(b-m>0).
不等关系练习含答案

不等关系一、选择题1.(2014·四川理,4)若a>b>0,c<d<0,则一定有( )A.ac>bdB.ac<bdC.ad>bcD.ad<bc[答案] D[解析] 本题考查不等式的性质,ac-bd=ad-bccd,cd>0,而ad-bc的符号不能确定,所以选项A、B不一定成立.ad-bc=ac-bddc,dc>0,由不等式的性质可知ac<bd,所以选项D成立.2.如果a∈R,且a2+a<0,那么a,a2,-a,-a2的大小关系为( ) A.a2>a>-a2>-a B.-a>a2>-a2>aC.-a>a2>a>-a2D.a2>-a>a>-a2[答案] B[解析] 因为a2+a<0,所以a2<-a,a<-a2,又由于a≠0,∴-a2<a2,即a<-a2<a2<-A.故选B.3.设a,b∈R,若a-|b|>0,则下列不等式中正确的是( )A.b-a>0 B.a3+b3<0C.a2-b2<0 D.b+a>0[答案] D[解析] 利用赋值法:令a=1,b=0排除A,B,C,选D.4.若a>b>c,a+2b+3c=0,则( )A.ab>ac B.ac>bcC.ab>bc D.a|b|>c|b|[答案] A[解析] ∵a>b>c且a+2b+3c=0,∴a>0,c<0.又∵b>c且a>0,∴ab>aC.选A.5.若-1<α<β<1,则下面各式中恒成立的是( )A.-2<α-β<0 B.-2<α-β<-1C.-1<α-β<0 D.-1<α-β<1[答案] A[解析] 由题意得-1<α<1,-1<-β<1,α-β<0,故-2<α-β<2且α-β<0,故-2<α-β<0,因此选A.6.如果a>0,且a≠1,M=log a(a3+1),N=log a(a2+1),那么( ) A.M>N B.M<NC.M=N D.M、N的大小无法确定[答案] A[解析] 当a>1时a3+1>a2+1,y=log a x单增,∴loga(a3+1)>log a(a2+1).当0<a<1时a3+1<a2+1,y=log a x单减.∴log a(a3+1)>log a(a2+1),或对a取值检验.选A.二、填空题7.如果a>b,那么下列不等式:①a3>b3;②1a<1b;③3a>3b;④lg a>lg B.其中恒成立的是________.[答案] ①③[解析] ①a3-b3=(a-b)(a2+b2+ab)=(a-b)[(a+b2)2+34b2]>0;③∵y=3x是增函数,a>b,∴3a>3b当a>0,b<0时,②④不成立.8.设m=2a2+2a+1,n=(a+1)2,则m、n的大小关系是________.[答案] m≥n[解析] m-n=2a2+2a+1-(a+1)2=a2≥0.三、解答题9.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:机架数所满足的所有不等关系的不等式.[解析] 设需安排x 艘轮船和y 架飞机,则⎩⎨⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎨⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.10.(1)已知a >b ,e >f ,c >0.求证:f -ac <e -bC . (2)若bc -ad ≥0,bd >0.求证:a +b b ≤c +dd. [证明] (1)∵a >b ,c >0,∴ac >bc ,∴-ac <-bc ,∵f <e ,∴f -ac <e -bC . (2)∵bc -ad ≥0,∴ad ≤bc , 又∵bd >0,∴a b ≤cd, ∴a b +1≤c d+1, ∴a +b b ≤c +dd.。
三角形三边关系不等式的证明题

三角形边角不等式关系练习题一、边的不等关系证明1、如图1,在△ABC 的边AB 上截取AD=AC ,连结CD , (1)说明2AD >CD 的理由(填空);解:∵AD+AC >CD ( ) 又∵AD=AC ( ) ∴AD+AD>CD( ) ∴2AD >CD(2)说明BD <BC 的理由。
解:∵_______<BC ( )又∵AD=AC ( )∴AB –AD <BC ( ) 而AB –AD=BD∴BD <BC ( )2、如图2,△ABC 中,AB=BC ,D 是AB 延长线上的点,说明AD >DC 的理由。
2、如图3,已知P 是△ABC 内任意一点,则有AB+AC >PB+PC.3. 如图所示,在△ABC 中,D 是BA 上一点,则AB+2CD>AC+BC 成立吗?•说明你的理由.4.如图,已知△ABC 中,AB =AC ,D 在AC 的延长线上.求证:BD -BC <AD -AB .AB CDAB C D图3 图2图15.如图,△ABC 中,D 是AB 上一点.求证:(1)AB +BC +CA >2CD ;(2)AB +2CD >AC +BC .6.在右图中,已知AD 是△ABC 的BC 边上的高,AE 是BC 边上的中线,求证:AB+AE+12BC>AD+AC 证明:∵AD ⊥BC( )∴AB >AD( ) 在△AEC 中,AE+EC>AC( )又∵AE 为中线( )∴EC=12BC( )即AE+12BC>AC( ) ∴AB+AE+12BC >AD+AC7.已知如图:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE. 参考答案2.解:延长BP 交AC 于E ,在△PEC 中,PE+EC >PC∴BP+EP+EC >BP+PC 即BE+EC >BP+PC.在△ABE 中,AE+AB >BE ∴AE+EC+AB >BE+EC , 即AC+AB >BE+EC ,∴AB+AC >PB+PC4.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD ,∴ BD -BC <AD -AB .5.(1)AC +AD >CD ,BC +BD >CD ,两式相加:AB +BC +CA >2CD .ACEP B(2)AD+CD>AC,BD+CD>BC,两式相加:AB+2CD>AC+BC.7.(法一)将DE两边延长分别交AB、AC 于M、N,在△AMN中,AM+AN >MD+DE+NE;(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC。
不等关系与不等式(2)

0.1
用不等式表示为: (8 x 2.5 0.2)x 20 0.1
问题3.某钢铁厂要把长度为4000mm的钢管 截成500mm和600mm的两种规格。按照生 产的要求,600mm的钢管的数量不能超过 500mm钢管的3倍 请思考:(1)找出两种规格 的钢管的数量满足的不等关系. (2)用不等式(组)表示上述不等关系. 分析:假设截得500mm的钢管x根,截得 600mm的钢管y根。根据题意,应当有什么 样的不等关系呢? (1)截得两种钢管的总长度不能超过4000mm;
2
2
2. 比较 x 3 与 x2 x 1的大小.
解:x3-(x2-x+1)=x3-x2+x-1
=x2(x-1)+(x-1)
∵ x2+1>0,
=(x-1)(x2+1),
∴ 当x>1时,x3>x2-x+1; 当x=1时,x3=x2-x+1,
当x<1时,x3<x2-x+1.
思考:当p,q都是正数且p+q=1时,试 比较代数式(px+qy)2与px2+qy2的大小. 解:(px+qy)2-(px2+qy2)
(1)点A和点B重合; (2)点A在点B的右侧; (3)点A在点B的左侧. 在这三种位置关系中,有且仅有一种成立,由 此可得到结论: 对于任意两个实数a和b,在a=b,a>b,a<b 三种关系中有且仅有一种关系成立.
如果a-b是正数,则a>b;如果a>b, 则a-b为正数;
如果a-b是负数,则a<b;如果a<b, 则a-b为负数;
不等式概念及性质知识点详解与练习[1]
![不等式概念及性质知识点详解与练习[1]](https://img.taocdn.com/s3/m/1b4d1226aef8941ea66e052e.png)
(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改)的全部内容。
不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥"及“≤"等不等号把代数式连接起来,表示不等关系的式子。
a —b 〉0a>b, a —b=0a=b, a-b 〈0a<b 。
(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。
(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>"读作“大于",它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
不等式练习及答案汇总

一.选择题(共2小题)1.若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a2.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是.4.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).6.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.7.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B 种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.8.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?9.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.10.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?12.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?13.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案与试题解析一.选择题(共2小题)1.(2010春•邹城市校级期末)若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a【分析】根据不等式的基本性质分别判断,再选择.【解答】解:A、不等式的两边同时减去a,不等号的方向不变,则0<b﹣a,即b﹣a<0成立;B、不等式的两边同时乘以c,因为c的符号不确定,所以不等号的方向也不确定,故ac<bc不成立;C、不等式的两边同时除以b,因为b的符号不确定,所以不等号的方向也不确定,故不成立;D、不等式的两边同时乘以﹣1,不等号的方向改变变,则﹣a<﹣b,则﹣b<﹣a不成立.故选A.2.(2013春•蚌埠期中)若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0【分析】先解不等式≥4x+6,得出用a表示出来的x的取值范围,再根据解集是x ≤﹣4,列出方程﹣=﹣4,即可求出a的值.【解答】解:∵≥4x+6,∴x≤﹣,∵x≤﹣4,∴﹣=﹣4,解得:a=22.故选B.二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是m>4.【分析】解关于x的方程得x=,由方程的解为负数得到关于m的不等式,解不等式即可.【解答】解:解方程mx+13=4x+11得:x=,∵方程的解为负数,∴<0,即4﹣m<0,解得:m>4,故答案为:m>4.4.(2016春•谷城县期末)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(4)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)去括号得:3x﹣6﹣4+4x<1,3x+4x<1+6+4,7x<11,x<;(2)去分母得:6﹣2x+1≥6x+12,﹣2x﹣6x≥12﹣6﹣1,﹣8x≥5,x≤﹣;(3)∵解不等式①得:x≤1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x≤1;(4)∵解不等式①得:x≤4,解不等式②得:x>7,∴不等式组无解.6.(2016春•房山区期中)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.【分析】根据题意设安排住宿的房间为x间,并用含x的代数式表示学生人数,根据“每间住4人,则还余20人无宿舍住和;每间住8人,则有一间宿舍不空也不满”列不等式组解答.【解答】解:设安排住宿的房间为x间,则学生有(4x+20)人,根据题意,得解之得5.25≤x≤6.25又∵x只能取正整数,∴x=6∴当x=6,4x+20=44.(人)答:住宿生有44人,安排住宿的房间6间.7.(2012春•东城区校级期中)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.【分析】本题首先找出题中的不等关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.【解答】解:设安排生产A种产品x件,则安排生产B种产品(50﹣x)件.依题意得解得30≤x≤32∵x为正整数,∴x=30,31,32,∴有三种方案:(1)安排生产A种产品30件,B种产品20件;(2)安排生产A种产品31件,B种产品19件;(3)安排生产A种产品32件,B种产品18件.8.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【分析】(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:40×甲货车辆数+20×乙货车辆数≥200;10×甲货车辆数+20×乙货车辆数≥120;(3)分别计算出相应方案,比较即可.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.9.(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.10.(2015•淄博模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.11.(2012•绥化)在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?【分析】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【解答】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所.则,解得由①的a≤3,由②得a≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.12.(2014•绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.13.(2016•宿州二模)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号净水器的销售单价分别为x元、y元,根据3台A型号5台B型号的净水器收入18000元,4台A型号10台B型号的净水器收入31000元,列方程组求解;(2)设采购A种型号净水器a台,则采购B种型号净水器(30﹣a)台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列方程求出a的值为8,符合(2)的条件,可知能实现目标.【解答】解:(1)设A、B两种净水器的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30﹣a)台.依题意得:2000a+1700(30﹣a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500﹣2000)a+(2100﹣1700)(30﹣a)=12800,解得:a=8,故采购A种型号净水器8台,采购B种型号净水器22台,公司能实现利润12800元的目标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 不等关系课时练
1.在数学表达式①-3<0;②4x+5>0; ③x=3; ④x2+x; ⑤ x-4;⑥ x+2>x+1是不等式的有( )
A.2个
B.3个
C.4个
D.5个
2. x的2倍减7的查不大于-1,可列关系式为( )
A.2x-7-1
B. 2x-7<-1
C. 2x-7=-1
D. 2x-7-4
3.下列列出的不等关系式中, 正确的是( )
A.a是负数可表示为a>0
B. x不大于3可表示为x<3
C. m与4的差是负数,可表示为m-4<0
D. x与2的和非负数可表示为x+2>0
4. 代数式3x+4的值不小于0,则可列不等式为( )
A. 3x+4<0
B. 3x+4>0
C. 3x+40
D. 3x+4<10
5.下列由题意列出的不等关系中, 错误的是( )
A.a不是是负数可表示为a>0
B. x不大于3可表示为x<3
C. m与4的差是非负数,可表示为x-40
D.代数式 x2+3必大于3x-7,可表示为x2+3>3x-7
6.用不等式表示“a的5倍与b的和不大于8”为 _______.
7.a是个非负数可表示为_______.
8.用适当的符号表示“小明的身体不比小刚轻”为_______.
9. 用适当的符号表示下列关系:
(1)x的与x的2倍的和是非正数;
(2)一枚炮弹的杀伤半径不小于300米;
(3)三件上衣与四条长裤的总价钱不高于268元;
(4)明天下雨的可能性不小于70%.
10.某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校骆红同学期中数学靠了85分,她希望自己学期总成绩不低于90分,她在期末考试中数学至少应得多少分?(只列关系式)
11.某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不大或答错一题扣2分,某同学
要想得分为60分以上,他至少应答对多少道题?(只列关系式)
答案:
1.C
2.A
3.C
4.C
5.A
6.5a+b8
7. a0
8.设小明的体重为a千克, 小刚的体重为b千克,则应有ab
9.(1) x+2x0;(2)设炮弹的杀伤半径为r,则应有r300;(3)设每件上衣为a元, 每条长裤是b元,
应有3a+4b268;(4)用P表示明天下雨的可能性, 则有P70%.
10. 设她在期末至少应考x分, 则有40*85%+60*x90%.
11. 设该同学至少应答对x道题,依题意有6x-(16-x)*260。