自动控制理论实验指导书
自动控制理论实验指导书

实验1 典型环节的模拟研究一、实验目的1.了解并掌握TD -ACC+设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
3.了解参数变化对典型环节动态特性的影响。
二、实验设备TD -ACC+型实验系统一套;数字示波器、万用表。
三、实验内容及步骤1.实验准备:将信号源单元的“ST ”插针与“S ”端插针用“短路块”短接。
将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为2V ,周期为10s 左右。
2.观测各典型环节对阶跃信号的实际响应曲线 (1) 比例( P )环节① 按模拟电路图1-1接好线路。
注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。
以后的实验中用到的运放也如此。
② 将模拟电路输入 (U i ) 端与信号源的输出端“OUT ”相连接;用示波器观测模拟电路的输入 (U i ) 端和输出 (U o ) 端,观测实际响应曲线U o (t ),记录实验波形及结果于表1-1中。
表1-1阶跃响应: U O (t )=K (t ≥0) 其中 K =R 1R 0⁄实验参数理论计算示波器观测值输入输出波形0R 1Ro 1i 0U R U R =i U o Uo iU U Ωk 200Ωk 1000.5Ωk 200 1R 0=200kΩ;R 1=100kΩ或200kΩ图1-1U i R 0R 1RR10K10K U o(2) 积分( I )环节①按图1-2接好线路。
② 将模拟电路输入 (U i ) 端与信号源的输出端“OUT ”相连接;用示波器观测模拟电路的输入 (U i ) 端和输出 (U o ) 端,观测实际响应曲线U o (t ),测量积分时间T ,记录实验波形及结果于表1-2中。
表1-2阶跃响应: o 01()U t t R C=(t ≥0) 注意:积分时间T 是指积分初始时间到输出值等于输入值时的时间。
自动控制原理实验指导书

⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。
2、通过实验熟悉各种典型环节的传递函数和动态特性。
⼆、实验设备及器材配置1、⾃动控制理论实验系统。
2、数字存储⽰波器。
3、数字万⽤表。
4、各种长度联接导线。
三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。
1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。
自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
自动控制原理实验

自控理论实验指导(一)第一部分 实验系统概述一. 实验系统硬件资源自控理论EL-AT-II 型实验系统主要由计算机、A/D&D/A 采集卡、自动控制理论实验箱组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,A/D&D/A 采集卡负责数据采集和计算机USB 口通信,实验箱主要构造被控模拟对象。
实验箱、面板实验面板主要由以下几部分构成,如图2:图2 实验箱面板布局(1) 模拟仿真模块:本实验系统有八组由放大器、电阻、电容组成的实验模块。
每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。
这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。
(2) 二极管、稳压管、电阻、电容区:该区域主要是为模拟非线性环节提供所需元件。
(3) A/D&D/A 卡模块:该区域是引出A/D&D/A 卡的输入输出端,一共引出两路输出端DA1、DA2、两路输入端AD1、AD2。
有一个按钮复位键,可对A/D&D/A 卡进行复位。
A/D&D/A 卡的输入和输出电压范围为-5V~+5V 。
做时域分析实验时,DA1输出阶跃信号,AD1为系统输出数据采集口(相当于示波器的Y 轴输入端),。
(4) 电源模块:电源模块有一个实验箱电源开关,有四个开关电源提供的DC 电源端子,分别是+12V 、-12V 、+5V 、GND ,这些端子给外扩模块提供电源。
1 图1 实验系统构成(5) 模拟开关模块:模拟开关是专门为积分环节的电容放电而设定的,实验时需将积分环节的电容并接在模拟开关上。
(6) 变阻箱、变容箱模块:该模块有2个变阻箱、1个变容箱。
只要按动变阻箱、变容箱数字旁边的“+”、“-”按钮便可调节电阻电容的值,而且电阻电容值可以直接读出。
二. 实验系统软件1. 软件启动接通实验箱电源,在Windows 桌面上或“开始-程序”中双击“Cybernation_A.exe ”快捷方式,便可启动软件如图3所示。
自动控制理论实验指导书

自动控制理论实验指导书第一章硬件资源EL-AT-II型实验系统主要由计算机、AD/DA采集卡、自动控制原理实验箱、打印机(可选)组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,打印机主要记录各种实验数据和结果,实验箱主要构造被控模拟对象。
显示器打印机计算机 AD/DA卡实验箱电路图1 实验系统构成实验箱面板如图2所示:图2 实验箱面板下面主要介绍实验箱的构成:一、系统电源EL-AT-II系统采用本公司生产的高性能开关电源作为系统的工作电源主要技术性能指标为:1.输入电压:AC 220V2.输出电压/电流:+12V/0.5A,-12V/0.5A,+5V/2A 3.输出功率:22W4.工作环境:-5℃~+40℃。
二、 AD/DA采集卡AD/DA采集卡如图3采用ADUC812芯片做为采集芯片,负责采样数据- 1 -自动控制理论实验指导书 .及与上位机的通信,其采样位数为12位,采样率为10KHz。
在卡上有一块32KBit的RAM62256,用来存储采集后的数据。
AD/DA采集卡有两路输出(DA1、DA2)和四路输入(AD1、AD2、AD3、AD4),其输入和输出电压均为-5V~+5V。
图3 AD/DA采集卡另外在AD/DA卡上有一个9针RS232串口插座用来连接AD/DA卡和计算机,20针的插座用来和控制对象进行通讯。
三、实验箱面板实验箱面板布局如图4所示。
AD/DA卡输入输出模块实验模块1 实验模块2 二极管区 EL-CAT-II 电阻、电容、二极管区实验模块3 变阻箱、变容箱模块实验模块5 实验模块6 实验模块7 图4 实验箱面板布局实验箱面板主要由以下几部分构成: 1.实验模块本实验系统有八组由放大器、电阻、电容组成的实验模块。
每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。
这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。
自动控制原理实验指导书

自动控制原理实验指导书内蒙古工业大学电力学院自动化系2012年10月目录实验一典型环节模拟及二阶系统的时域瞬态响应分析 (1)实验二频率特性的测试 (8)实验三控制系统的动态校正 (12)实验四非线性系统的相平面分析 (14)实验五状态反馈 (20)TKKL—1型控制理论电子模拟实验箱使用说明书 (23)实验一 典型环节模拟及二阶系统的时域瞬态响应分析一、实验目的1.通过搭建典型环节模拟电路,熟悉并掌握控制理论电子模拟实验箱的使用方法。
2.了解并掌握各典型环节的传递函数及其特性,掌握用运放搭建电子模拟线路实现典型环节的方法。
3.掌握二阶系统单位阶跃响应的特点,理解二阶系统参数变化对输出响应的影响。
二、实验仪器1.控制理论电子模拟实验箱一台;2.超低频扫描示波器一台;3.万用表一只。
三、实验原理1.典型环节的传递函数及其模拟电路图(1)比例环节图1-1 比例环节的方框图比例环节的方框图如图1-1所示,其传递函数为()()C s K R s (1-1)比例环节的模拟电路图如图1-2所示,其传递函数为21()()R C s R s R = (1-2) 比较式(1-1)和式(1-2),得:21R K R =图1-2 比例环节的模拟电路图当输入为单位阶跃信号,即()1()r t t =时,由式(1-1)得输出() (0)c t K t =≥,其输出波形如图1-3所示。
图1-3 比例环节的单位阶跃响应(2)积分环节图1-4 积分环节的方框图积分环节的方框图如图1-4所示,其传递函数为()1()C s R s Ts= (1-3)图1-5 积分环节的模拟电路图积分环节的模拟电路图如图1-5所示,其传递函数为()1()C s R s RCs= (1-4) 比较式(1-3)和式(1-4),得:T RC =当输入为单位阶跃信号,即()1()r t t =时,由式(1-3)得输出1()c t t T= 其输出波形如图1-6所示。
自动控制原理实验指导书(终稿)

自动控制原理实验指导书施金鸿编孙炳达审核广东技术师范学院自动化系前言本书是根据高等学校电气工程及其自动化、测控技术等专业“自动控制原理”教学大纲要求,并结合我院具体情况而编写的。
自动控制原理实验是自动控制原理课程的重要组成部分,是该门课程的辅助教材。
由于理论教材中各电路原理已阐述详尽,故在实验教材中主要侧重介绍实验方法,通过实验使学生能运用所学理论知识来分析研究实验中所出现的问题,得出相应的结论,从而培养学生具备分析问题和解决问题的能力。
通过实验这个重要的实践环节来验证所学理论,使学生掌握实验的基本技能和方法,培养学生严肃认真和实事求是的科学作风。
本书由广东技术师范学院自动化系施金鸿编孙炳达审核。
限于编者的水平和经验,疏漏及错误之处在所难免,欢迎读者批评指正。
编者2006年6月目录前言实验一控制系统典型环节的模拟实验 (3)实验二线性定常系统的瞬态响应和稳定性分析 (10)实验三自动控制系统的校正 (17)实验四控制系统的频率特性 (21)实验五典型非线性环节静特性的测试 (25)实验六非线性系统的描述函数分析法 (30)实验七采样控制系统的分析 (34)实验八采样控制系统的动态校正 (39)实验九控制系统极点的任意配置 (42)附录:TKKL-4型控制理论/计算机控制技术实验箱使用说明 (46)实验一控制系统典型环节的模拟实验一、实验目的1、掌握控制系统中各典型环节的电路模拟及其参数的测定方法。
2、测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。
二、实验原理1、对表1-1所示各典型环节的传递函数设计相应的模拟电路(参见表1-2)表1-1:典型环节的方块图及传递函数表1-2:典型环节的模拟电路图2、测试各典型环节在单位阶跃信号作用下的输出响应。
3、改变各典型环节的相关参数,观测对输出响应的影响。
三、实验设备1、TKKL-4型控制理论实验箱 1台2、双踪示波器 1台3、数字万用表 1块四、实验内容及步骤1、观测比例、积分、比例积分、比例微分和惯性环节的阶跃响应曲线。
自动控制原理实验指导书(学生版)

编著 李蔓华 陈昌虎 李晓高自动控制理论实验指导书目录实验装置简介·························································(3-4·)实验一控制系统典型环节的模拟·················(5-6)实验二一阶系统的时域响应及参数测定·····(6-7)实验三二阶系统的瞬态响应分析·················(8-9)实验四频率特性的测试·······························(9-13)实验五PID控制器的动态特性······················(13-15)实验六典型非线性环节·································(15-18)实验七控制系统的动态校正(设计性实验)··(19)备注:本实验指导书适用于自动化、电子、机设专业,各专业可以根据实验大纲选做实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理实验指导书目录目录 (I)第一章硬件资源 (1)第二章软件使用 (3)第三章实验系统部分 (5)实验一控制系统典型环节的模拟 (5)实验二二阶系统瞬态响应分析 (9)实验三控制系统的稳定性分析 (13)实验四系统频率特性测试 (15)实验五自动控制系统的动态校正 (19)实验六PID控制器的动态特性 (23)第一章硬件资源EL-AT-III型实验系统主要由计算机、AD/DA采集卡、自动控制原理实验箱、打印机(可选)组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,打印机主要记录各种实验数据和结果,实验箱主要构造被控模拟对象。
图1 实验系统构成实验箱面板如图2:图2 实验箱面板下面主要介绍实验箱的构成:一、系统电源EL-AT-III系统采用本公司生产的高性能开关电源作为系统的工作电源,其主要技术性能指标为:1.输入电压:AC 220V2.输出电压/电流:+12V/0.5A,-12V/0.5A,+5V/2A3.输出功率:22W4.工作环境:-5℃~+40℃。
二、AD/DA采集卡AD/DA采集卡如图3采用EZUSB2131芯片做为主控芯片,负责数据采集和USB通信,用EPM7128作为SPI总线转换,AD为TL1570I其采样位数为10位,采样率为1KHz。
DA为MAX5159转换位数为10位,转换速率为1K。
AD/DA采集卡有两路输出(DA1、DA2)和两路输入(AD1、AD2),其输入和输出电压均为-5V~+5V。
图3 AD/DA采集卡三、实验箱面板实验箱面板布局如图4实验箱面板主要由以下几部分构成:1.实验模块本实验系统有八组由放大器、电阻、电容组成的实验模块。
每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。
这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。
2.二极管,电阻、电容、二极管区这些区域主要提供实验所需的二极管、电阻和电容。
3.AD/DA卡输入输出模块该区域是引出AD/DA卡的输入输出端,一共引出两路输出端和两路输入端,分别是DA1、DA2,AD1、AD2。
有一个按钮复位,按下一次对AD/DA卡进行一次复位。
20针的插座用来和控制对象连接。
4.电源模块电源模块有一个实验箱电源开关,有四个开关电源提供的DC电源端子,分别是+12V、-12V、+5V、GND,这些端子给外扩模块提供电源。
5.变阻箱、变容箱模块变阻箱、变容箱是本实验系统的一个突出特点,只要按动数字旁边的“+”、“-”按钮便可调节电阻电容的值,而且电阻电容值可以直接读出。
第二章软件使用一、软件启动与使用说明1.软件启动在Windows桌面上或“开始-程序”中双击“快捷方式到Cybernation_A.exe”快捷方式,便可启动软件如图152.实验前计算机与实验箱的连接用实验箱自带的USB线将实验箱后面的USB口与计算机的USB口连接,启动“Cybernation_A”软件。
3.软件使用说明本套软件界面共分为三个组画面A.软件说明和实验指导书画面(如图15)B.数据采集显示画面(如图16)图15图16二、下面介绍软件具体操作和功能:一:工具栏按钮:1.点击〖或按F1〗可以选择实验项目作为当前实验项目,系统在指导书窗口显示相应的实验指导书,在实验进行过程中处于禁止状态。
2.点击〖或按F2〗切换回"指导书"窗口。
3.点击〖或按F3〗切换到"示波器"窗口。
4.点击〖或按F4〗切换到"频率特性"窗口。
5.点击〖或按F5〗开始/放弃当前实验项目,在没有选择任何实验项目的时候为禁止状态。
6.点击〖或按F6〗弹出"关于"对话框,显示程序信息、版本号和版权信息。
二:示波器操作:1.测量在"示波器"窗口单击鼠标右键,在弹出菜单中选择"测量"打开测量游标(重复前述步骤隐藏测量游标),拖动任一游标到感兴趣的位置,图表区下方会显示当前游标的位置和与同类的另一游标之间距离的绝对值。
如果想精确定位游标只需用鼠标左键单击相应的游标位置栏并在编辑框中输入合法值回车即可。
2.快照在"示波器"窗口单击鼠标右键,在弹出菜单中选择"快照"将当前图像复制到剪贴板,以便粘贴到画图或其他图像编辑软件中编辑和保存。
3.打印目前尚不支持。
4.线型在"示波器"窗口单击鼠标右键,在弹出菜单中可点击"直线"、"折线"或"点线"来选择数据点和数据点之间的连接方式,体会各种连接方式的差异。
5.配色用鼠标左键双击图表区除曲线之外的元素会弹出标准颜色对话框,用户可以更改相应元素的颜色(比如将网格颜色改成与背景相同颜色)。
6.缩放用鼠标左键单击图表区刻度区的边界刻度并在编辑框中输入和法值回车即可改变当前显示范围。
第三章 实验系统部分实验一 控制系统典型环节的模拟一、实验目的1.掌握控制模拟实验的基本原理和一般方法。
2.掌握控制系统时域性能指标的测量方法。
二、实验仪器1.EL-AT-III 型自动控制系统实验箱一台 2.计算机一台 三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2.时域性能指标的测量方法: 超调量%σ的测量:1) 启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2) 检查USB 线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3) 连接被测量典型环节的模拟电路。
电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
检查无误后接通电源。
4) 在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应]。
5) 鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。
6) 用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:%100%max ⨯-=∞∞Y Y Y σT P 与T S 的测量:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T S 。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1.比例环节的模拟电路及其传递函数如图1-1。
21()G S R R =-2.惯性环节的模拟电路及其传递函数如图1-2。
()1KG S TS =-+ 21K R R =,2T R C =3.积分环节的模拟电路及传递函数如图1-3。
TSS G 1)(-= T RC =4.微分环节的模拟电路及传递函数如图1-4。
2()G S RC S =-5.比例+微分环节的模拟电路及传递函数如图1-5(未标明的C=0.1μf )。
()(1)G S K TS =-+21K R R =,1T R C =6.比例+积分环节的模拟电路及传递函数如图1-6。
()(11)G S K TS =-+21K R R =,2T R C =五、实验步骤1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2.测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
比例环节3.连接被测量典型环节的模拟电路(图1-1)。
电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
检查无误后接通电源。
4.在实验项目的下拉列表中选择实验一[一、典型环节及其阶跃响应]。
5.鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6.观测计算机屏幕显示出的响应曲线及数据。
7.记录波形及数据(由实验报告确定)。
惯性环节8.连接被测量典型环节的模拟电路(图1-2)。
电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
检查无误后接通电源。
9.实验步骤同4~7 积分环节10.连接被测量典型环节的模拟电路(图1-3)。
电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入,将积分电容两端连在模拟开关上。
检查无误后接通电源。
11.实验步骤同4~7 微分环节12.连接被测量典型环节的模拟电路(图1-4)。
电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
检查无误后接通电源。
13.实验步骤同4~7 比例+积分环节14.连接被测量典型环节的模拟电路(图1-6)。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将积分电容连在模拟开关上。
检查无误后接通电源。
15.实验步骤同4~716.测量系统的阶跃响应曲线,并记入上表。
六、实验报告1.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。
2.将实验中测得的曲线、数据及理论计算值,整理列表。
七、预习要求1.阅读实验原理部分,掌握时域性能指标的测量方法。
2.分析典型一阶系统的模拟电路和基本原理。
实验二 二阶系统瞬态响应分析一、实验目的1.研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
定量分析ξ和n ω与最大超调量%σ和调节时间s t 之间的关系。
2.进一步学习实验系统的使用方法。
3.学会根据系统阶跃响应曲线确定传递函数。
二、实验仪器1.EL-AT-III 型自动控制系统实验箱一台 2.计算机一台 三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。