(教师版)小学奥数4-1-4 几何中的空间想象.专项检测题及答案解析

合集下载

四年级奥数题空间想象与计数正方体

四年级奥数题空间想象与计数正方体

四年级奥数题正方体复习资料
有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?
答案与解析:
要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.
第一类,两个数字同为奇数.由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现奇数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.
第二类,两个数字同为偶数,类似第一类的.讨论方法,也有3×3=9种不同情形.
最后再由加法原理即可求解.
【答案】两个正方体向上的一面同为奇数共有3×3=9(种)不同的情形;
两个正方体向上的一面同为偶数共有
3×3=9(种)不同的情形.
所以,两个正方体向上的一面数字之和为偶数的共有
3×3+3×3=18(种)不同的情形.。

(教师版)小学奥数4-3-4 任意四边形、梯形与相似模型(二).专项检测题及答案解析

(教师版)小学奥数4-3-4 任意四边形、梯形与相似模型(二).专项检测题及答案解析

板块二 梯形模型的应用梯形中比例关系(“梯形蝴蝶定理”):A BCDO ba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.(具体的推理过程我们可以用将在第九讲所要讲的相似模型进行说明)【例 1】 如图,22S =,34S =,求梯形的面积.【考点】梯形模型 【难度】2星 【题型】解答 【解析】 设1S 为2a 份,3S 为2b 份,根据梯形蝴蝶定理,234S b ==,所以2b =;又因为22S a b ==⨯,所以1a =;那么211S a ==,42S a b =⨯=,所以梯形面积123412429S S S S S =+++=+++=,或者根据梯形蝴蝶定理,()()22129S a b =+=+=.【答案】9【巩固】 如下图,梯形ABCD 的AB 平行于CD ,对角线AC ,BD 交于O ,已知AOB △与BOC △的面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.例题精讲任意四边形、梯形与相似模型3525OABCD【考点】梯形模型 【难度】2星 【题型】填空 【解析】 根据梯形蝴蝶定理,2::25:35AOB BOC S S a ab ==,可得:5:7a b =,再根据梯形蝴蝶定理,2222::5:725:49AOB DOC S S a b ===,所以49DOC S =(平方厘米).那么梯形ABCD 的面积为25353549144+++=(平方厘米).【答案】144【巩固】 如图所示,在梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点O 。

已知AB =5,CD =3,且梯形ABCD 的面积为4,求三角形OAB 的面积。

(教师版)小学奥数4-2-1 基本图形的面积计算.专项检测题及答案解析

(教师版)小学奥数4-2-1 基本图形的面积计算.专项检测题及答案解析

小学数学平面图形计算公式:1 、正方形:周长=边长×4;面积=边长×边长2 、正方体:表面积=棱长×棱长×6;体积=棱长×棱长×棱长3 、长方形:周长=(长+宽)×2;面积=长×宽4 、长方体:表面积(长×宽+长×高+宽×高)×2;体积=长×宽×高 5、 三角形:面积=底×高÷2 6 平行四边形:面积=底×高7 梯形:面积=(上底+下底)×高÷2模块一、基本公式的应用【例1】 如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分。

则两个正方形的空白部分的面积相差多少平方厘米?【考点】基本图形的面积计算 【难度】2星 【题型】解答 【关键词】华杯赛,五年级,决赛,第9题,10分 【解析】 5×5-4×4=9(平方厘米),两个正方形的空白部分的面积相差9平方厘米。

【答案】9平方厘米【巩固】 如图12,边长为4cm 的正方形将边长为3cm 的正方形遮住了一部分,则空白部分的面积的差等于 2cm 。

【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,4年级,初赛,19题 【解析】 空白部分的面积差等于两个正方形的面积差,即⨯-⨯=44337(平方厘米)。

【答案】7平方厘米【例 2】 在一个正方形水池的四周,环绕着一条宽2米的路(如图),这条路的面积是120平方米,那么水池的面积是______ 平方米。

例题精讲知识点拨4-2-1.基本图形的面积计算水池【考点】基本图形的面积计算【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,19题【解析】四个边角的面积和为2×2×4=16,则水池的边长为:104÷2÷4=13,所以水池的面积是:13×13=169平方米。

小学六年级奥数知识点 关于空间想象力的综合训练题参考解答

小学六年级奥数知识点 关于空间想象力的综合训练题参考解答
9.没打洞之前正方体表面积共 6 × 3 × 3= 54,打洞后,表面积减少 6又增加 6×4(洞的表面积).即所得形体的表面积是54-6+24=72.
10.没涂色的小正方块共有8×8×8=512块,只有一面涂色的共有8×8×6=384块,恰有两个面为红色的共有8×12=96块,恰有三个面为红色的,共有8块.
17.不能将四个表面全染成黄色!理由如下:六个连续自然数被3除的余数必有两个0,两个1,两个2,当且仅当一个面三角形三边分别被3除余0、1、2时,这个面三角形周长被3整除,此面三角形染红色,我们设六个连续自然数被3除的余数分别为两个a,两个b,两个c.任取面△ABC,如是黄色,必有两棱(不妨设AB、AC)被3除余数同为 a ;设 AD被 3除余数为 b(≠a).这时 BD、 CD中总有一个是被3除余c的,即△ABD与△ACD中总有一个要染红色,因此,四面体的四个表面三角形不可能全染成黄色.
18.很明显,一个面上最多有5个方格可以染成红色,如图(a)所示.当一个面染成5个红色方格以后,与这个面有公共边的四个面,就不能再有同样的染法,但这个面的对面仍可染成5个红色方格,因此,至多有两个面可以染成5个红色的方格,其余四个面,每一个面的四个拐角处的方格不能染红,一个面至多如图(b)染上四个红格,但有公共边的两个面,不能都染成(b),只能有一组对面染成(b),另一组对面染成(c).采用以上步骤染成红色方格共有:
14.先前的正方体有6个面,每个面的面积是1平方米,共6平方米.无论后来锯成多少块,这6个面的6平方米总是后来的小木块的表面积的一部分.
再考虑到每锯一刀就会得到两个一平方米的表面,现在一共锯了 2+3+4=9刀,一共得到 18平方米的表面,因此总的表面积为:
6+(2+3+4)×2=24(平方米).

(教师版)小学奥数4-1-3 角度计算.专项检测题及答案解析

(教师版)小学奥数4-1-3 角度计算.专项检测题及答案解析

4-1-3.角度计算知识点拨一、角1、角的定义:自一点引两条射线所成的图形叫角2、表示角的符号:∠3、角的分类:锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种(1)锐角:大于0°,小于90°的角叫做锐角。

(2)直角:等于90°的角叫做直角。

(3)钝角:大于90°而小于180°的角叫做钝角。

(4)平角:等于180°的角叫做平角。

(5)优角:大于180°小于360°叫优角。

(6)劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

(7)周角:等于360°的角叫做周角。

(8)负角:按照顺时针方向旋转而成的角叫做负角。

(9)正角:逆时针旋转的角为正角。

(10)0角:等于零度的角。

4、角的大小:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

二、三角形1、三角形的定义:由三条边首尾相接组成的封闭图形叫做三角形2、内角和:三角形的内角和为180度;外角:(1)三角形的一个外角等于另外两个内角的和;(2)三角形的一个外角大于其他两内角的任一个角。

3、三角形的分类(1)按角分:锐角三角形:三个角都小于90度。

直角三角形:有一个角等于90度。

钝角三角形:有一个角大于90度。

注:锐角三角形和钝角三角形可统称为斜三角形(2)按边分:不等腰三角形;等腰三角形(含等边三角形)。

模块一、角度计算【例1】有下列说法:(1)一个钝角减去一个直角,得到的角一定是锐角,(2)一个钝角减去一个锐姥,得到的角不可能还是钝角.(3)三角形的三个内麓中至多有一个钝角.(4)三角形的三个内角中至少有两个锐角.(5)三角形的三个内角可以都是锐角.(6)直角三角形中可胄邕有钝角.(7)25︒的角用10倍的放大镜看就变成了250︒其中,正确说法的个数是【考点】角度计算【难度】3星【题型】填空【解析】几何问题(1)、(3)、(4)、(5)是正确的说法.【答案】(1)、(3)、(4)、(5)是正确的说法【例2】下图是3×3的正方形方格,∠1与∠2相比,较大的是_____。

小学奥数4-1-1几何图形的认识.专项练习及答案解析

小学奥数4-1-1几何图形的认识.专项练习及答案解析

知识点拨本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交:两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.边顶点(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角.锐角比直角小,钝角比直角大.直角锐角钝角(9)三角形:三角形有三条边,三个角,三个顶点.(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫斜边.(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).(14)四边形:四边形有四条边,内部有四个角.(15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角.(17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.顶角顶角边边角角角顶角边直角边斜边直角边腰腰底直角边直角边斜边腰腰底边边边角角角(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.(19)菱形:菱形的四条边都相等,对角分别相等.(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆.(21)扇形:(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆.腰腰下底上底半径直径半圆直径弧半径半径高宽长(26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱.底面底面(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.底面(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例1】请看下图,共有个圆圈。

小学奥数4-1-4 几何中的空间想象.专项练习及答案解析

小学奥数4-1-4 几何中的空间想象.专项练习及答案解析

空间想象不仅是认识现实世界空间形式不可缺少的能力因素,而且是形成和发展创造力的源泉,因此,空间想象能力是数学教学必须培养的基本数学能力之一。

空间想象能力的培养与几何教学有关。

直观几何教学的主要任务是通过学生制作模型、搭积木、画图、识图,对图形进行描述、分类、整理等学习活动,认识、理解我们所处的现实世界的几何空间,以形成空间观念。

综合几何教学的主要任务是运用逻辑推理的方法研究图形的性质,帮助学生从逻辑的角度进一步弄清几何空间的意义,学会几何思考的方法,培养空间想象能力和逻辑推理能力。

模块一、对称图形【例 1】 将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,再展开正方形纸片,得到图1中的 。

(填序号)①②③④【考点】几何中的空间想象 【难度】1星 【题型】填空 【解析】 逆推法③ 【答案】③【例 2】 (希望杯五年级一试第8题,6分)下面四幅图形中不是轴对称图形的是 。

(填序号)(注:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做对称图形。

)例题精讲知识点拨4-1-4.几何中的空间想象【考点】几何中的空间想象【难度】1星【题型】填空【解析】③④【答案】③④模块二、平面图形【例3】(希望杯四年级二试第5题,6分)将一张长方形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定是。

(填“三角形”、“长方形”、“梯形”或“菱形”)②展开①【考点】几何中的空间想象【难度】2星【题型】填空【解析】菱形【答案】菱形【例4】(希望杯六年级一试第18题,6分)如图,房间里有一只老鼠,门外有一只小猫,如果每块正方形地砖的连长为50厘米,那么老鼠在地面上能避开小猫视线的活动范围为_________平方厘米.(将小猫和老鼠分别看作两个点,墙的厚度忽略不计)猫【考点】几何中的空间想象【难度】4星【题型】填空【解析】猫看不到的地方如图所示阴影部分,其中梯形面积为(1+3.5)×2.5÷2=5.625平方米.三角形的面积为2×1÷2=1平方米.老鼠的活动范围共6.625平方米,即66250平方厘米.【答案】66250平方厘米模块三、立体图形【例5】用红、黄、蓝、白、黑、绿六种颜色分别涂在正方体的各个面上,每一个面只涂一种颜色.如图所示,现有涂色方式完全一样的四块小正方体拼成了一个长方体.试回答:每个小正方体中,红色面的对面涂的是什么色?黄色面的对面涂的是什么色?黑色面的对面是什么色?【考点】几何中的空间想象【难度】3星【题型】解答【解析】在能看见的9个面中红色出现的次数最多.观察图8—4中最上面的一个正方体,由于红色和黑色、黄色相邻,所以它的对面不可能是黑黄两色.同理,由第二个正方体可知,红色的对面不能是白色;由第三个正方体知,红色的对面不能是蓝色.所以红色的面的对面只可能是绿色.同理,黄色面的对面不可能是红色、黑色或白色,又已推知不可能是绿色,所以黄色面的对面只可能是蓝色.这样黑色面的对面就只可能是涂白色的了.【答案】红色的对面是绿色黄色的对面是蓝色黑色的对面是白色【例 6】 将“猫”“狗”“兔”“鸡”“猴”“虎”六个动物名称分别写在六个正方体的六个面上,从下面三种不同摆法中,判断这个正方体上哪些动物名名称分别写在相对面上.兔狗猫鸡狗兔猫猴兔【考点】几何中的空间想象 【难度】3星 【题型】解答 【解析】本题给的是一组立方图形,在这三幅图中,“兔”所在的一面始终不改变位置,因此,这三个图的转化只能是前后转动.把第一幅图向后反转一次得到第二幅图,由此可知,“猫”的对面是“鸡”;把第一幅图向前翻转一次得到第三幅图,所以“狗”的对面是“猴”,那么剩下的只有“兔”和“虎”相对.【答案】猫的对面是鸡;狗的对面是猴; 兔的对面是虎。

【教师必备】小学奥数4-2-4 图形的分割.专项检测及答案解析

【教师必备】小学奥数4-2-4 图形的分割.专项检测及答案解析

几何面积问题除了利用常规的五大模型、各种公式求得之外,还可以用图形分割的思想来做。

我们发现,在迎春杯几何问题中,这类题目很多。

掌握好这种思想方法,可以帮助我们解决很多几何难题。

解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。

解题思想:这其实就是一种化整为零的思想,各位同学不仅要学会几何题中的这种方法,更要细细体味这种思想在解决各种问题中的妙用。

模块一、简单分割【例 1】 3个相同的正方形纸片按相同的方向叠放在一起(如图),顶点A 和B 分别与正方形中心点重合,如果所构成图形的周长是48厘米,那么这个图形覆盖的面积是__________平方厘米.【考点】图形的分割 【难度】2星 【题型】填空 【关键词】迎春杯,中年级组,复试,4题 【解析】 将这3个正方形分割,可知这个图形的周长即为两个正方形纸片的周长之和,故正方形边长为48÷8=6(厘米),则图中每个分割得到的小正方形边长为6÷2=3(厘米),所以这个图形覆盖的面积为6×6×2+3×3×2=90(平方厘米)。

【答案】90平方厘米【例 2】 正方形ABCD 的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.DCB A【考点】图形的分割 【难度】2星 【题型】解答 【解析】 四条边分别向两端各延长一倍,很容易可以观察出,大正方形有9个小正方形组成,所以,大正方形的面积是:199⨯=(平方米).例题精讲知识点拨4-2-4.图形的分割【答案】9平方米【例 3】 将边长为a 的正方形各边的中点连结成第二个正方形,再将第二个正方形各边的中点连结成第三个正方形,依此规律,继续下去,得到下图那么,边长为a 的正方形面积是图中阴影部分面积的________ 倍.【考点】图形的分割 【难度】3星 【题型】填空 【关键词】希望杯,四年级,复赛,第6题,4分 【解析】 阴影部分是大正方形的0.5×0.5×0.5×0.5=116,所以正方形是阴影的16倍 【答案】16倍【例 4】 正三角形ABC 的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.CBA【考点】图形的分割 【难度】3星 【题型】解答 【解析】 采用分割法,过A 、B 、C 分别作平行线,得到右上图,其中所有小三角形的面积都相同,所以六边形面积等于13平方米.【答案】13平方米【例 5】 正六边形ABCDEF 的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.FED CB A FAB CDE【考点】图形的分割 【难度】3星 【题型】解答 【解析】 采用分割法,连接正六边形的对角线,会发现,所有的三角形面积都相同,一共有12个小三角形,原来正六边形的面积是1平方米,由6个小三角形组成,所以现在的大图形的面积是:122⨯= (平方米)【答案】2平方米【例 6】 长方形ABCD 的面积是40平方厘米,E 、F 、G 、H 分别为AC 、AH 、DH 、BC 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间想象不仅是认识现实世界空间形式不可缺少的能力因素,而且是形成和发展创造力的源泉,因此,空间想象能力是数学教学必须培养的基本数学能力之一。

空间想象能力的培养与几何教学有关。

直观几何教学的主要任务是通过学生制作模型、搭积木、画图、识图,对图形进行描述、分类、整理等学习活动,认识、理解我们所处的现实世界的几何空间,
以形成空间观念。

综合几何教学的主要任务是运用逻辑推理的方法研究图形的性质,帮助学生从逻辑的角度进一步弄清几何空间的意义,学会几何思考的方法,培养空间想象能力和逻辑推理能力。

模块一、对称图形
【例 1】 将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一
个圆洞,再展开正方形纸片,得到图1中的 。

(填序号)
① ② ③ ④
【考点】几何中的空间想象 【难度】1星 【题型】填空 【解析】 逆推法③ 【答案】③
【例 2】 (希望杯五年级一试第8题,6分)
下面四幅图形中不是轴对称图形的是。

(填序号)(注:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重
合,那么这个图形叫做对称图形。


【考点】几何中的空间想象 【难度】1星 【题型】填空 【解析】 ③④ 【答案】③④
模块二、平面图形
例题精讲
知识点拨
4-1-4.几何中的空间想象
【例3】(希望杯四年级二试第5题,6分)将一张长方形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定
是。

(填“三角形”、“长方形”、“梯形”或“菱形”)

展开

【考点】几何中的空间想象【难度】2星【题型】填空
【解析】菱形
【答案】菱形
【例4】(希望杯六年级一试第18题,6分)如图,房间里有一只老鼠,门外有一只小猫,如果每块正方形地砖的连长为50厘米,那么老鼠在地面上能避开小猫视线的活
动范围为_________平方厘米.(将小猫和老鼠分别看作两个点,墙的厚度忽略不
计)

【考点】几何中的空间想象【难度】4星【题型】填空
【解析】
猫看不到的地方如图所示阴影部分,其中梯形面积为(1+3.5)×2.5÷2=5.625平方米.三角形的面积为2×1÷2=1平方米.老鼠的活动范围共6.625平方米,即66250平方厘米.【答案】66250平方厘米
模块三、立体图形
【例5】用红、黄、蓝、白、黑、绿六种颜色分别涂在正方体的各个面上,每一个面只涂一种颜色.如图所示,现有涂色方式完全一样的四块小正方体拼成了一个长方
体.试回答:每个小正方体中,红色面的对面涂的是什么色?黄色面的对面涂的
是什么色?黑色面的对面是什么色?
【考点】几何中的空间想象 【难度】3星 【题型】解答 【解析】 在能看见的9个面中红色出现的次数最多.观察图8—4中最上面的一个正方体,
由于红色和黑色、黄色相邻,所以它的对面不可能是黑黄两色.同理,由第二个正方体可知,红色的对面不能是白色;由第三个正方体知,红色的对面不能是蓝色.所以红色的面的对面只可能是绿色.同理,黄色面的对面不可能是红色、黑色或白色,又已推知不可能是绿色,所以黄色面的对面只可能是蓝色.这样黑色面的对面就只可能是涂白色的了.
【答案】红色的对面是绿色 黄色的对面是蓝色
黑色的对面是白色
【例 6】 将“猫”“狗”“兔”“鸡”“猴”“虎”六个动物名称分别写在六个正方体的六个
面上,从下面三种不同摆法中,判断这个正方体上哪些动物名名称分别写在相对面上.


猫鸡
狗兔

猴兔
【考点】几何中的空间想象 【难度】3星 【题型】解答 【解析】 本题给的是一组立方图形,在这三幅图中,“兔”所在的一面始终不改变位置,因
此,这三个图的转化只能是前后转动.把第一幅图向后反转一次得到第二幅图,由此可知,“猫”的对面是“鸡”;把第一幅图向前翻转一次得到第三幅图,所以“狗”的对面是“猴”,那么剩下的只有“兔”和“虎”相对.
【答案】猫的对面是鸡;
狗的对面是猴; 兔的对面是虎。

【例 7】 将A 、B 、C 、D 、E 、F 六个字母分别写在正方体的六个面上,从下面三种不同摆
法中判断这个正方体中,哪些字母分别写在相对的面上.
(a )
C
B A (b )
B D C
(c )
C
A E
【考点】几何中的空间想象 【难度】3星 【题型】解答 【解析】 本题所给的是一组立体几何图形.但是,我们注意到:由于图(a )、(b )、(c )都是
同一个正方体的不同摆法,所以,(a )、(b )、(c )可以通过旋转来互相转化,这三个图形中,字母C 所在的一面始终不改变位置.因此,这三个图形的转化只能是前后转动.把图(a )向后翻转一次(90°)得图(b ),由此可知,字母A 的对面是D ,把图(a )向前翻转一次(90°)得图(c ),所以,字母B 的对面是字母E ,最后得出只有字母C 、F 相对.所以,正方体中,相对的字母分别是A —D 、B —E 、C —F .
【答案】A —D 、B —E 、C —F
【例 8】 如图,一个正四面体摆在桌面上,正对称的面ABC 是红色,底面BCD 是白色,右
侧面ACD 是蓝色,左侧面ABD 是黄色.先让四面体绕底面面对你的棱向你翻转,再让它绕底面右侧棱翻转,第三次绕底面面对你的棱向你翻转,第四次绕底面左侧棱翻转,此后依次重复上述操作过程.问:按规则完成第一百次操作后,面对你的面是什么颜色?
D
C
B
A
【考点】几何中的空间想象 【难度】4星 【题型】解答 【解析】 由于翻转的次数太多,我们只能先按题述的规则顺序翻转几次,试着寻找翻转过程
中的规律,再考虑多次翻转以后的结果.下图演示了4次翻转的过程:
A
D
C
B
A
D
C
B
A
D
C
B
A
D
C
B
D
C
B
A
由图可见,按题述规则进行了4次翻转以后,原来的正四面体ABCD 的方向恰好发生了一次完全的变化:底面面对你的棱BC 转成了CB ,而不与BC 在同一平面内的侧棱AD 则转成了DA .那么不难想像,再经过规则所述的4次翻转,正四面体ABCD 的方向将转回最初的位置.这就告诉我们,这样的翻转是每8次一循环的.
由上述分析可见,题述的翻转以8次为一循环,又因为100÷8=12……4,所以100次翻转操作以后,正四面体ABCD 的摆放位置将如图8—11的第五个图形所示,当时面对你的面应为面BCD ,其颜色为白色. 【答案】白色
【例
9】 右图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的
正方形。

问这个直三棱柱的体积是多少?
【考点】几何中的空间想象 【难度】4星 【题型】解答 【关键词】华杯赛,初赛,第3题
【解析】 直三棱柱的体积是12×1×1×1=1
2
(立方米)
【答案】1
2。

相关文档
最新文档