七年级数学下册期末试卷分析

合集下载

七年级下册数学期末考试试卷分析

七年级下册数学期末考试试卷分析

七年级下册数学期末考试试卷分析期末考试顺利结束,本人结合试卷具体情况对考试中所反映出的问题与情形做以下分析。

一、试卷分析:本次考试的命题范围:七年级下册的内容,教学重点和难点都有考察到,基础题覆盖面还是很广的,基础扎实的学生拿到较为理想的成绩还是很容易的,整体看试卷的难度适中,并且有一定梯度。

二、学生答题情况及存在问题:1、纵观整份试卷难度不大,有些题型耳熟能详,是平时学习及复习检测中遇见过的题型,学生容易得到基本分,但有些学生的成绩还是不尽人意。

凭简单的记忆,忽略细节,粗心大意,不认真审题,造成失误。

平时没有养成良好的学习习惯。

2、基础知识不扎实,主要表现在:(1)选择题比较简单,但还是由于种种原因无法令人满意,错误主要集中在题6、题7、题8、题10上,主要原因首先是知识点掌握不到位,如思考不够全面,或计算不过关。

(2)填空题最高分为40,最低得分为0。

错误主要集中在题13、题14、题15、题18上。

题15准确率较低的原因是学生对于单项式的系数理解不透,题18错误主要值的代入不清楚,题20学生需要用到分情况讨论,有些同学就自动放弃了,另外一个原因是无法解读题意;(3)综合理解能力和计算能力,在做这个题目的时候,学生的判别思维比较差,只考虑了一种情况。

后两题属于提高题,题23、25题意较新颖,学生必须理解才能解决好。

所以我们要以课本为主,在抓好“两基”教学的同时,以学生发展为本,加强数学思维能力的培养。

三、教学反思及改进1、优化课堂教学过程,建议在今后的教学工作中加强对概念的教学,加强基础知识的教学,这虽然是老生常谈,却是个不易做好的工作,所以要做到备课细致,备教材、备学生、备过程,切实提高课堂效率。

2、学生的数学学习两极分化现象日趋严重。

对学习有困难的学生,要及时给予关照与帮助,要鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,发表自己的看法;要及时地肯定他们的点滴进步,对出现的错误要耐心地引导并帮助他们分析其产生的原因,鼓励他们自己去改正,从而增强学习数学的兴趣和信心。

七年级第二学期数学期末考试质量分析

七年级第二学期数学期末考试质量分析

七年级第二学期数学期末考试质量分析一、基本情况:1.二班:参考人数63人,平均分19.51分,最高分59分,及格率0.0%。

客观题平均得分9.14分,得分率为38.08%;主观题平均得分10.37分,得分率为17.28%2.三班:参考人数63人,平均分29.29分最高分68分,及格率2.9%。

主观题平均得分为11.4分,得分率为47.5%;客观题平均得分为17.89分,得分率为29.82%二、试题分析:本次试题综合起来看难度比较大,考试时间不够。

本次数学试题依据数学课程标准,符合中学生学业考试的各项要求,体现了新课程理念,全面落实对三维课程目标的要求,力求做到知识与技能、过程与方法并重,重视基础知识,重视生活实践,重视综合运用,并渗透情感态度价值观。

三、学生答题情况分析1、逐题试卷分析:一题“选择”:满分24分,得分率较低,基本技能不过关,这主要反映在计算不过关,对概念理解不清,不认真观察图形和推理证明方法上。

二题“填空”:满分21分,得分率比较低。

错因基础知识不牢,审题不清,读题不细。

三题“计算题题”:学生的计算能力太差。

四题“解方程”:学生计算能力太差。

五题“解答题”:学生的迁移能力较差,数学能力薄弱,分析问题的能力需进一步提高,基本的数学思想需加强。

四、今后教学措施:1、依“纲”靠“本”,注重基础。

注重对基础知识、基本技能、基本思想方法和基本活动经验的训练。

在教学中,切实抓好基本概念及其性质、基本技能和基本思想方法的教学,让学生真正理解和掌握,并形成合理的网络结构。

2、加强学生的学习习惯、学习态度和学习策略的培养。

3、数学教学重在提高能力。

教师要不断加强教学的应用意识,引导学生学会理解问题、分析问题并解决问题。

4、教学中要注重学生创新意识的培养。

在教学中要激发学生的好奇心和求知欲,通过学生独立思考,不断追求新知,发现、提出和创造性地解决问题,并引导学生将所学知识应用于实际。

2021年9月9日。

七年级第二学期数学期末试卷分析

七年级第二学期数学期末试卷分析

2019 年七年级第二学期数学期末试卷分析尽快地掌握科学知识,迅速提高学习能力, 由查字典数学网为您提供的七年级第二学期数学期末试卷分析,希望给您带来启发!(1) 从内容上看,所检测的都是课本上所教的,都是要求学生掌握的没有一项内容偏离课本,从形式上来看,每个大项的试题都是课本中出现过的,都是学生熟悉的。

整个卷面,有最基本的基础题,也有锻炼学生解决问题的及综合能力的应用题,所考内容基本上覆盖了所教内容。

(2) 贴近生活实际,体现应用价值。

本次试题依据新课标的要求,从学生熟悉的生活索取题材,把枯燥的知识生活化、情景化,通过填空、选择、解决问题等形式让学生从中体验、感受学习数学知识的必要性、实用性和应用价值。

(3) 重视各种能力的考查。

本次试题通过不同的数学知识载体,全面考查了学生的计算能力,观察能力和判断能力以及综合运用知识解决生活问题的能力。

二、学生的答题情况; 本次考试学生答题情况不是很理想,有 2 个不及格,都集中在79 班。

高分的学生也不是很多,最高分才98 分,没有一个百分的。

这是本次考试很不理想的一个方面。

也是从教他们以来考的最不理想的一次了。

从他们考试的情况来看,很多的同学存在基础知识不扎实,很多同学的错误都是出在不应该出的地方; 答题时,对题目没有完全的理解就急于下笔,比如: 解决问题的第一题老师带着32 个学生去划船,每条船准乘 5 人,需要几条船?在这个题中有一个隐含的条件就是老师也必须算一个人,而大多数的学生,就直接用32 进行计算了。

因此对题意的理解还是不充分。

三、在今后的教学中,要注意从这几方面加以改进1、学生的口算、估算能力有待于加强,提高准确度.2、在教学中,有意识的训练、提高学生的思维能力.3、在教学中,提高学生运用数学知识解决问题的能力.4、针对学生分析理解能力较差的实际情况,要在今后的应用题教学中培养学生从多方面、多角度去思考,把所学的知识应用于实际中。

教育他们要灵活应用所学知识解决生活中的实际问题。

七年级数学下册期末试卷分析

七年级数学下册期末试卷分析

七年级数学下册期末试卷分析一、试卷命题指导思想结合教学实际,表达知识与水平并重,即在考查学生基础知识、基本技能、基本方法的基础上,重视考查学生综合使用所学知识分析问题,解决问题的水平。

并且,增强与学生生活实际的联系,适度设计探究性题目,表达考查学生的学习过程和促动学生全面发展的根本价值取向。

二、试卷特点纵观整份试卷,有些题型耳熟能详,是平时学习及检测中遇见过的题型。

但也有的作了一些变化。

这份试题能较好表达新课标的要求,全面考查了学生的运算水平、阅读水平、探究分析水平、简单推理水平和综合应用水平。

试题类型丰富,使不同层次的学生都有较多可做的题目。

1、内容全面,覆盖广泛本卷在注重考查学生的基础知识和基本水平的同时,适当考查了教学过程,较好地表达了新课程的目标体系。

试题内容全面,共计五个大题26个小题,满分100分,用时90分钟,覆盖了六大板块的知识内容。

2、立足教材,深入挖掘教材的考评价值教材为学生学好数学提供丰富的素材,同时立足教材,表达了对考生公平、公正的基本原则。

这次数学试题绝大多数源于教材,是教材的例题、习题的类比、改造、延伸和拓展。

3、贴近生活,注重考查学生用数学的意识数学来源于生活,又服务于生活。

学习数学的目的之一是用数学知识、方法和思想去解决实际问题,培养学生用数学的意识。

本卷考查学生应用数学的试题较多。

这些试题都是源于生活,丰富了试题的背景,引导学生注重生活中的数学。

4.提升水平,着重学生数学思想的理解及使用的考查数学水平是学好数学的根本,主要表现为数学的思想方法。

试卷强化了对数学思想方法的考核,充分考查出了不同层次学生的数学水平.三、典型错题分析1、从测试情况看,学生所必须掌握的基础知识、基本技能在落实上还存有一定的差别。

2、操作探究水平缺乏。

如第24,26题,有的学生对这样的题目显得无从下手。

3、对知识的灵活使用上还有些缺乏。

如第17题,这是不等式的解集问题,平时练习和复习时类似题目多次训练,并提炼出方法。

七年级下册数学期末考试质量分析孙庆华

七年级下册数学期末考试质量分析孙庆华

七年级下学期数学期末考试质量分析竹条实验中学孙庆华一、考试基本情况:本学期期末数学试卷的命题坚持了课改精神,加强了对学生思维品质的考查,为学生提供了较大的发挥空间。

从整体上看,本次试题难度适中,基本符合学生的认知水平。

试卷以课标和课本为纲,考查了数学基础知识,基本技能,基本方法,逻辑思维能力,以及运用所学数学知识和方法分析问题、解决实际问题的能力。

二、试卷特点:本次期末考试的试卷总分100分。

试题类型:观察与分析20分,质疑与补充23分,思考与探究57分。

本次试题以课标和课本为纲,考查了数学基础知识,基本技能,基本方法,逻辑思维能力,以及运用所学数学知识和方法分析问题、解决问题的能力。

⑴重视了基础知识、基本技能的考查。

如:观察与分析中的第1题虽然是有关解方程组,但并没有直接考查,而是在让学生确定答案之后说出判断方法,这样的设计,考察了学生解方程组的方法,而本题的方法较多,如:代入法、加减法、也可根据方程1得知x>y,再根据答案判断;第4题主要考查的是平行线的判定方法,虽然只是一个题,但在相同的条件不同的图形下,让学生进行判断加大了难度,考察学生对判定方法的掌握。

⑵体现了对学生逻辑思维能力的考查。

如质疑与补充中的第10题,看似一个图形证明题,但并没让学生直接证明,而是改变以往的模式,给出证明过程,让学生找出其中有问题的地方,这样做不仅考察学生的逻辑思维能力,同时也考察学生的观察、判断能力。

平时在学生写证明过程时,有时不需注明理由,而本题中恰好3处都是理由问题,刚好“击中要害。

”⑶重视各种能力的考查,重视数形结合。

本次试题通过不同的数学知识载体,全面考查了学生的操作能力、观察能力和判断能力以及运用知识解决生活问题的能力。

如观察与分析第3题充分的考察了学生判断能力;思考与探究中的第12、16题考查了学生的动手操作能力、思维能力、计算能力。

第14题考查了学生的操作能力、渗透分类的思想,而分类讨论正是学生薄弱的地方。

2022-2023学年七年级(下)期末数学试卷 解析版

2022-2023学年七年级(下)期末数学试卷  解析版

七年级(下)期末数学试卷一、选择题(每小题3分,共42分)1.(3分)下列各式中,正确的是()A.=±5 B.=﹣6 C.=﹣3 D.﹣=3 2.(3分)下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某小区居民的防火意识,对你们班同学进行调查3.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.﹣>﹣D.3a>3b4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD 的度数是()A.20o B.30o C.40o D.50o 6.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°7.(3分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°8.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.9.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①10.(3分)如图,A,B的坐标为(1,0),(0,2),若将线段AB 平移至A1B1,则a﹣b的值为()A.1 B.﹣1 C.0 D.2 11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣2 12.(3分)已知,满足方程组,则n﹣m的值是()A.2 B.﹣1 C.﹣D.﹣2 13.(3分)若关于x的一元一次不等式组的解集是x <5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5 14.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E 是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE =α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本题5个小题,每小题3分,共15分)15.(3分)两个同样的直角三角板如图所示摆放,使点F,B,E,C 在一条直线上,则有DF∥AC,理由是.16.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.17.(3分)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.18.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是.19.(3分)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是.三、解答题(本题7个小题,共63分)20.(12分)(1)计算2+++|﹣2|;(2)解方程组:;(3)解不等式组:,并把解集在数轴上表示出来.21.(8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?22.(10分)已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2022+2022的值.23.(10分)如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(﹣2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD 先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.(3)求四边形ABCD的面积.24.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?25.(12分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)下列各式中,正确的是()A.=±5 B.=﹣6 C.=﹣3 D.﹣=3 【分析】直接利用立方根以及算术平方根的定义分析得出答案.【解答】解:A、=5,故此选项错误;B、=6,故此选项错误;C、=﹣3,正确;D、﹣=﹣3,故此选项错误;故选:C.2.(3分)下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某小区居民的防火意识,对你们班同学进行调查【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、了解全校同学对课程的喜欢情况,对某班男同学进行调查,不具代表性、广泛性,故A错误;B、了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查,调查具有代表性、广泛性,故B正确;C、了解商场的平均日营业额,选在周末进行调查,调查不具有代表性、广泛性,故C错误;D、了解某小区居民的防火意识,对你们班同学进行调查,调查不具代表性、广泛性,故D错误;故选:B.3.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.﹣>﹣D.3a>3b【分析】根据①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A、若a>b,则a﹣5>b﹣5,故原题计算错误;B、若a>b,则2+a>2+b,故原题计算错误;C、若a>b,则﹣<﹣,故原题计算错误;D、若a>b,则3a>3b,故原题计算正确;故选:D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①=10,故说法错误;②数轴上的点与实数成一一对应关系,故说法正确;③﹣2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与﹣的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②③④⑥共4个.故选:C.5.(3分)如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD 的度数是()A.20o B.30o C.40o D.50o【分析】根据垂线的定义,可得∠AOB,根据角的和差,可得∠AOC,根据角平分线的定义,可得∠COD,根据角的和差,可得答案.【解答】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOC=∠AOB+∠BOC,∠BOC=50°,∴∠AOC=50°+90°=140°.∵OD平分∠AOC,∴∠COD=∠AOC=×140°=70°.∵∠BOD=∠COD﹣∠BOC=70°﹣50°=20°,故选:A.6.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°【分析】如图,证明∠AEF+∠BFE=180°;借助翻折变换的性质求出∠BFE,即可解决问题.【解答】解:如图,∵四边形ABCD为长方形,∴AE∥BF,∠AEF+∠BFE=180°;由折叠变换的性质得:∠BFE=∠HFE,而∠1=50°,∴∠BFE=(180°﹣50°)÷2=65°,∴∠AEF=180°﹣65°=115°.故选:B.7.(3分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°,故选:D.8.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:由已知得方程组,解得,代入,得到,解得.故选:A.9.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①【分析】利用加减消元法判断即可.【解答】解:用加减法解方程组时,如果消去y,最简捷的方法是②×2+①.故选:D.10.(3分)如图,A,B的坐标为(1,0),(0,2),若将线段AB 平移至A1B1,则a﹣b的值为()A.1 B.﹣1 C.0 D.2【分析】根据点A和A1的坐标确定出横向平移规律,点B和B1的坐标确定出纵向平移规律,然后求出a、b,再代入代数式进行计算即可得解.【解答】解:∵A(1,0),A1(3,b),B(0,2),B1(a,4),∴平移规律为向右3﹣1=2个单位,向上4﹣2=2个单位,∴a=0+2=2,b=0+2=2,∴a﹣b=2﹣2=0.故选:C.11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣2【分析】根据已知规定及两式,确定出m、n的值,再利用新规定化简原式即可得到结果.【解答】解:根据题意得:3⊕(﹣5)=3m+5n=15,4⊕(﹣7)=4m+7n=28∴,解得:∴(﹣1)⊕2=﹣m﹣2n=35﹣48=﹣13故选:A.12.(3分)已知,满足方程组,则n﹣m的值是()A.2 B.﹣1 C.﹣D.﹣2【分析】把代入,再让两式相减,即可得出n﹣m的值,继而可得答案.【解答】解:根据题意知,①﹣②,得:﹣m+n=﹣2,即n﹣m=﹣2,∴n﹣m=(n﹣m)=﹣1,故选:B.13.(3分)若关于x的一元一次不等式组的解集是x <5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5 【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.14.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE =α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【解答】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.二、填空题(本题5个小题,每小题3分,共15分)15.(3分)两个同样的直角三角板如图所示摆放,使点F,B,E,C 在一条直线上,则有DF∥AC,理由是内错角相等两直线平行或(垂直于同一条直线的两直线平行).【分析】根据平行线的判定定理填空即可.【解答】解:依题意得:∠DFE=∠ACB,则DF∥AC(内错角相等两直线平行.或(垂直于同一条直线的两直线平行))故答案是:内错角相等两直线平行.或(垂直于同一条直线的两直线平行)16.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积48 .【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,根据平分线分线段成比例定理,可求出EC的长.已知了EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.【解答】解:根据题意得,DE=AB=10;BE=CF=6;CH∥DF.∴EH=10﹣4=6;EH:HD=EC:CF,即6:4=EC:6,∴EC=9.∴S△EFD=×10×(9+6)=75;S△ECH=×6×9=27.∴S阴影部分=75﹣27=48.故答案为48.17.(3分)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为(﹣2,2)或(8,2).【分析】根据B点位置分类讨论求解.【解答】解:已知AB∥x轴,点B的纵坐标与点A的纵坐标相同,都是2;在直线AB上,过点A向左5单位得(﹣2,2),过点A向右5单位得(8,2).∴满足条件的点有两个:(﹣2,2),(8,2).故答案填:(﹣2,2)或(8,2).18.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是 4 .【分析】首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.【解答】解:第五组的频数是40×0.2=8,则第六组的频数是40﹣5﹣10﹣6﹣7﹣8=4.故答案是:4.19.(3分)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是(2021,1).【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【解答】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故答案为:(2021,1).三、解答题(本题7个小题,共63分)20.(12分)(1)计算2+++|﹣2|;(2)解方程组:;(3)解不等式组:,并把解集在数轴上表示出来.【分析】(1)先计算算术平方根和立方根、去绝对值符号,再计算加减可得;(2)整理方程组,再利用加减消元法求解可得;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=2+3﹣2+2﹣=3+;(2)方程组整理,得:,①+②,得:4x=12,解得x=3,将x=3代入①,得:3+4y=14,解得y=,∴方程组的解为;(3)解不等式x﹣3(x﹣1)<7,得:x>﹣2,解不等式x﹣2x<,得:x>0.6,则不等式组的解集为x>0.6,将不等式的解集表示在数轴上如下:21.(8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?【分析】(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数6500乘以对应的比例即可求解.【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人,;(2)360°×=36°;(3)反对中学生带手机的大约有6500×=4550(名).22.(10分)已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2022+2022的值.【分析】(1)根据x轴上的点的纵坐标为0,可得关于a的方程,解得a的值,再求得点P的横坐标即可得出答案.(2)根据平行于y轴的直线的横坐标相等,可得关于a的方程,解得a的值,再求得其纵坐标即可得出答案.(3)根据第二象限的点的横纵坐标的符号特点及它到x轴、y轴的距离相等,可得关于a的方程,解得a的值,再代入要求的式子计算即可.【解答】解:(1)∵点P在x轴上,∴a+5=0,∴a=﹣5,∴2a﹣2=2×(﹣5)﹣2=﹣12,∴点P的坐标为(﹣12,0).(2)点Q的坐标为(4,5),直线PQ∥y轴,∴2a﹣2=4,∴a=3,∴a+5=8,∴点P的坐标为(4,8).(3)∵点P在第二象限,且它到x轴、y轴的距离相等,∴2a﹣2=﹣(a+5),∴2a﹣2+a+5=0,∴a=﹣1,∴a2022+2022=(﹣1)2022+2022=2021.∴a2022+2022的值为2021.23.(10分)如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(﹣2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD 先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.(3)求四边形ABCD的面积.【分析】(1)直接利用平移规律丰碑得出对应点位置进而得出答案;(2)利用平移规律进而得出对应点坐标的变化规律;(3)利用四边形ABCD所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:A′(﹣4,1),B′(﹣2,7),C′(2,5),D′(0,1);(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标为:(a﹣2,b+1);(3)四边形ABCD的面积为:6×6﹣×2×6﹣×2×4﹣×2×4=22.24.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.25.(12分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD =∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC =∠ABE+∠ABC=15°+90°=105°.【解答】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.。

七年级数学期末考试试卷分析

七年级数学期末考试试卷分析

七年级数学期末考试试卷分析七年级数学期末考试试卷分析七年级数学期末考试试卷分析一、试卷特点七年级数学试题覆盖上学期全部的内容,第一章有理数占17分,第二章整式占28分,第三章一元一次方程占34分,第四章几何图形初步占41分,考察内容比拟全面,同时考察内容也注重根底试题。

整份试卷的结构严格按照中考模式,结构合理,难度适中。

试卷外表上看比拟容易,偏向根底知识的考察,实际上学生在做题时,却发现有一定的难度。

考试结果对学生的根本计算能力、逻辑思维能力,运用知识能力等水平要求较高。

(一)试题根底性强。

整张试卷考查四基基意图明显。

填空题、选择题以及解答题中大多数均为根底题,占70分以上,对根底知识的考查既注意全面性,又突出重点。

20、23小题源自课本亦有所创新。

选择填空难度适宜且梯状分布。

解答题分步进行,环环相扣,由浅入深,匠心独具。

〔二〕试题应用性强如第15、18、23、26题都是具有生活背景的实际问题。

试题贴近学生的实际生活,表达了数学与生活的联系,表达了“人人学有用的数学,数学问题是源于现实生活〞的理念,在考查中引导学生经历解决实际问题的过程,体验运用数学知识解决实际问题的情感,考查学生从实际问题中抽象数学模型的能力,培养用数学、做数学的意识。

特别是26小题,问题以市场营销为背景,针对现在非常热点的超市的打折问题及返购物券问题展开,需要学生把现实问题与数学模型充分结合,表达了数学较强的应用价值。

〔三〕试题操作性强。

第24题为作图题,考查学生的动手能力,这是新课标的要求,更是中考的要求。

试题涉及线和角的画法,强调数学知识重根底,重操作的特点。

〔四〕试题充满人文关心。

在以往的考试中,学生常常在填空题中漏写单位,漏写括号,造成不必要的失分。

本卷在26小题第(1)问中,特意添加了小括号并注明填空,一个小小的细节,却使人倍感温暖。

〔五〕试题注重思想方法考查。

初中数学中常见的数形结合思想、化归思想、分类讨论思想、归纳等数学思想方法,在试卷中也得到了充分表达。

七年级下学期数学期末试卷质量分析

七年级下学期数学期末试卷质量分析

七年级下学期数学期末试卷质量分析一.基本情况分析七一班优秀人数7人,跟二班的11人还存在着差距;平均分67.8跟三班67.3持平但和二班的73.5还存在较大差距,及格人数18与二班24,三班23还存在着差距。

二.试卷分析本试卷共有三种题型,分别为选择题、填空题、解答题,覆盖了整册书各章节的重点知识,考查的知识点比较全面,具体分析如下:1. 选择题,共12道,考查了全册书各章节的基础知识,在本大题中,失分较多的是第2、5、12小题。

2题学生独体不认真,没有看到是作最长边上的高,所以算错。

5题学生将高线理解成高,所以选错。

12题学生对二元一次方程的整数解理解不到位。

除此之外,其它各题得分较好。

2. 填空题,共5道,第16题失分较多,虽然此类型题反复讲解过,但是还有部分学生理解不到位,导致出错。

17题,学生部善于观察所列式子,未看出二者之间的关系。

3.解答题,共7道,其中失分较严重的是第21、22、23题;第21题,学生没有理解题目,不知道要先分析哪个月超出规定用电量,看出的同学列方程时发现是个二次方程,没有学过就不敢再写或是列出方程组不会解,说明学生不善于观察,通过观察,可以发现,两个方程一相减就可以消去二次项。

22题,学生忽略要空出最后一名学生,应该是分了6(x-1),部分学生写成6x。

23题第一问,学生都可以作对,但是,第二问,学生便不会做了,说明学生对做题方法上理解不够,以后要加强这方便的教学。

三.学生成绩分析:这次考试结束后,有些学生进步很大,但也有学生退步的。

通过试卷分析发现,这次的考试主要是基础题,但还是有一些学生不及格,这就说明平日里学生学习不扎实。

在近阶段的教学中,还存在很多的不足,主要表现在以下两方面:1.对于讲过的重点知识,落实抓得不够好。

2.在课堂教学时,经常有急躁情绪,急于完成课堂目标,而忽视了同学对问题的理解,没有给学生足够的时间思考问题,久而久之,一部分同学就养成懒惰的习惯,自己不动脑考虑问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册期末试卷分析
期末考试已经结束,成绩也已揭晓。

纵观本次考试试题,试题以基础知识为重点考查内容,突出灵活应能力的考查。

本套试卷共分三大题,题型包括选择、填空、解答等不同类型。

试题整体难度适中。

试卷分析:
选择题包括7小题,其内容涵盖了生活中的平移、二元一次方程组、一元一次不等式、相交线和平行线第6章、第7章、第8章、第9章、第10章的不同内容。

试题的难度也遵循有易到难的原则,有单纯关于知识的考查,也有突出能力的考查。

有来源于课本的,也有来源于生活的,体现了试题的基础性和灵活性。

第1题:不等式。

第2,3题:平面直角坐标系。

第5题二元一次方程。

第6,7,10:相交线,平行线。

其次,填空题8小题,其考查的内容涵盖了本学期的各个章节,试题难度有易有难,其中,试题8,9,11,13,属基础知识的考查,其难度不难,但试题10,13,14,15难度偏大,解题格式有所不同,学生有思维定性,所以得分率不高。

解答题包括了7道试题,试题类型包括解方程组、一元一次不等式组解法、看图获取信息、平行线和三角形等不同类型,16和17俩题是运用方程和不等式知识,不难但要求细心,有同学基础知识不牢固的同学就有所失分了。

第19,21题是平行线和三角形,考查了学生对平行线的性质与判定的掌握,对一些证明题试题书写格式的掌握情况,相对比较简单,大部分同学都能解决,但试题中,学生可能对于简单的书写格式掌握较好,所以虽然可以得分,但满分却少得可怜。

第18题是从图中获取信息,考察灵活运用,有条理和有理有据的思维能力的考查,体现了由特殊到一般的思想。

第20,22题是两道应用题,对我们运用数学的意识有了考查,首先他的题型比较新颖,尤其提问方式比较有探究性,也符合新课程标准的要求,由于学生在这方面训练比较少,所以从整体得分率来看,不很好,也反应了我们的学生在该方面的缺陷,因此我们要多加强训练来弥补。

从这次考试分数看:
有些学生进步很大,但也有学生退步的。

通过试卷分析发现,这次的考试主要是基础题,但还是有一些学生不及格,这就说明平日里学生学习不扎实。

在近阶段的教学中,还存在很多的不足,主要表现在以下方面:
1.对于讲过的重点知识,落实抓得不够好。

2.在课堂教学时,经常有急躁情绪,急于完成课堂目标,而忽视了同学对问题的理解,没有给学生足够的时间思考问题,久而久之,一部分同学就养成懒惰的习惯,自己不动脑考虑问题。

3、学生中存在严重的厌学情绪。

4、结合本校的实际情况来看,学校的学校风气存在问题,部分学生对于考试和分数已无动于衷。

5、学生的荣辱观、是非观也存在问题,急需加强教育。

学生的学习问题已不是单纯的学校教育问题,它反映出家庭教育的明显缺乏。

对今后数学教学的一些建议:
1、抓好基础,搞好数学核心内容的教学
2、关心数学“学困生”
从试卷分析中,发现“低分段”的考生比例偏高,这些考生对容易基本题也不会做,说明这些学生在初中义务教育阶段没有掌握基本数学知识,从而成为提升初中数学教学质量此文来自优秀教育资源网斐斐,课件园的一大“颈瓶”,这不得不引起我们认真反思。

(1)抓好数学概念的入门教学,是提高理解能力的关键。

“不懂”是他们最难过的门槛,数学概念是反映一类对象空间形式和数量关系方面本质属性的思维形式。

加强数学概念教学,既可以帮助“学困生”加强对数学理论知识的理解,又可以培养学生[此文转于斐斐课件园 ]逻辑思维能力,起到“治本”的效果。

讲概念要寻根求源。

因为几乎每一个数学概念的引入都伴随着一个数学问题的背景,让“学困生”了解问题来龙去脉;具体到抽象、以旧引新引入新概念,用置换或改变条件的方法引入新概念。

如:等式和不等式、方程与等式、全等与对称等等,让他们了解数学概念之间联系与对立,减少概念之间的混淆。

让“学困生”用准确的语言讲述概念。

通过语言对“学困生”有组织、有系统的训练,重视引导“学困生”对概念中的关键字、词的理解,逐字逐句地推敲,如分辨“解不等式、不等式解、不等式解集”这三个既有联系又有区别的数学概念。

(2)针对“学困生”的“双基”的教学
“学困生”苦于缺乏学习的基础,数学的基本知识和基本技能的缺乏。

数学知识可以分为思辨性的和程序性的两类。

基础教育中的数学内容,很多属于程序性知识。

例如,分式的化简、有理数的运算、证明书写格式等,其记忆与运用,
都是反复训练学困生的教学内容;思辨性基本知识却要靠教师既有耐心而且有方法去引导、讲解,让他们渐进领悟,如函数问题,就是最典型的例子。

对于他们在讲授稍微复杂一点数学问题时,其主要知识点要经过与它配套知识点的连接,成为一条“知识链”,学困生“知识链”的“缺环”太多,要靠教师明察秋毫,教学中及时补缺,使学困生对数学问题的理解得以连续。

(3)要给“学困生”多一些体验学习数学快乐的机会
数学新教材中大量的“观察、思考、探究”等自主性学习活动,教师通过鼓励、关心和个别辅导,让学困生积极参与其中,对他们“点滴”成功方面,都应给予及时表扬,让他们拥有获得体验成功的喜悦。

如三角形全等判定、图形的平移、旋转方面探究活动,其中有许多是难度不大的数学活动,容易获得“成功”,这些“成功”有助于他们对数学知识的本质的理解,让更多学困生由“困学”向“愿学”实现转化的机会。

应面向全体,加强学法指导。

鉴于数学考试成绩“两极分化”严重的现状,在教学中一定要面向全体学生,鼓励学生自主探索和合作交流,促使学生将知识构成网络、形成系统,帮助学生认识自我,树立信心,提高综合应用知识的能力,努力实现让不同的学生得到不同的发展的教学目标。

相关文档
最新文档