第五章 大气静力稳定度
第五章 大气静力稳定度

1、当 T T e 时,则 暖时,可获得向上的加速度。 d w 2、当 T T e 时,则 d t 0。说明若气块比周围空气 冷时,将获得向下的加速度。 d w 3、若 T T e 时, d t 0 。说明气块与周围空气无温 差时,气块的垂直加速度为零。
d w 0 。说明若气块比周围空气 d t
ln(p00/p)
p4
E
平衡高度
p3
B 自由对流高度
p2
Hc
p1 p0
T3T4
T2 T1T0
T
不稳定能量与空气湿度关系
在相同的温度层结下,若上升气块的初始湿度较大,则凝结 高度和自由对流高度就较低,在气层po~p1之间容易形成 真潜不稳定;
若上升气块湿度较小,凝结高度和自由对流高度就较高,容 易出现假潜不稳定; 如空气湿度太小,凝结高度更高,气块的状态曲线将会全部 位于层结曲线左侧,形成绝对稳定型。 可见,低层湿度越大,越有利于对流的发展。
T T d w v ve B g d t T ve
单位质量 空气净浮力
考虑净浮力做功以及气块动能变化
T T d w v ve d z g d z d t T ve
5.2.1气层的不稳定能量(2)
利用dz=w dt ,由z0到z积分 :
z T T 1 2 12 v ve w w Δ E g d z 0 k z 2 2 T 0 ve 右边:净浮力将单位质量空气从z0移到z所作的功。 左边:转化成气块的动能增量,以Ek表示 若气块温度高于环境温度,则净浮力为正,气块 的垂直运动动能不断增加;反之,净浮力为负, 气块的动能将减小。 由于气块上升时的温度变化是确定的,因此浮力 的正负取决于厚气层的温度层结。
大气静力稳定度

一.问题的引入
对大气静力能见度的分析研究是天气分析预报工作 的一项重要内容。 如各种雾,层状云,连续性降水等都在较为稳定的 大气中发生; 对流云,阵性降水以至于龙卷,雷电和冰雹等强对 流天气现象,都是在不稳定的大气中发生。
二.知识点介绍
Pro.什么是大气静力稳定度?
大气静力稳定度(static stability of atmosphere) , 表示大气层结 特性对气块铅直位移影响的趋势和程度,又称大气层结稳定度和 大气铅直稳定度。
z
dz
T,P,ρ
T, P, ρ
Z0
T0,P0,ρ 0
T0, P0, ρ0
(1)未饱和气层
气块经垂直位移△Z后 温 度为:T T0 dz
气层在垂直位移△Z处的 气温为:
T T0 z
dw g ( d ) z dt Tv
可见,对于作干绝 热运动气体来说, 大气层结稳定度取 决于与 的对比
微气层静力稳定度的判据
基本判别式: dw a (ρ 1) g dt ρ 将状态方程带入,并利用准静态条件 p p 上式可变为: dw T T g
dt Tv
由此可见,气块是否获得加速度 与气块温度和环境温度的差 T T 有关
↑ ↓ ↑↑
v
a
v
a
a=0
↑
气块法
假定:1)气层始终静止;2)气块是个封闭 绝热系统;3)满足准静力条件。
绝对稳定气层
条件不稳定气层
绝对不稳定气层
m
d
六.参考资料
1.沈春康, 大气热力学. 气象出版社, 1983 2.网上资料
七.好的想法
认真看书+总结归纳
《大气污染控制工程》重要知识点汇总五

《大气污染控制工程》重要知识点汇总五121.大气静力稳定度大气静力稳定度是大气在静力作用下铅直方向的稳定程度。
某一气块受力作用产生向上或向下的运动以后可能有3种情况:运动逐渐减速,并有返回原位的趋势;运动逐渐加速,呈远离原位的趋势;运动既不加速,也不减速,可随处保持平衡。
第一种情况为大气稳定状态,第二种情况为不稳定状态,第三种情况称其为中性状态。
122.逆温大气温度层结一般是γ>0,即气温随高度增加而降低,但在某些条件下也会出现γ=0或γ<0。
通常将温度随高度增加而升高的空气层称为逆温层。
逆温层内空气铅直对流很弱,不利于污染物扩散。
高于地面的逆温层会阻挡下方的污染物向高空扩散。
所以空气污染事件大多数与逆温和静风等气象条件有关。
123.辐射逆温由于地表强烈辐射冷却形成的逆温。
晴朗少云、风速不大的夜晚,地表很快因辐射而降温,空气自下而上被冷却。
近地面空气降温多,远地面空气降温少,因而形成自地面起的逆温层。
日出后太阳辐射逐渐增强,地表升温,逆温层便自下而上逐渐消失。
辐射逆温在陆地上常年可见,冬季白天也可能出现。
在中纬度地区的冬季,辐射逆温层厚度可达200~300 m,有时可达400 m左右。
辐射逆温与大气污染关系最为密切。
124.下沉逆温由于空气下沉时受到压缩而引起的逆温。
高压区内某一空气团出现下沉运动,气压逐渐增大,气层在水平方向辐散,厚度减小。
由于气层顶部下沉距离比底部下沉距离大(H>H′),绝热压缩升温程度比底部升温高,因而出现逆温,下沉逆温范围广、厚度大、持续时间长,一般出现在高空。
冬季下沉逆温与辐射逆温相结合,会形成很厚的逆温层。
125.平流逆温暖空气平流到冷地面上,下层空气受地面影响大,降温多,上部降温少,因而形成逆温。
海上暖空气平流到陆地上,或暖空气平流到低地,盆地聚集的冷空气上方,都可能形成平流逆温。
126.湍流逆温低层空气由于湍流混合,在混合层的上方形成逆温层。
在下部湍流混合层与上部未发生湍流混合层之间形成温度过渡的逆温层。
大气科学基础课件§5大气静力稳定度

midnight
Open question 2: How is the seasonal evolution of the air instablity?
neutral
stable
unstable
winter
Spring and autumn
summer
• 不稳定能量
• 对流不稳定及位势不稳定
(3) γs <γ<γd ,对未饱大气,层结是稳定的;但对于 饱和湿空气而言,则是不稳定的,称为“条件不 稳定”
为了区别与后来提出的“第二类条件不稳定 ”(CISK-Conditional Instability of Second Kind),这 里的条件不稳定又被称为“第一类条件不稳定”
• 绝对稳定
向相反,表明气层层结稳定。
如果气块是干空气,或者是未饱和的湿空气
i
dT dz
d
静力稳定度判据为:
> γ = γd
<
静力不稳定 静力中性 静力稳定
• 条件不稳定
✓ 实际大气中,除了贴地气层以外,γ>γd的干绝 热不稳定是很少出现的;
✓ 饱和湿空气由于凝结潜热的释放,使气块受到的
浮力增加,即使在γ>γd的情况下,也可能出现不稳 定;
• 逆温层的作用
✓ 强对流爆发前夕,在中 低层常有逆温层的存在;
✓ 阻止水汽、热量上传, 使其在低层不断积累;
✓ 一旦逆温层被破坏(通 过地面加热、整层抬升等) ,强对流天气便会发生。
思考题
1. What is “absolutely stable”? 2. What is “absolutely unstable”? 3. What is “conditionally unstable”? 4. What is “conventionally unstable”? 5. What is dry adiabatic process and moist
大气稳定度参数

大气稳定度参数大气稳定度是指大气垂直运动的稳定性程度,它对于天气、气候和环境等方面都有着重要的影响。
通常情况下,大气稳定度可以通过温度、湿度、气压等参数来进行计算和判断。
一、计算公式大气稳定度的计算公式主要有两种,分别是折射指数法和位势能法。
1. 折射指数法折射指数法又称为Richardson数法,其计算公式为:Ri = (g / θ) * Δθ/ Δz其中,Ri为Richardson数;g为重力加速度;θ为平均温度;Δθ为温度差;Δz为高度差。
当Ri < 0时,大气处于不稳定状态;当Ri > 1时,大气处于稳定状态;当0 < Ri < 1时,大气处于较不稳定状态。
2. 位势能法位势能法主要是通过计算空气上升或下沉所需克服的重力势能来判断大气的稳定性。
其计算公式为:Ep = Cp * T + gz其中,Ep为位势能;Cp为空气比热容;T为温度;g为重力加速度;z为高度。
当Ep增大时,空气上升所需的能量也就越大,此时大气处于稳定状态;反之,当Ep减小时,空气上升所需的能量也就越小,此时大气处于不稳定状态。
二、等级划分根据大气稳定度的不同程度,可以将其划分为以下四个等级:1. 非常不稳定:当大气稳定度非常低时,空气上升非常容易,形成强烈对流运动。
这种情况通常出现在高温、高湿、高海拔的地区。
2. 不稳定:当大气稳定度较低时,空气上升比较容易,形成较强对流运动。
这种情况通常出现在夏季午后或晴朗天气中。
3. 稳定:当大气稳定度较高时,空气上升比较困难,形成的对流运动也比较弱。
这种情况通常出现在阴雨天气或夜间。
4. 非常稳定:当大气稳定度非常高时,空气上升非常困难,几乎没有对流运动。
这种情况通常出现在高压天气或秋季晴朗天气中。
三、判断方法大气稳定度的判断主要通过观测和计算来进行。
以下是几种常见的判断方法:1. 湿度法:当相对湿度高于80%时,大气通常处于不稳定状态;当相对湿度低于50%时,大气通常处于稳定状态。
大气静力稳定度判别

条件性不稳定也是一种 潜在不稳定。 条件性不稳定只要有局 地的热对流或动力因子 对空气抬升即可,因而 往往造成局地性的雷雨 天气。
对流性不稳定的气层形成积状云(对流云),甚至产生对流性降水。观测
表明,最可能产生强对流的是低层暖湿、高层干燥的具有条件性不稳定层结
的气层,其温度曲线和露点曲线呈现“喇叭口”性质。 对流层内全球平均位温随高度增加,故对干空气或未饱和湿空气而言,大 气层结的平均状态是稳定的。 在热带地区上空,对流层的中、低层(约700hPa以下)存在相当位温梯度
负值区,说明此处大气经常处于条件性不稳定状态或者对流性不稳定状态。
4 逆温层
01
02 03
辐射逆温
04 05 06
平流逆温
下层逆温
锋面逆温
地形逆温
湍流逆温
逆温层
定义:气层的温度随高度而增加,即 1、辐射逆温 晴朗夜晚由于地面长波辐射降温导致近地气层形成逆温层。逆温层的厚
0,这气层称为逆温层(阻塞层)。
在天气学中,用来判断对流运动发展与否; 在污染气象学中,有助于判断湍流发展与否。
气块法模型:
令气块离开平衡位置作微小的虚拟位移, 如果气块到达新位置后有继续移动的趋势,则此气层的大气 层结是不稳定的。它表明稍有扰动就会导致垂直运动的发展; 如果气块有回到平衡位置的趋势,则这种大气层结是稳定的; 如果气块既不远离平衡位置也无返回原平衡位置的趋势,而 是随遇平衡,就是中性的。
dw 0 ,说明若气块比周围(环境)空气冷时,可 2、当 T Te 时,则 dt 获得向下的加速度;
0 ,说明气块与周围(环境)空气无温差时, 3 、若 T Te 时,则 dt 气块的垂直加速度为零。
dw
2018/7/15
大气静力稳定度判别

在天气学中,用来判断对流运动发展与否; 在污染气象学中,有助于判断湍流发展与否。
气块法模型:
令气块离开平衡位置作微小的虚拟位移, 如果气块到达新位置后有继续移动的趋势,则此气层的大气 层结是不稳定的。它表明稍有扰动就会导致垂直运动的发展; 如果气块有回到平衡位置的趋势,则这种大气层结是稳定的; 如果气块既不远离平衡位置也无返回原平衡位置的趋势,而 是随遇平衡,就是中性的。
或超过热对流下限温度,那么当天气温就可能达到或超过对流下限温度,产
生热雷雨可能性比较大。
(4)挟卷过程对稳定度影响
观测表明,对流云内的温度递减率一般 都大于湿绝热降温率而与云外温度递减率 接近;云内含水量也比按绝热过程计算的 小;云顶高度则比计算的低。
这说明对流云的发展不是孤立的,云内
外空气有强烈的混合,云外空气进入云内 的过程通常称为挟卷过程。
T g ( d ) d T z T z c p
此判据能定性的反 映对流发展的基本条件,
se se ( ss ) z T
广泛应用在天气预报、
云雾物理及相关的污染 气象学的研究中。
2018/7/15
2 条件性不稳定 01
因此很重要
(1)未饱和情况及下沉逆温
若气层升降过程中始终保持未饱和状态时,稳定度的变化
(1) ΓV 1
γd
大气中通常是这种层结,讨论重点内容。当整层气层下沉
且伴随有横向扩散(水平辐散)时,例如北半球反气旋,气层趋向稳定,甚
至可能形成逆温层;若整层气层被抬升且伴有水平辐合时,例如北半球气旋, 气层稳定度减小。 (2) ΓV 1 不变。 (3)
条件性不稳定也是一种 潜在不稳定。 条件性不稳定只要有局 地的热对流或动力因子 对空气抬升即可,因而 往往造成局地性的雷雨 天气。
大气科学基础课件§5大气静力稳定度

对饱和湿空气而言
'
dT dz
s
静力稳度定判椐为:
>
静力不稳定
γ = γs <
静力中性 静力稳定
综合未饱和及饱和湿空气的静力稳定度判椐,有以 下3种情况:
(1) γ> γd ,对未饱和以及饱和大气,层结均不稳定 ,称为“绝对不稳定”;
(2) γ< γs ,对未饱和以及饱和大气,层结均稳定, 称为“绝对稳定”
在实际天气预报中,以下几种情况常值得注意: ✓ 在高层冷中心或冷槽与低层暖中心叠置的区域,
可能会有雷暴的发生;
✓ 冷锋过山时,若背风坡低层由暖湿空气控制,常 有雷暴的发生(夏季太行山东侧常出现此情形)
✓ 高层干平流与低层湿平流叠置的区域,常有雷暴 发生;
✓ 冷空气入侵后,如果低层有浅薄热低压接近或者 有显著的暖平流时,容易诱发雷暴发生。
• 逆温层的作用
✓ 强对流爆发前夕,在中 低层常有逆温层的存在;
✓ 阻止水汽、热量上传, 使其在低层不断积累;
✓ 一旦逆温层被破坏(通 过地面加热、整层抬升等) ,强对流天气便会发生。
思考题
1. What is “absolutely stable”? 2. What is “absolutely unstable”? 3. What is “conditionally unstable”? 4. What is “conventionally unstable”? 5. What is dry adiabatic process and moist
(1) 开始时气块的上下端 都按照干绝热上升
(2) 由于气层底部湿度较
P
大而先达到饱和状态
,按湿绝热上升,温
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断静力稳定度通常采用“气块法” 。 运用气块模型,令气块离开平衡位置作微小的虚拟 位移,如果气块有回到原平衡位置的趋势,则这种 大气层结是稳定的。
如果气块既不远离平衡位置也无返回原平衡位置的 趋势,而是随遇平衡,就是中性的。
如果气块到达新位置后有继续移动的趋势,则此气 层的大气层结是不稳定的,它表明稍有扰动就会导 致垂直运动的发展。
图8
ln(P00/p)
动力对流
p4
E
平衡高度
p3
q0
自由对流高度
B p2 p1流
不稳定 中性 稳定
-㏑P
γd
γ T
γ
γd T
稳定大气
-㏑P
不稳定大气
γd
γ T
中性大气
现举例说明:设有A、B、C 三团空气,均未饱和,其位置都在 离地200m的高度上,在作升降运动时其温度均按干绝热直减率 变化,即1℃/100m。而周围空气的温度直减率γ分别为 0.8℃/100m、1℃/100m 和1.2℃/100m,则可以有三种不同的 稳定度(图2· 25):
大气稳定度是表示大气层结对气块能否产生对流 的一种潜在能力的量度。必须注意,它并不是表示气 层中已经存在的铅直运动,而是用来描述大气层结对 于气块在受外力扰动而产生垂直运动时,会起什么影 响(加速、减速或等速)。这种影响只有当气块受到外 界扰动后,才能表现出来。
1、静力稳定度是气块与气层互为作用的综合 结论; 2、静力稳定度仅指气块处在该气层中,铅直 运动发展的趋势与可能; 3、稳定气层中可以有对流运动,但不利于对 流发展;不稳定气层中若无扰动,亦不可 能发展对流,但利于对流发展。
T T d w v ve B g d t T ve
单位质量 空气净浮力
考虑净浮力做功以及气块动能变化
T T d w v ve d z g d z d t T ve
5.2.1气层的不稳定能量(2)
利用dz=w dt ,由z0到z积分 :
z T T 1 2 12 v ve w w Δ E g d z 0 k z 2 2 T 0 ve 右边:净浮力将单位质量空气从z0移到z所作的功。 左边:转化成气块的动能增量,以Ek表示 若气块温度高于环境温度,则净浮力为正,气块 的垂直运动动能不断增加;反之,净浮力为负, 气块的动能将减小。 由于气块上升时的温度变化是确定的,因此浮力 的正负取决于厚气层的温度层结。
特点:在这种气层中,其底部扰动 不论强弱,气层对受扰气块起抑制作用, 不利于受扰气块的上升运动得到发展;
绝对稳定型
ln(P00/p)
p4
p3
p2
p1
p0
T4
T2 T3 T1 T0
T
可能的绝对稳定型
ln(p00/p)
p4
p3
p2
p1 p0
T4 T2 T3 T1 T0
T
绝对不稳定型( Tv Tv ):
B
平衡高度
自由对流高度
潜在不稳定型(不同高度 T v 与 Tve 关系不同), 分为:
真潜不稳定型(“+”>“—”)
特点:在这种气层中,其底部只要受 到较强的扰动,迫使气块移到自由对流高 度B以上,气块的上升运动得到发展,其 称为真潜不稳定型;
真潜不稳定型
ln(p00/p)
p4
E
平衡高度
对流有效位 能CAPE
1、当 T T e 时,则 暖时,可获得向上的加速度。 d w 2、当 T T e 时,则 d t 0。说明若气块比周围空气 冷时,将获得向下的加速度。 d w 3、若 T T e 时, d t 0 。说明气块与周围空气无温 差时,气块的垂直加速度为零。
d w 0 。说明若气块比周围空气 d t
5.1.2静力稳定度判据(5)
5.1.2静力稳定度判据(6)
T ln p图上干绝热线( d )和假绝热线( s ) 又是等位 温线和假相当位温线,因此也有如下判据:
0 z
绝对不稳定
0
0 se 及 z z
se 0 z
条件性不稳定
绝对稳定
5.2 条件性不稳定
5.2.1气层的不稳定能量(3)
气块在垂直运动中动能的增量Ek,可以认为是由 气层中所储存的一部分能量转化而来,这部分可以 转化的能量一般称为气层的不稳定能量,它的大小 和正负是大气层结是否稳定的标志。 Ek的大小应该用净浮力对单位质量空气所作功衡 量,但环境大气温度Tve和饱和气块的温度Tv都是 高度的复杂函数,所以常采用图解法。
湿度对不稳定能量的影响
ln(p00/p)
p4 E
平衡高度
p3
B 自由对流高度
p2 Hc p1 p0
T3T4
T2 T1T0
T
湿度影响:空气湿度越大,气层不稳定能量 面积越大,越有利于对流发展。
动力对流与热力对流
动力对流
由动力原因(气流的水平辐合、山地、 锋面对气流的强迫抬升等)引起的对流。 特征: 动力对流云底:HC;云顶:E。 发展动力对流的条件:动力抬升到自由对 流高度C。如图8
Ek >0,气层对气块具有正的不稳定能量,有利 于受扰动气块的加速运动,因而气层是不稳定的; 当Ek <0,气层对气块具有负的不稳定能量,对 受扰动气块的垂直运动具有抑制作用,气层是稳定 的; 当Ek =0,气层对气块的垂直运动既不有利也不 抑制,气层属于中性层结。
不稳定能量分型
绝对稳定型( Tv Tv ): 气块温度总小于气层温度(气层中 储存负不稳定能量,在 T-lnP 图上用 “ -” 表示);
讨论条件性不稳定厚气层或自地面以上对流层整层 大气是否稳定时,由于大气温度的垂直分布很复杂, Γ值不是常数,虽可分别判断不同高度气层的稳定 度,却难以判断整个气层的稳定度状况。
可以用大气不稳的能量来判断整层大气的稳定状况
5.2.1气层的不稳定能量(1)
设有条件性不稳定厚气层 ,在气层的底部任取一空 气块 ,气块上升的加速度应是:
5.1.2静力稳定度判据(1)
令 和Γ分别表示气块和环境大气的垂直减温率。当 气块从平衡位置作一微小位移dz后,其温度T就变 成
T T d z 0
T T Γ d z e 0
dwgΓ dz 则气块加速度 : dt T e
5.1.2静力稳定度判据(2)
讨论
1、若 ,气块的加速度总是和dz的符号一 致,有加速离开原平衡位置的倾向,则大气层结是 不稳定层结。
②饱和气块,垂直上升时按假绝热变化,垂直减温 率 = s 。
1、 Γ > s 2、 s =Γ 3、 Γ < s
不稳定 中性 稳定
并且有 s < 能:
d
。因此Γ 和
d
、 s 有如下三种可
1、 Γ > d 绝对不稳定 2、 d >Γ> s 条件性不稳定 3、 Γ < s 绝对稳定
归纳如下 :
Γ
不稳定 中性 稳定
这只是一般结论,大气分为未饱和饱和两种情况, 因此,应该进一步讨论
5.1.2静力稳定度判据(4)
①未饱和气块,垂直位移时按干绝热变化,垂直减 温率 = d 。
1、 Γ > d 2、 d =Γ 3、 Γ < d
大气的垂直运动产生,主要决定于两个原因:一个是动 力原因,一个是热力原因。 动力原因: 飞机飞过,高山阻档,槽前和槽后等 热力原因 由于地表面局部受热不均匀,使得近地面层的空气温 度在水平方向上分布不均,温度较高的空气就因密度较小 而上升,周围较冷空气因密度较大而下沉补尝。
5.1.1基本判别式(1)
p3
自由对流高 B 度
Hc
对流抑制 p2 能量CIN
p1 p0
T3 T4
T2 T1 T0
T
假潜不稳定型(“+”<“—”)
特点: 自由对流高度 B 以上的正不稳定能 量面积小于负不稳定能量面积,自由 对流高度 B较高度,气块受到扰动难以 超过这个高度,下部不稳定能量抑制 气块的发展,如图5
假潜不稳定型
第五章 大气静力稳定度
(大气层结稳定度)
大气中的对流,时强时弱,持续时间长短不一,这是什么原因呢?
据研究,这和大气层结稳定度有密切的关系。
5.1 大气静力稳定度的判定法(气块法)
5.2 条件性不稳定 5.3 地整层气层升降时稳定度的变化
5.4 逆温层
第五章 大气静力稳定度
大气层结:大气温度和湿度的垂直分布。 处于静力平衡状态的大气中,一些空气团块受到动 力因子或热力因子的扰动,就会产生向上或向下的 垂直运动。 这种偏离其平衡位置的垂直运动能否继续发展,是 由大气层结即大气温度和湿度的垂直分布所决定的。 层结大气所具有的这种影响垂直运动的特性称为大 气的静力稳定度,也称层结稳定度。
dwgΓ dz dt T e
5.1.2静力稳定度判据(3)
dwgΓ dz 讨论 dt T e
若 ,加速度与dz的符号总是相反, 气块 有回到原平衡位置的趋势,垂直运动受到限 制而削弱,这种气层是稳定的。 若 ,垂直运动既不发展也不衰减,大气 层结是中性的
5.1.2静力稳定度判据(4)
单位体积气块垂直 运动方程: dw (e )g dt
) dw ( e g B dt
B为净的阿基米德浮力 , 气块的稳定与否取决于B