小学奥数几何模拟试题(含答案)
小学奥数题库《几何》-直线型-金字塔和沙漏模型-0星题(含解析)

几何-直线型几何-金字塔和沙漏模型-0星题课程目标知识提要金字塔和沙漏模型• 金字塔模型CD CA =CE CB =DEAB • 沙漏模型AB CD =AO DO =BO CO 精选例题金字塔和沙漏模型1. ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,那么图中阴影局部的面积为平方厘米.【答案】48【分析】方法一:设G 、H 分别为AD 、DC 的中点,连接GH 、EF 、BD . 可得 S △AED =14S 平行四边形ABCD , 对角线BD 被EF 、AC 、GH 平均分成四段,又OM ∥ EF ,所以 DO:ED =24BD:34BD =2:3, OE:ED =(ED −OD ):ED =(3−2):3=1:3, 所以S △AEO =13×14S 平行四边形ABCD =13×14×72=6(平方厘米), S △ADO =2×S △AEO =12(平方厘米).同理可得S △CFM =6(平方厘米),S △CDM =12(平方厘米).所以S△ABC−S△AEO−S△CFM=36−6−6=24(平方厘米),于是,阴影局部的面积为24+12+12=48(平方厘米).方法二:寻找图中的沙漏,AE:CD=AO:OC=1:2,FC:AD=CM:AM=1:2,因此O,M为AC的三等分点,S△ODM=16S平行四边形ABCD=16×72=12(平方厘米),S△AEO=14S△OCD=14×12×2=6(平方厘米),同理S△FMC=6(平方厘米),所以S阴影=72−12−6−6=48(平方厘米).2. 如图,△ABC中,DE,FG,MN,PQ,BC互相平行,AD=DF=FM=MP=PB,那么S△ADE:S四边形DEGF :S四边形FGNM:S四边形MNQP:S四边形PQCB=.【答案】1:3:5:7:9【分析】设S△ADE=1份,S△ADE:S△AFG=AD2:AF2=1:4,因此S△AFG=4份,进而有S四边形DEGF =3份,同理有S四边形FGNM=5份,S四边形MNQP=7份,S四边形PQCB=9份.所以有S△ADE:S四边形DEGF:S四边形FGNM:S四边形MNQP:S四边形PQCB=1:3:5:7:9.3. 图中的大小正方形的边长均为整数〔厘米〕,它们的面积之和等于52平方厘米,那么阴影局部的面积是平方厘米.【答案】10.8【分析】设大、小正方形的边长分别为m厘米、n厘米〔m>n〕,那么m2+n2=52,所以m<8.假设m⩽5,那么m2+n2<52×2=50<52,不合题意,所以m只能为6或7.检验可知只有m=6、n=4满足题意,所以大、小正方形的边长分别为6厘米和4厘米.根据相似三角形性质,BG:GF=AB:FE=6:4=3:2,而BG+GF=6,得BG=3.6(厘米),所以阴影局部的面积为:1 2×6×3.6=10.8(平方厘米).4. 如图,DE平行BC,假设AD:DB=2:3,那么S△ADE:S△ECB=.【答案】4:15【分析】根据金字塔模型AD:AB=AE:AC=DE:BC=2:(2+3)=2:5,S△ADE:S△ABC= 22:52=4:25,设S △ADE =4份,那么S △ABC =25份,S △BEC =25÷5×3=15份,所以S △ADE :S △ECB =4:15.5. 如图,DE 平行BC ,BO:EO =3:2,那么AD:AB =.【答案】2:3【分析】由沙漏模型得BO:EO =BC:DE =3:2,再由金字塔模型得AD:AB =DE:BC =2:3.6. 梯形ABCD 的面积为12,AB =2CD ,E 为AC 的中点,BE 的延长线与AD 交于F ,四边形CDFE 的面积是.【答案】83【分析】延长BF 、CD 相交于G .由于E 为AC 的中点,根据相似三角形性质,CG =AB =2CD, GD =12GC =12AB, 再根据相似三角形性质,AF:FD =AB:DG =2:1, GF:GB =1:3,而S △ABD :S △BCD =AB:CD =2:1,所以 S △BCD =13S ABCD =13×12=4, S △GBC =2S △BCD =8.又S △GDF S △GBC =12×13=16, S △EBC =12S △GBC , 所以S CDFE =(1−12−16)S △GBC =13S △GBC =83. 7. 如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,且图中两个阴影局部〔甲和乙〕的面积差是5.04,那么S △ABC =.【答案】20.16【分析】由于D ,E 都是中点,那么BC =2DE ,设DE 为1份,那么BC 为2份,根根据梯形中的蝴蝶模型,得到甲是1份,乙是4份,两个翅膀都是2份,由此可推出△ADE 为3份,且每份为5.04÷(4−1)=1.68,所以S △ABC =1.68×(3+1+4+2+2)=20.168. 如图,△ABC 中,DE ,FG ,BC 互相平行,AD =DF =FB ,那么S △ADE :S 四边形DEGF :S 四边形FGCB =.【答案】1:3:5【分析】设S △ADE =1份,根据面积比等于相似比的平方,所以S △ADE :S △AFG =AD 2:AF 2=1:4,S △ADE :S △ABC =AD 2:AB 2=1:9,因此S △AFG =4份,S △ABC =9份,进而有S 四边形DEGF =3份,S 四边形FGCB =5份,所以S △ADE :S 四边形DEGF :S 四边形FGCB =1:3:5.9. 如下列图所示,三角形田地中有两条小路AE 和CF ,交叉处为D .张大伯常走这两条小路,他知道DF =DC ,且AD =2DE .那么两块田地ACF 和CFB 的面积比是.【答案】1:2【分析】方法一:如下列图所示,ACF 和CFB 为同高三角形,所以面积比等于底边比AF:FB . 过F 作BC 的平行线,交AE 于G ,那么因为DF =DC ,所以三角形CED 和FGD 全等,GD =DE .又因为AD =2DE ,所以D 和G 是AE 的三等分点,所以AF:FB =AG:GE =1:2.方法二:如下列图所示,连接BD ,设S △CED =1(份),那么S △ACD =S △ADF =2(份). 设S △BED =x,S △BFD =y ,那么有{x +1=y 2x =y +2,解得{x =3y =4. 所以S △ACF :S △CFB =(2+2):(4+3+1)=1:2.10. 在下列图中,线段AE 、FG 将长方形ABCD 分成了四块;其中两块的面积分别是2平方厘米、11平方厘米,且E 是BC 的中点,O 是AE 的中点.请问长方形ABCD 的面积是平方厘米.【答案】28【分析】如下列图所示,延长AE 、DC 交于点H .由于E 是BC 的中点,由AB ∥CH ,有AE:EH =BE:EC =1:1,由于O 是AE 中点,那么AO:OH =1:3.由AF ∥GH ,有S △AOF :S △GOH =12:32=1:9.所以,S △GOH =2×9=18(平方厘米),那么S △CEH =18−11=7(平方厘米).所以,S 平行四边形ABCD =4S △ABE =4S △CEH =4×7=28(平方厘米).11. 如下列图所示,将边长8厘米和12厘米的两个正方形并放在一起,那么图中阴影三角形的面积是平方厘米.【答案】43.2【分析】给图中标上字母,如下列图.根据沙漏模型OC OF =BC EF =812=23.所以OF =12×32+3=7.2(厘米).S △EFO =7.2×12÷2=43.2(平方厘米). 12. 如图,△ABC 中,AE =14AB ,AD =14AC ,ED 与BC 平行,△EOD 的面积是1平方厘米.那么△AED 的面积是平方厘米.【答案】53 【分析】因为AE =14AB ,AD =14AC ,ED 与BC 平行,根据相似模型可知ED:BC =1:4,EO:OC =1:4,S △COD =4S △EOD =4平方厘米,那么S △CDE =4+1=5平方厘米,又因为S △AED :S △CDE =AD:DC =1:3,所以S △AED =5×13=53(平方厘米).13. 如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,BG:GC =3:1,那么四边形EFGH 的面积=.【答案】3【分析】因为FGHE 为平行四边形,所以EC ∥AG ,所以AGCE 为平行四边形.BG:GC =3:1,那么GC:BC =1:4,所以S 平行四边形AGCE =14×S 平行四边形ABCD =14×16=4.又AE=GC,所以AE:BG=GC:BG=1:3,根据沙漏模型,FG:AF=BG:AE=3:1,所以S平行四边形FGHE =34S平行四边形AGCE=34×4=3.14. 正六边形A1,A2,A3,A4,A5,A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正六边形各边的中点.请问下列图中阴影六边形的面积是平方厘米.【答案】1148【分析】方法一:如下左图,连接A1A3,A1G,A6A3,过B6做A6A3的平行线B6E,交A1A3于E.因为空白的面积等于△A2A3G面积的6倍,所以关键求△A2A3G的面积,在△A1A2A3中用燕尾模型时,需要知道A1D,A3D的长度比,根据沙漏模型得A1D=DE,再根据金字塔模型得A1E=A3E,因此A1D:A3D=1:3,在△A1A2A3中,设S△A1A2G =1份,那么S△A2A3G=3份,S△A3A1G =3份,所以S△A2A3G=37S△A1A2A3=37×13×12S正六边形=114S正六边形,因此S阴影=(1−114×6)S正六边形=47×2009=1148(平方厘米).方法二:既然给的图形是特殊的正六边形,且阴影也是正六边形,我们可以用上图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为8 14×2009=1148(平方厘米).15. 如图,三角形ABC的面积为60平方厘米,D、E、F分别为各边的中点,那么阴影局部的面积是平方厘米.【答案】12.5【分析】阴影局部是一个不规那么的四边形,不方便直接求面积,可以将其转化为两个三角形的面积之差.而从图中来看,既可以转化为△BEF与△EMN的面积之差,又可以转化为△BCM 与△CFN的面积之差.〔法一〕如图,连接DE.由于D、E、F分别为各边的中点,那么BDEF为平行四边形,且面积为三角形ABC面积的一半,即30平方厘米;那么△BEF的面积为平行四边形BDEF面积的一半,为15平方厘米.根据几何五大模型中的相似模型,由于DE为三角形ABC的中位线,长度为BC的一半,那么EM:BM=DE:BC=1:2,所以EM=13 EB;EN:FN=DE:FC=1:1,所以EN=12 EF.那么△EMN的面积占△BEF面积的12×13=16,所以阴影局部面积为15×(1−16)=12.5(平方厘米).〔法二〕如图,连接AM.根据燕尾定理,S△ABM:S△BCM=AE:EC=1:1,S△ACM:S△BCM=AD:DB=1:1,所以S△BCO=13S△ABC=13×60=20(平方厘米),而S△BDC=12S△ABC=12×60=30(平方厘米),S △FCN =14S △BDC =7.5(平方厘米), 那么阴影局部面积为20−7.5=12.5(平方厘米).【总结】求三角形的面积,一般有三种方法:〔1〕利用面积公式:底×高÷2;〔2〕利用整体减去局部;〔3〕利用比例和模型.16. 在图中的正方形中,A 、B 、C 分别是ED 、EG 、GF 的中点.请问:三角形CDO 的面积是三角形ABO 面积的几倍?【答案】3倍.【分析】不妨设正方形的边长是2,所以FC =CG =GB =BE =EA =AD =1.又A 、C 分别是所在边的中点,所以AC ∥GE ,即OA ∥BE ,由此可见OA 是△DBE 的中位线,有OA BE =12,所以△OAD 的面积是 12×1÷2=14. △AOB 的面积等于△BAD 的面积减去△AOD 的面积,等于 1×1÷2−14=14. △COD 的面积等于△CAD 的面积减去△AOD 的面积,等于 2×1÷2−14=34. 由此可得,△CDO 的面积是△ABO 面积的3倍.17. 如下图,梯形ABCD 的面积是50,下底长是上底长的1.5倍,阴影三角形的面积是多少?【答案】18.【分析】上底与下底的长度比为2:3,设△OCD 面积是4份,那么△AOD 与△BOC 的面积均为6份,△ABO 的面积为9份,总面积为50,故一份所对应的面积为2,那么△ABO 的面积为18.18. 如图,平行四边形ABCD 的面积是12,DE =13AD,AC 与BE 的交点为F ,那么图中阴影局部面积是多少?【答案】4.4.【分析】AE:BC =2:3,设份数可知ABCD 为30份,△AEF 为4份,阴影局部占11份,面积为4.4.19. 正方形ABCD ,过C 的直线分别交AB 、AD 的延长线于点E 、F ,且AE =10cm ,AF =15cm ,求正方形ABCD 的边长.【答案】6【分析】方法一:此题有两个金字塔模型,根据这两个模型有BC:AF =CE:EF,DC:AE =CF:EF,设正方形的边长为xcm ,所以有 BC AF +DC AE =CE EF +CF EF =1, 即 x 15+x 10=1,x=6,所以正方形的边长为6cm.方法二:或根据一个金字塔模型,列方程即x 10=15−x15,解得x=6.20. 如下图,梯形的面积是48平方厘米,下底是上底的3倍,求阴影局部的面积.【答案】27平方厘米.【分析】上底与下底之比为1:3,由沙漏模型可知四个三角形的面积之比是1:3:3:9,那么阴影局部的面积是48÷(1+3+3+9)×9=27平方厘米.21. 如下列图,D、E、F、G均为各边的三等分点,线段EG和DF把三角形ABC分成四局部,如果四边形FOGC的面积是24平方厘米,求三角形ABC的面积.【答案】40.5【分析】设三角形以AB为底的高为ℎ,由于FG:AB=2:3,所以ED:FG=1:2;所以三角形OGF以GF为底的高是1 3ℎ×23=29ℎ;又因为三角形CFG以FG为底的高是23ℎ,所以三角形OGF的面积与三角形CGF的面积之比为29ℎ:23ℎ=1:3,所以三角形CFG的面积为24×33+1=18(平方厘米),而三角形CFG的面积占三角形ABC的23×23=49,所以三角形ABC的面积是18÷49=40.5(平方厘米).22. 如下图,正方形ABCD面积为1,E、F分别是BC和DC的中点,DE与BF交于M点,DE与AF 交于N点,那么阴影三角形MFN的面积是多少?【答案】130【分析】如下列图,延长AF、BC交于点G,在沙漏ADNEG中,AD:EG=2:3,所以DN:NE=2:3,故DN=25DE.如下列图,延长BF、AD交于点H,在沙漏DHMBE中,DH:BE=2:1,所以DM:ME=2:1,故ME=13DE.所以NM=(1−25−13)DE=415DE,故S△MFN=415S△DFE=415×12×S△DCE=415×12×14=130.23. 如图,长方形ABCD中,E、F分别为CD、AB边上的点,DE=EC,FB=2AF,求PM:MN:NQ.【答案】7:18:10【分析】如图,过E作AD的平行线交PQ于G.由于E是DC的中点,所以G是PQ的中点.由于DE=EC,FB=2AF,所以AF:DE=2:3,BF:CE=4:3.根据相似性,PM:MG=AM:ME=AF:DE=2:3,GN:NQ=EN:NB=EC:BF=3:4,于是PM=25 PG,MN=35PG+37GQ=3635PG,NQ=47GQ=47PG,所以PM:MN:NQ=25:3635:47=7:18:10.24. 如图,DE平行BC,且AD=2,AB=5,AE=4,求AC的长.【答案】10【分析】由金字塔模型得AD:AB=AE:AC=DE:BC=2:5,所以AC=4÷2×5=10.25. 如图,正方形ABCD中E是BC边的中点,AE与BD相交于F点,三角形DEF的面积是2,那么正方形ABCD的面积是_________.【答案】12【分析】左边梯形ABED,因为E为BC的中点,所以BE:AD=1:2所以BF:FD=1:2又因为三角形DEF的面积是2所以三角形BEF的面积是1,三角形ABF的面积为2,三角形AFD的面积为4而S△BED=S△DEC,所以S△DEC=3S△ABCD=1+2+2+4+3=1226. 如图:MN平行BC,S△MPN:S△BCP=4:9,AM=4cm,求BM的长度.【答案】2cm【分析】在沙漏模型中,因为S△MPN:S△BCP=4:9,所以MN:BC=2:3,在金字塔模型中有:AM:AB=MN:BC=2:3,因为AM=4cm,AB=4÷2×3=6cm,所以BM=6−4=2cm.27. 如图,正方形ABCD的边长是6,E点是BC的中点,求△AOD的面积.【答案】12.【分析】连结DE,因为BE与AD之比是1:2,可如下图设份数,可知△AOD的面积是正方形面积的三分之一,是12.28. 在图中的正方形中,A,B,C分别是所在边的中点,△CDO的面积是△ABO面积的几倍?【答案】3【分析】连接BC,易知OA∥EF,可知OB:OD=AE:AD,且OA:BE=DA:DE=1:2,所以△CDO的面积等于△CBO的面积;由OA=12BE=14AC可得CO=3OA,所以S△CDO=S△CBO=3S△ABO,即△CDO的面积是△ABO面积的3倍.29. 如下列图,正方形ABCD的面积为1,M是CD边的中点,E,F是BC边上的两点,且BE= EF=FC.连接AE,DF分别交BM分别于H,G.求四边形EFGH的面积.【答案】23210【分析】过M点做MQ平行于BC交FD于Q,过E点做EP交BM于P,那么因为M为CD的中点,所以QM:FC=1:2,所以QM:BF=1:4,所以GM:GB=1:4,所以BG:BM=4:5,又因为BF:BC=2:3,所以S△BFG=45×23S△BCM=215,因为E为BC边上三等分点,所以EP:CM=1:3,所以EP:AB=1:6,所以BH:HP=6:1,所以BH:HM=6:15=2:5,所以BH:BM=2:7,又因为GM:GB=1:4,所以BH:BG=5:14,所以S△BEH=514×12S△BFG=142,因此,S 阴=215−142=23210.30. 如图,EF与BC平行,AF:FB=1:2.AE=2,EF=3,那么CE的长度是多少?AC的长度是多少?BC的长度是多少?【答案】4,6,9.【分析】AFFB =AEEC=12,可求出CE=4,AC=6,EFBC=AFAB=13,可求出BC=9.31. 如下图,在正方形ABCD中,E,F分别是BC,CD的中点,正方形ABCD的面积为60平方厘米,求阴影局部的面积.【答案】10平方厘米.【分析】由条件知,BE=AD=1:2,那么BG:GD=1:2,BG=13BD,同理,DF:AB=1:2,那么DH:HB=1:2,DH=13BD,由此可得,GH=13BD,阴影局部面积为60÷2÷3=10平方厘米.32. 如图,将一个边长为2的正方形两边长分别延长1和3,割出图中的阴影局部,求阴影局部的面积是多少?【答案】130【分析】根据相似三角形的对应边成比例有:NF 1+2=3 2+3,EM 2+3=1 1+2,那么NF=59,EM=53,所以S 阴=12×(2−95)×(2−53)=130.33. 如右图,长方形ABCD中,EF=16,FG=9,求AG的长.【答案】15【分析】因为DGGB =AGGE=AG25,且DGGB=FGGA=9AG,所以AG25=9AG即AG2=25×9=225,所以AG=15.34. 下列图中正方形的面积为1,E、F分别为AB、BD的中点,GC=13FC.求阴影局部的面积.【答案】524【分析】题中条件给出的都是比例关系,由此可以初步推断阴影局部的面积要通过比例求解,而图中出现最多的就是三角形,那么首先想到的就是利用相似三角形的性质.阴影局部为三角形,底边为正方形边长的一半,只要求出高,便可求出面积.可以作FH垂直BC于H,GI垂直BC于I.根据相似三角形性质,CI:CH=CG:CF=1:3,又因为CH=HB,所以CI:CB=1:6,即BI:BC=(6−1):6=5:6,所以S△BGE=12×12×56=524.35. 如下图,小高测出家里瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?【答案】64【分析】利用平行线中的线段比例关系来计算.把瓷砖右下角的直角三角形标上字母〔如下图〕,同时过B作BC⊥AG于C,DE⊥FG于E.由于BC与FG平行,所以BC FG =ACAG=214=17,因此BC=17×FG=17×7=1.由于DE与AG平行,所以DE AG =FEFG=27,因此DE=27×AG=27×14=4.由此可得菱形的两条对角线分别为:24−4×2=16(厘米),10−1×2=8(厘米).那么菱形的面积就是16×8÷2=64(平方厘米).36. 如图,线段AB与BC垂直,AD=EC=4,BD=BE=6,那么图中阴影局部面积是多少?【答案】15【分析】解法一:这个图是个对称图形,且各边长度已经给出,不妨连接这个图形的对称轴看看.作辅助线BO,那么图形关于BO对称,有S△ADO=S△CEO,S△DBO=S△EBO,且S△ADO:S△DBO=4:6=2:3.设△ADO的面积为2份,那么△DBO的面积为3份,直角三角形ABE的面积为8份.因为S△ABE=6×10÷2=30,而阴影局部的面积为4份,所以阴影局部的面积为30÷8×4=15.解法二:连接DE、AC.由于AD=EC=4,BD=BE=6,所以DE∥AC,可知DE:AC=BD:BA=6:10=3:5,根据梯形蝴蝶定理,S△DOE:S△DOA:S△COE:S△COA=32:(3×5):(3×5):52=9:15:15:25,所以S阴影:S梯形ADEC=(15+15):(9+15+15+25)=15:32,即S阴影=1532S梯形ADEC;又S梯形ADEC =12×10×10−12×6×6=32,所以S阴影=1532S梯形ADEC=15.37. 如图,长方形ABCD中,E为AD的中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,AH=5cm,HF=3cm,求AG.【答案】4013cm【分析】由于AB∥DF,利用相似三角形性质可以得到AB:DF=AH:HF=5:3,又因为E为AD中点,那么有OE:FD=1:2,所以AB:OE=5:32=10:3,利用相似三角形性质可以得到AG:GO=AB:OE=10:3,而AO=12AF=12×(5+3)=4(cm),所以AG=4×1013=4013(cm).38. 如下图,梯形ABCD 的上底AD 长10厘米,下底BC 长15厘米.如果EF 与上、下底平行,那么EF 的长度为多少?【答案】12厘米.【分析】在沙漏ADOBC 中,OA OC =AD BC =23,于是AO AC =25〔如下图〕. 由于EO ∥BC ,因此EO BC=AO AC=25,即EO =25×BC =25×15=6(厘米).同理,OF 也等于6厘米,所以EF =EO +OF =6+6=12(厘米).39. 如下图,三角形ABC 中,DE 与BC 平行,且AD:DB =5:2,求AE:EC 及DE:BC .【答案】5:2,5:7【分析】根据金字塔模型的结论即可直接得出答案.40. 三角形ABC 的面积为a ,AF:FC =2:1,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影局部的面积. 【答案】a18【分析】AF:FC =2:1,且EF ∥BC ,可知EF:BC =AF:AC =2:3,所以EF =23BC ,且S △AEF :S △ABC =4:9.又因为E 是BD 的中点,所以EG 是三角形DBC 的中位线,那么EG =12BC ,EG:EF =12:23=3:4,所以GF:EF =1:4,可得S △CFG :S △AFE =1:8,所以S △CFG :S △ABC =1:18,那么S △CFG =a18.41. 如图,三角形ABC 是一块锐角三角形余料,边BC =120毫米,高AD =80毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?【答案】48【分析】观察图中有金字塔模型5个,用与边有关系的两个金字塔模型,所以有PN BC =AP AB ,PH AD =BPAB, 设正方形的边长为x 毫米,PN BC +PH AD =AP AB +BPAB=1, 即x 120+x 80=1, 解得x =48即正方形的边长为48毫米.42. 如图,在△ABC 中,有长方形DEFG ,G 、F 在BC 上,D 、E 分别在AB 、AC 上,AH 是△ABC 边BC 的高,交DE 于M ,DG:DE =1:2,BC =12厘米,AH =8厘米,求长方形的长和宽. 【答案】长和宽分别是487厘米,247厘米.【分析】观察图中有金字塔模型5个,用与边有关系的两个金字塔模型,所以DE BC =AD AB ,DG AH =BDAB, 所以有DE BC +DG AH =AD AB +BDAB=1, 设DG =x ,那么DE =2x ,所以有2x 12+x8=1, 解得x =247,2x =487, 因此长方形的长和宽分别是487厘米,247厘米.43. 如下图,在三角形ABC 中,IF 和BC 平行,GD 和AB 平行,HE 和AC 平行.AG:GF:FC =4:3:2,那么AH:HI:IB 和BD:DE:EC 分别是多少?【答案】AH:HI:IB =3:4:2,BD:DE:EC =4:2:3.【分析】〔1〕因为AG:GF:FC =4:3:2,所以AF:FC =7:2. 又因为IF ∥BC ,所以AI:IB =AF:FC =7:2. 因为GD ∥AB ,所以GF:AG =OF:IO =3:4. 由上可得AH:HI:IB =3:4:2.〔2〕因为AG:GF:FC =4:3:2,所以AG:GC =4:5. 又因为GD ∥AB ,所以BD:DC =AG:GC =4:5.因为GF:FC =3:2,IF ∥BC ,所以OD:GO =FC:GF =2:3. 又因为HE ∥AC ,所以DE:EC =OD:GO =2:3. 由上可得BD:DE:EC =4:2:3.44. 图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角形,这个三角形在AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多少?【答案】108cm 2【分析】做GM 垂直DC 于M ,交AB 于N .因为EF ∥DC ,所以三角形GEF 与三角形GDC 相似,且为EF:DC =4:12=1:3,所以GN:GM =1:3,又因为MN =GM −GN =12,所以GM =18(cm),所以三角形GDC 的面积为12×12×18=108(cm 2). 45. 如图,平行四边形ABCD 的面积是90.E 点是AB 上靠近A 点的三等分点,求阴影局部的面积. 【答案】33.【分析】由沙漏模型知,BE:CD =BO:OD =EO:OC =2:3,设△OBE 的面积为4份,那么△OBC 的面积为6份,△OCD 的面积为9份,△OBC 的面积与△OCD 的面积之和为整个四边形面积的一半,因此四边形的面积为30份,总面积为90,那么一份对应面积为3,阴影局部占了11份,面积为33.46. 如图,直角三角形ABC 中,AB =4,BC =6,又知BE:EC =1:3,求∠CDE 的面积. 【答案】6.75.【分析】由金字塔模型知DE:AB =CE:CB =3:4那么DE=4×34=3又知道CE=6×34=4.5可求出△CDE的面积为3×4.5÷2=6.7547. 如图,D是BC中点,E是CD的中点,F是AC的中点.三角形ABC由①~⑥这6局部组成,其中②比⑤多6平方厘米.那么三角形ABC的面积是多少平方厘米?【答案】48【分析】因为E是DC中点,F为AC中点,有AD=2FE且EF平行于AD,那么四边形ADEF为梯形.在梯形ADEF中有③=④,②×⑤=③×④,②:⑤=AD2:FE2=4.又②−⑤=6,所以⑤=6÷(4−1)=2,②=⑤×4=8,所以②×⑤=④×④=16,而③=④,所以③=④=4,梯形ADEF的面积为②、③、④、⑤四块图形的面积和,为8+4+4+2=18.有△CEF与△ADC的面积比为CE平方与CD平方的比,即为1:4.所以△ADC面积为梯形ADEF面积的44−1=43,即为18×43=24.因为D是BC中点,所以△ABD与△ADC的面积相等,而△ABC的面积为△ABD、△ADC的面积和,即为24+24=48(平方厘米).三角形ABC的面积为48平方厘米.48. 如图,在平行四边形ABCD中,AB=16,AD=10,BE=4,那么FC的长度是多少?【答案】8【分析】图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB平行于CD,所以BF:FC=BE:CD=4:16=1:4,所以FC=10×41+4=8.49. 如下图,边长为8厘米和12厘米的两个正方形并排放在一起,求图中阴影局部的面积.【答案】45平方厘米.【分析】由条件知,GF:BE=12:20=3:5,由沙漏模型知GO:OE=3:5,那么△GOF与△EOF的面积之比也是3:5,△OEF的面积为12×12÷2×58=45平方厘米.50. 如下图,正方形ABCD的边长是6,E点是BC的三等分点.△AOD的面积是多少?【答案】13.5.【分析】由沙漏模型,BE:AD=BO:OD=1:3,△AOB与△AOD等高,面积比为1:3,因此△AOD的面积为6×6÷2×34=13.5.51. 如下图,图中的两个正方形的边长分别是10和6,那么阴影局部的面积是多少?【答案】40013.【分析】AHHG =ADBG=58,那么△ABH与△BGH的面积是10×16÷2×513=40013.52. 如下图,P是三角形ABC内一点,DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD 的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.请问:三角形ABC的面积是多少?【答案】72【分析】当两个平行四边形的高相等时,它们底边的比等于面积比.考虑平行四边形BEPF 和AIPD ,分别以PE 和PD 为底边,它们的高相等,因此它们底边的比等于面积比,即EPPD =S 平行四边形BEPF S 平行四边形AIPD =2012=53.由于IH ∥AC ,所以EH HC=EP PD=53,转化为面积比:得到:S △PEH S 平行四边形PGCH=12×EH HC=12×53=56.而平行四边形PGCH 的面积是15,那么△PEH 的面积是15×56=252.类似的方法可以求出△FPI 和△DPG 的面积分别是8和92,因此这三个小三角形的面积分别是92、8、252,所以大△ABC 的面积就是12+15+20+92+8+252=72.53. 如下图,DE 与BC 平行,AD =4,BD =5,DE =16,那么BC 的长度是多少?【答案】36.【分析】由金字塔模型,AD:AB =DE:BC =4:9,DE =16,那么BC =36.54. 如下图,DE 与BC 平行,AD =4,BD =5,△ADE 的面积为32,那么四边形DECB 面积是多少? 【答案】130.【分析】AD:AB =4:9,那么AE:AC =4:9,△ADE 是△ABC 面积的1681,那么△ABC 的面积是162,四边形DEBC 的面积为130.55. △ABC 中,DE 平行BC ,假设AD:DB =2:3,且S 梯形DBCE 比S △ADE 大8.5 cm 2,求S △ABC . 【答案】12.5cm 2【分析】根据金字塔模型AD:AB =DE:BC =2:(2+3)=2:5,S △ADE :S △ABC =22:52=4:25,设S △ADE =4份,那么S △ABC=25份,S 梯形DBCE =25−4=21份,S 梯形DBCE 比S △ADE 大17份,恰好是8.5 cm 2,所以S △ABC =12.5cm 2.56. 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处〔DE 平行AB 〕,那么小玻璃管口径DE 是多大?【答案】10厘米.【分析】有一个金字塔模型,所以DE:AB =DC:AC ,DE:15=40:60,所以DE =10厘米. 57. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是________平方厘米.【答案】14【分析】EG:GC =EB:CD =1:2,所以EG =13EC ,S △EBG =12×12AB ×13BC =112×120=10连接BH ,设S △BGH ="1",那么S △AGH ="2",由燕尾模型知S △DHC ="3",所以S △DGC ="5",又因为S △DGC =4S △EBG =40,所以S △BGH =8,S BGHF =S △DBF −S △DGH =14S ▱ABCD −"2"=30−16=1458. 三角形ADE 的面积为3平方厘米,D 是AB 边的三等分点〔靠近A 点〕,且DE 与BC 平行.请求出三角形OBC 的面积为多少平方厘米?【答案】13.5平方厘米.【分析】由金字塔模型知,AD:AB =DE:BC =1:3,设△ODE 的面积为1份,那么△ODB 的面积为3份,△OEC 的面积为3份,△OBC 的面积为9份,又因为△ADE 与△DEC 等高,可知△ADE 的面积为2份,由此可知△OBC 的面积为3÷2×9=13.5平方厘米.59. 两盏4米高的路灯相距10米,有一个身高1.5米的同学行走在这两盏路灯之间,那么他的两个影子总长度是多少米?【答案】6【分析】根据题意画出如下图的图,延长FE 与AC 交于I ,那么△AEI 和△EFH 以及△CEI 和△EFG 都能组成沙漏三角.不难看出,EI =4−1.5=2.5(米).而在沙漏AIEFH 中,又有AE EH =IE EF =2.51.5=53. 在沙漏ACEGH 中,有ACGH =AEEH =53.由此可知GH =35AC =35×10=6(米),这就是两个影子的总长度.60. 如图,ABCD 是直角梯形,AB =4,AD =5,DE =3,那么梯形ABCD 的面积是多少? 【答案】40【分析】分别计算△AOD,△AOB,△DOC,△BOC 的面积,再求和. 延长EO 交AB 于F 点, 可得DE:BF =DO:OB =3:1,所以S △AOD :S △AOB =3:1; S △DOC :S △BOC =3:1, S △AOD =S △BOC .又因为S △ABD =12×4×5=10,得到S △AOD =34S △ABD =7.5,S △AOB =2.5,S △BOC =7.5, S △DOC =3S △BOC =3×7.5=22.5.所以S 梯形ABCD =7.5+2.5+7.5+22.5=40.61. 如图,O 是矩形一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影局部的一块直角三角形的面积是多少? 【答案】258 【分析】连接OB , 由可得 S △OEB =4−3=1, 所以 OE:EA =1:3,可以得到CE:CA =5:8,由三角形相似可得阴影局部面积为8×(58)2=258.62. 如下列图所示,三角形AEF 、三角形BDF 、三角形BCD 都是正三角形,其中AE:BD =1:3,三角形AEF 的面积是1.求阴影局部的面积.【答案】15【分析】S △AEF :S △BDF =AE 2:BD 2=1:9,△AEF 面积是1,那么S △BDF =S △BDC =9,因为△AEF 与△ACE 的高之比是1:7,所以S △ACE =7,因为AD 与BC 平行,所以S △ABC =S △BCD =9,所以S △ABC :S △AEC =BI:IE =9:7.假设BE 为16份,那么BI =9,IE =7,又知道BF:FE =3:1,所以BF =12,FE =4,所以IF =3,S △AEF :S △AIF =FE:FI =4:3,所以S △AIF =0.75,又有S △AIF :S △BCI =AF 2:BC 2=1:9,所以S △BCI =6.75,于是可求阴影局部面积是(0.75+6.75)×2=15.63. 如图,在长方形ABCD 中,AB =6厘米,AD =2厘米,AE =EF =FB ,求阴影局部的面积. 【答案】3.5平方厘米【分析】连接DE 、FC ,在梯形CDEF 中,由梯形根本结论知:EF:DC =EO:OC =1:3,S 长ABCD =6×2=12由一半模型得所以S △DEC =6又EO:OC =1:3,S △DEO =6×14=1.5〔平方厘米〕又S △ADE =2×2÷2=2〔平方厘米〕所以S 阴=2+1.5=3.5〔平方厘米〕 64. 如下图,平行四边形ABED 与平行四边形AFCD 的面积都是30平方厘米.其中AF 垂直于ED于O ,AO 、OD 、AD 分别长3、4、5厘米.求三角形OEF 的面积和周长.【答案】面积为13.5平方厘米,周长为18厘米. 【分析】平行四边形ABED 的面积等于AO ×DE =3×DE =30,由此可以求得DE =10,OE =6.平行四边形AFCD 的面积等于DO ×AF =4×AF =30,由此可以求得AF =7.5,OF =4.5.那么△OEF 的面积等于EO ×OF ÷2=6×4.5÷2=27÷2=13.5(平方厘米).由沙漏模型得AO:OF =AD:EF =2:3,那么EF =7.5.所以△OEF 的周长为4.5+6+7.5=18(厘米).65. 如下图,三角形ABC 的面积为1平方厘米,D 、E 分别是AB 、AC 边的中点.求三角形OBC 的面积.【答案】13平方厘米.【分析】由D 、E 分别是AB 、AC 边的中点,可知DE 与BC 平行,且DE =12BC . 如下列图所示,沙漏DEOBC 中,有OD OC =OE OB =DE BC =12. 把线段的比例关系转化为面积的比例关系,得到S △BOD =2S △DOE ,S △COE =2S △DOE ,S △BOC =2S △COE =4S △DOE ,那么梯形DECB 的面积就是(1+2+2+4)×S △DOE =9S △DOE .由于△ABC 的面积为1平方厘米,那么△ADE 的面积是14平方厘米.而梯形DECB 的面积是1−14=34(平方厘米).因此S △DOE =19×S 梯形BCDE =19×34=112(平方厘米), 从而S △BOC =4S △DOE =4×112=13(平方厘米). 66. 如下图,O 是长方形ABCD 一条对角线的中点,图中已经标出两个三角形的面积3和4,那么阴影直角三角形的面积是多少? 【答案】318【分析】由S △AOD =4可知S △BCD =12×S 长方形ABCD =12×4×S △AOD =8.而△CDF 与△CDB 从C 出发的高相同,那么DFDB =S△CDF S △CDB=58.由于EF ∥CD ,把线段的比例转移到BC 上,那么有CE BC =DF DB =38,从而得到BE BC =1−38=58,所以阴影△BEF 的面积是△BCF 面积的58.于是阴影三角形的面积是58×S △BCF =58×(S △BCD −S △CDF )=58×(8−3)=258. 67. 如图,三角形PDM 的面积是8平方厘米,长方形ABCD 的长是6厘米,宽是4厘米,M 是BC 的中点,那么三角形APD 的面积是平方厘米.【答案】8【分析】此题在矩形内连接三点构成一个三角形,而且其中一点是矩形某一条边的中点,一般需要通过这一点做垂线.取AD 的中点N ,连接MN ,设MN 交PD 于K .那么三角形PDM 被分成两个三角形,而且这两个三角形有公共的底边MK ,可知三角形PDM 的面积等于12×MK ×BC =8(平方厘米), 所以MK =83(厘米),那么NK =4−83=43(厘米).因为NK 是三角形APD 的中位线,所以AP =2×NK =83(厘米),所以三角形APD 的面积为12×83×6=8(平方厘米). 68. 长方形ABCD 的面积为70厘米,E 是AD 的中点,F 、G 是BC 边上的三等分点,求阴影△EHO 的面积是多少平方厘米?【答案】3 【分析】因为E 是AD 的中点,F 、G 是BC 边上的三等分点,由此可以说明如果把长方形的长分成6份的话,那么ED =AD =3(份)、BF =FG =GC =2(份),在图形中找到沙漏EDOBG :有ED:BG =3:4,所以OD:BO =3:4,相当于把BD 分成7份〔3+4〕,同理也可以在图中再次找到沙漏EDHBF ,ED:BF =3:2,由此可以推出:HD:BH =3:2,相当于把BD 分成5份〔3+2〕,那么我们就可以把BD 分成35份〔5和7的最小公倍数〕其中OD 占15份,BH 占14份,HO 占6份,连接EB 那么可知△BED 的面积为70÷4=352,在BD 为底的三角形中HO 占6份,那么面积为:352×635=3(平方厘米). 69. 如下图,平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点,BF 交EC 于M ,求△BMG 的面积. 【答案】130【分析】解法一:由题意可得,E 、F 是AB 、AD 的中点,得EF ∥BD ,而FD:BC =FH:HC =1:2, EB:CD =BG:GD =1:2.所以CH:CF =GH:EF =2:3,并得G 、H 是BD 的三等分点,可得BG =GH ,所以BG:EF =BM:MF =2:3,所以BM =25BF,S △BFD =12S △ABD =12×12S 平行四边形ABCD =14;又因为BG =13BD,所以S △BMG =13×25×S △BFD =13×25×14=130.解法二:延长CE 交DA 于I ,如下列图, 可得,AI:BC =AE:EB =1:1,从而可以确定M 的点的位置,BM:MF =BC:IF =2:3,BM =25BF,BG =13BD可得S △BMG =25×13S △BDF =25×13×14S 平行四边形ABCD =130.70. 边长为8厘米和12厘米的两个正方形并放在一起,那么图中阴影三角形的面积是多少平方厘米?。
小学奥数几何专题--立体图形(六年级)竞赛测试.doc

小学奥数几何专题--立体图形(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【答案】600【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10106600.【题文】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【答案】120【解析】原正方体的表面积是44696(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边评卷人得分长是1厘米的正方形.从而,它的表面积是:9646120平方厘米.【题文】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【答案】15000【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:5050615000(平方厘米).【题文】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为厘米,那么最后得到的立体图形的表面积是多少平方厘米?【答案】【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2228(平方厘米);左右方向、前后方向:22416(平方厘米),1144(平方厘米),41(平方厘米),4(平方厘米),这个立体图形的表面积为:41(平方厘米).【题文】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【答案】18【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数2增加的面数.原正方体表面积:1166(平方米),一共锯了(21)(31)(41)6次,6112618(平方米).【题文】一个表面积为的长方体如图切成27个小长方体,这27个小长方体表面积的和是多少平方厘米?【答案】168平方厘米【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为.【题文】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?【答案】54【解析】当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【题文】要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当 b2h时,如何打包?⑵当 b2h时,如何打包?⑶当 b2h时,如何打包?【答案】如解析图【解析】图2和图3正面的面积相同,侧面面积正面周长长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h6b,图3的周长是12h4b.两者的周长之差为2(b2h).当b2h时,图2和图3周长相等,可随意打包;当b2h时,按图2打包;当b2h时,按图3打包.【题文】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【答案】1034【解析】考虑所有的包装方法,因为6123,所以一共有两种拼接方式:第一种按长宽高116拼接,重叠面有三种选择,共3种包装方法.第二种按长宽高123拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的重叠面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034.【题文】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【答案】214【解析】我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:(平方分米);侧面:(平方分米),(平方分米).这个立体图形的表面积为:(平方分米).【题文】如图,棱长分别为厘米、厘米、厘米、厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是多少平方厘米?【答案】194平方厘米【解析】 (法1)四个正方体的表面积之和为:(平方厘米),重叠部分的面积为:(平方厘米),所以,所得到的多面体的表面积为:(平方厘米).(法2)三视图法.从前后面观察到的面积为平方厘米,从左右两个面观察到的面积为平方厘米,从上下能观察到的面积为平方厘米.表面积为(平方厘米).【题文】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【答案】54【解析】从上下、左右、前后观察到的的平面图形如下面三图表示.因此,这个立体图形的表面积为:2个上面个左面个前面.上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米.因此,这个立体图形的总表面积为:(平方厘米).上下面左右面前后面【题文】用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?【答案】46平方厘米【解析】该图形的上、左、前三个方向的表面分别由9、7、7块正方形组成.该图形的表面积等于个小正方形的面积,所以该图形表面积为46平方厘米.【题文】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【答案】56【解析】(平方米).【题文】棱长是厘米(为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为,此时的最小值是多少?【答案】5【解析】切割成棱长是1厘米的小正方体共有个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为,而,所以小正方体的总数是25的倍数,即是25的倍数,那么是5的倍数.当时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有个,表面没有红色的小正方体有个,个数比恰好是,符合题意.因此,的最小值是5.【题文】有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【答案】74【解析】要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有(个),用黑色的;在面上但不在边上的小正方体有(个),其中个用黑色.这样,在表面的个的正方形中,有22个是黑色,(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【题文】三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【答案】307【解析】每个长方体的棱长和是厘米,所以,每个长方体长、宽、高的和是厘米.因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个面,有个;涂两面的长方体,若两面不相邻,应涂两个面,有个;若两面相邻,应涂一个面和一个面,此时有个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两个面、一个面,有个;若三面两两相邻,有个,所以涂三面的最少有146个.那么切割后只有一个面涂色的小正方体最少有个.【题文】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【答案】108【解析】设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设,那么分成的小正方体个数为,为了使小正方体的个数尽量少,应使最小,而两数之积一定,差越小积越小,所以当时它们的和最小,此时共有个小正方体.当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令,此时共有个小正方体.因为,所以至少要把这个大长方体分割成108个小正方体.【题文】把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【答案】22【解析】一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格.其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图).因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图).所以,红色方格最多有(个).(另解)事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明是红色方格数的最大值.对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色.但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴⑵⑶⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色.⑵如图,阴影部分是首尾相接由个方格组成的环,这9个方格中只能有个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正方体中心对称的两道),涉及的个方格中最多能有个可染成红色.⑶剩下个方格,分布在条棱上,这个格子中只能有个能染成红色.综上所述,能被染成红色的方格最多能有个格子能染成红色,第一种解法中已经给出个红方格的染色方法,所以个格子染成红色是最多的情况.【题文】一个长、宽、高分别为厘米、厘米、厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【答案】1107【解析】本题的关键是确定三次切下的正方体的棱长.由于,为了方便起见.我们先考虑长、宽、高分别为厘米、厘米、厘米的长方体.因为,容易知道第一次切下的正方体棱长应该是厘米,第二次切时,切下棱长为厘米的正方体符合要求.第三次切时,切下棱长为厘米的正方体符合要求.那么对于原长方体来说,三次切下的正方体的棱长分别是12厘米、9厘米和6厘米,所以剩下的体积应是:(立方厘米).【题文】有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标的为黑色,图中共有黑色积木多少块?【答案】17【解析】分层来看,如下图(切面平行于纸面)共有黑色积木17块.【题文】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?【答案】216【解析】第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是.【题文】如图所示,一个的立方体,在一个方向上开有的孔,在另一个方向上开有的孔,在第三个方向上开有的孔,剩余部分的体积是多少?表面积为多少?【答案】100;204【解析】求体积:开了的孔,挖去,开了的孔,挖去;开了的孔,挖去,剩余部分的体积是:.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:.求表面积:表面积可以看成外部和内部两部分.外部的表面积为,内部的面积可以分为前后、左右、上下三个方向,面积分别为、、,所以总的表面积为.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:上下方向:左右方向:总表面积为.总结:“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!【题文】如图,原来的大正方体是由个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?【答案】72【解析】对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数l【题文】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?【答案】73【解析】解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有个,由侧面图形抽出的小正方体有个,由底面图形抽出的小正方体有个,正面图形和侧面图形重合抽出的小正方体有个,正面图形和底面图形重合抽出的小正方体有个,底面图形和侧面图形重合抽出的小正方体有个,三个面的图形共同重合抽出的小正方体有4个.根据容斥原理,,所以共抽出了52个小正方体.,所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:⑴从上到下五层,如图:⑵或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:【题文】右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的多少倍.【答案】16【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去、、、);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去、).假设左图中的立方体的棱长为,右图中的立方体的棱长为,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.【题文】图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?图⑴图⑵【答案】20【解析】首先,我们把展开图折成立体图形,见下列示意图:图⑴图⑵对于这类题目,一般采用“套模法”,即用一个我们熟悉的基本立体图形来套,这样做基于两点考虑,一是如果有类似的模型,可以直接应用其计算公式;二是如果可以补上一块或者放到某个模型里面,那么可以从这个模型入手.我们把图⑴中的立体图形切成两半,再转一转,正好放进去!我们看到图⑴与图⑶的图形位置的微妙关系:图⑶图⑷由图⑷可见,图⑴这个立体的体积与图⑶这个被切去了8个角后的立体图形的体积相等.假设立方体的1条边的长度是1,那么一个角的体积是,所以切掉8个角后的体积是.再看图⑵中的正四面体,这个正四面体的棱长与图⑶中的每一条实线线段相等,所以应该用边长为的立方体来套.如果把图⑵的立体图形放入边长为的立方体里的话是可以放进去的.这是切去了四个角后的图形,从上面的分析可知一个角的体积为,所以图⑵的体积是:,那么前者的体积是后者的倍.【题文】如图,用高都是米,底面半径分别为米、米和米的个圆柱组成一个物体.问这个物体的表面积是多少平方米?(取)【答案】32.97【解析】从上面看到图形是右上图,所以上下底面积和为(立方米),侧面积为(立方米),所以该物体的表面积是(立方米).【题文】有一个圆柱体的零件,高厘米,底面直径是厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是厘米,孔深厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【答案】307.72【解析】涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为(平方厘米).【题文】圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是多少立方厘米.(结果用表示)【答案】立方厘米或立方厘米【解析】当圆柱的高是12厘米时体积为(立方厘米)当圆柱的高是12厘米时体积为(立方厘米).所以圆柱体的体积为立方厘米或立方厘米.【题文】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.()【答案】100.48【解析】圆的直径为:(米),而油桶的高为2个直径长,即为:,故体积为立方米.【题文】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?()【答案】2056【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:(厘米),原来的长方形的面积为:(平方厘米).【题文】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少平方厘米.原来的圆柱体的体积是多少立方厘米?【答案】25.12【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为厘米,底面半径为厘米,所以原来的圆柱体的体积是(立方厘米).【题文】一个圆柱体的体积是立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? ()【答案】16【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为(厘米),所以增加的表面积为(平方厘米);(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为厘米,所以侧面长方形的面积为平方厘米,所以增加的表面积为平方厘米.【题文】一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是多少立方厘米.(取)【答案】100.48【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为厘米的圆柱,空气部分构成高为厘米的圆柱,瓶子的容积为这两部分之和,所以瓶。
小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。
【奥数系列训练】(含答案)12——几何体的计算

【奥数系列训练】(含答案)12——几何体的计算请填入正确答案:【题目1】用棱长为1cm的18个正方体做长方体,要使他的表面积最小,问最小表面积应该多大?【题目2】有两个边长为8cm正方体盒子。
A盒子放入直径8cm,高8cm的圆柱体铁块一个,B盒子放入直径4cm、高8cm的圆柱体铁块4个。
现在A盒注满水,把A盒中水倒入B盒,使B盒注满水。
A盒剩下水是多少立方公分?【题目3】一个正方体木块,棱长是5,如果在他上面截去一个棱长为5×3×2的长方体,那么,他的表面积减少百分之几?【题目4】现有一张长40公分,宽20公分的长方形铁皮。
请你用它做一只深是5公分的正方体无盖铁片盒(焊接处及铁片厚度不计,容积越大越好)。
你做的铁皮盒的容积是多少立方公分?【题目5】把12件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体包装物。
如何包装使长方体的表面积最小,最小表面积是多少?【题目6】从一个长9公分、宽7公分、高5公分的长方体中截下一个最大的立方体,剩下部分的棱长总和最大是多少公分?【题目7】在底面是正方形,棱长都是整公尺数,棱长总和为96公尺的长方体中,居中打一个底面为正方形,面积为4平方公尺的上下直穿的长方体的洞。
前、后、左、右也分别居中打一个长14公尺,宽2公尺的长方体洞。
这个几何体的表面积是多少平方公尺?【题目8】一个长方体盒子,从里面量长40公分,宽12公分,高7公分。
在这个盒子里放一个长5公分,宽4公分,高3公分的方形木块。
问最多可以放多少块?【题目9】一个棱长为6公分的正方体,沿着△ADE所在的平面将正方体切掉一个角,问切掉的三棱锥EABD的体积是多少?【题目10】用一张长30公分,宽20公分的长方形铁皮,做一个深5公分的长方体无盖铁皮盒(焊接处与铁皮厚度不计)。
这个铁皮盒的容积最大是多少立方公分?【参考答案】1.【解答】要使着18个棱长为1cm的小正方体做成的长方体的表面积最小,就应该使做成的长方体接近于正六面体(正方体)。
小学奥数 几何与数论 测试卷

几何与数论测试卷一、填空。
1、P为矩形ABCD内一点,S三角形PBC=30平方厘米,S三角形PAB=14平方厘米,则阴影部分的面积是()平方厘米。
2、如图,可以得到直角三角形的斜边是(),斜边上的高是(),这个梯形的面积是()。
3、在120的所有因数中,有()个是3的倍数,有()个是4的倍数。
4、有8个不同的因数的自然数中,最小的一个是()5、一个非零整数a与120的乘积是一个完全平方数,则a的最小值是(),这个平方是是()。
6、四个不同的非零自然数的和是1111,那么这四个数的最大公因数最大是()。
7、把自然数A的所有因数两两求和,又得到若干个自然数,期中最小的是3,最大的是360,则自然数A是()。
8、已知P Q都是质数,并且P×11-Q×93=2003,则P×Q=()。
9、如图,三角形AEF的面积为30,DE=11, BF=4,则长方形ABCD的面积是()。
10、如图,长方形的面积是48平方厘米,三角形ADM与三角形BCN的面积之和是15.6平方厘米,则四边形PMON的面积是()平方厘米。
二、解答题。
1、已知ABCD是长方形,AEFG是梯形,长方形ABCD的面积是2021,且GB=BF,求梯形AEFG的面积是多少?2、如图,点P是正方形外面一点,BP=12厘米,三角形ABP的面积是24平方厘米,三角形BCP的面积是18平方厘米,请问正方形的面积是多少平方厘米?3、长方形的广告牌长为40米,宽为32米,ABCD分别在四边形上,并且C比A低16米,D在B的左边10米,则四边形ABCD的面积是多少平方米?4、ABCD是长方形,图中的数字是各部分的面积数,则图中阴影部分的面积是多少?5、有2020盏亮着的电灯,各有一个拉线开关控制着,按其顺序编号为1,2,34,5,6,……2018,2020,有2020个孩子,也分别编号1、2、3…2020,他们依次拉下是自己编号的倍数的灯的开关,最后还有多少盏灯亮着?6、有连续的3个自然数a a+1 a+2,它们从小到大恰好分别是7,9,11的倍数,则a至少是多少?7、一个自然数有12个因数,且它能够被3和25整除,这个自然数最小是多少?8、小于2019且与2019互质的所有非零自然数的和是多少?9、有一个长方体,它的长,宽,高是三个连续的自然数,且体积为3360立方厘米,求这个长方体的表面积?10、从1,2,3,4,......100这100个数中取出两个不同的数,要使取出的两个数的和是4的倍数共有n种取法,那么n的因数一共有多少个?。
3 小学奥数——几何图形 试题及解析

小学奥数——几何图形一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5D.102.如图中阴影部分是正方形,最大长方形的周长是()厘米.A.22B.26C.36D.无法确定3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是()厘米.A.36B.39C.42D.454.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.217.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a>b,那么A的周长大于B的周长B.如果a<b,那么A的周长小于B的周长C.如果a=b,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()A.66厘米B.48厘米C.45厘米2C.489.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.310.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长B.乙图的长C.甲图与乙图同样长12.如图,在由1⨯1的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接1⨯1的正方形相邻两边中点的线段,或者是1⨯1的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.471 D.481213.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()2B.A.123C.35D.5814.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25B.40C.49D.5015.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.6416.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是()平方厘米.A.240B.270C.300D.36017.如图所示,在58的方格中,阴影部分的面积为37cm2.则非阴影部分的面积为()cm2.lA.43B.74C.80D.11118.图中,将两个正方形放在一起,大、小正方形的边长分别为0,6,则图中阴影部分面积为()A.42B.40C.38D.3619.下图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB、BC、CD、DA的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m n的值等于()mn,那么,A.5B.7C.8D.1220.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为()A.169B.144C.121D.10021.一个梯形的上底增加2厘米,下底减少2厘米,高不变,它的面积与原面积相比()A.变大了C.不变B.变小了D.高不知道,所以无法比较22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值3B.2C.1是()A.11 D.3223.如图,梯形ABCD中,AB//D C,∠ADC+∠BCD=90︒,且DC=2A B,分别以DA、AB、BC为边向梯形外作正方形,其面积分别为S,S,S,则S,S,S之间的关系是下123123列选项中的()A.S+S>S;B.S+S=S;C.S+S<S;D.无法确定.12313213224.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片()张.A.571B.572C.573D.57425.在8⨯8网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个8⨯8网格中共有( )枚黑色棋子.A.42B.32C.22D.1226.在6⨯6网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个6⨯6网格中共有()枚黑.色围棋子.A.18B.14C.12D.1027.一块木板上有13枚钉子(如图1所示)用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图2).请回答:可以构成()个正方形.A.9B.10C.11D.1228.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.1429.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.1530.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.A.5B.2C.4D.331.图中,有()个三角形.A.13B.15C.14D.1632.图中共有()个三角形.A.10B.9C.19D.1833.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形34.将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14B.16C.18D.2035.在桌面上,将一个边长为1的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.536.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.837.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面积为()cm2.A.960B.256C.240D.12838.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为)平方厘米.(A.16B.20C.24D.3239.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.8041.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小l80平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米42.如图,一个33的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.243.如图所示,四边形BCDE为平行四边形,∆AOE的面积为6,求∆BOC的面积.()A.3B.4C.5D.644.如图,M为平行四边形ABCD的边BC上的一点,且BM:MC=2:3,已知三角形C MN的面积为45cm2,则平行四边形ABCD的面积为()cm2.A.30B.45C.90D.10045.如图,长方形ABCD中的AE、AF、AG、AH四条线段把此长方形面积五等分,又长等于()平方厘米.方形长20厘米、宽12厘米,那么三角形AFG的面积S∆AFGA.41.2B.43.2C.43.1D.42.346.在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84B.80C.75D.6447.下面的四个图形中,第()幅图只有2条对称轴.A. B.C. D.48.下面图形中,恰有2条对称轴()A. B. C. D.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图(的三角形.)中A. B.C. D.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图(的三角形.)中A. B. C. D.参考答案与试题解析一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5【解析】如上图,把线段①平移到②的位置可以组成一个大长方形,大长方形的4条边,对边相等,所以只需知道相邻两条边的长度,③=④,所以只需知道1条线段的长度,所以求八边形的周长需要知道:2+1=3条线段的长度.故选:B.2.如图中阴影部分是正方形,最大长方形的周长是()厘米.D.10A.22B.26C.36【解析】(9+4)⨯2=26答:最大长方形的周长是26厘米.3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是(D.无法确定)厘米.A.36B.39C.42D.45【解析】3⨯4=12(厘米)3⨯2=6(厘米)(12+6)⨯2+6=36+6=42(厘米)答:它的周长是42厘米.故选:C.4.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米【解析】(3.14⨯4÷2+4)⨯2=(6.28+4)⨯2=10.28⨯2=20.56(厘米)答:这两个半圆周长之和是20.56厘米.故选:C.5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦【解析】由图形可知,④+⑥的线段补给⑧所在的长方形边的虚线部分,⑦-⑤等长线段的补给③所在边的虚线部分,这样就构成了一个完整的长方形,原图形的周长就是答长方形的周长+2个⑤的线段总长,所以图形的周长只要知道①②⑤即可求得.故选:A.6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.21【解析】12+5+2⨯2=12+5+4=21(米)答:需要地毯的长度是21米.故选:D.7.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a>b,那么A的周长大于B的周长B.如果a<b,那么A的周长小于B的周长C.如果a=b,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等【解析】A的周长=曲线长+正方形边长⨯2+b-aB的周长=曲线长+正方形边长⨯2+a-b所以A、B、C选项都是正确的,错误的是D.8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()22A.66厘米B.48厘米C.45厘米【解析】8⨯6-3⨯1=48-3=45(厘米)答:这个图形的周长是45厘米.故选:C.9.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.3【解析】根据题干分析可得:这个图形的横着的边长之和是:b;竖着的边长之和是:a+2c;所以这个图形的周长是:2a+2b+2c=2(a+b+c),故计算这个图形的周长至少需要知道3条边,故选:D.10.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米【解析】(30+10)⨯2⨯2=160(米)故选:C.11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长C.甲图与乙图同样长【解析】B.乙图的长2C.482B.因为,甲图形的周长是:AB+BC+AC,乙图形的周长是:DC+AD+AC,而AB=CD,AD=BC,所以,甲、乙两个图形的周长相等;故选:C.12.如图,在由1⨯1的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接1⨯1的正方形相邻两边中点的线段,或者是1⨯1的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.471D.4812【解析】据分析可知:将小三角形移到空白处补全完整正方形,共47.5个,所以阴影部分的面积是4712;故选:B.13.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()A.123C.35D.58【解析】根据分析,将图中阴影部分进行等积变形,由图不难发现,阴影部分和空白部分的面积刚好相等,正八边形中阴影部分的面积占:1 2故选:A.14.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25B.40C.49D.50【解析】根据分析,如下图所示,图①逆时针旋转90︒,阴影部分可拼成一等腰直角三角形,S=142÷4=49故选:C.15.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.64【解析】根据分析,一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1⨯5.故,大正方形面积=(1+5)⨯(1+5)=6⨯6=36平方厘米.故选:B.16.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是()平方厘米.A.240B.270C.300D.360【解析】如图所示,将图分割成面积相等的小正三角形,显然,图中的空白部分的面积和等于3个小正六边形.而阴影部分由6个小正六边形组成,所以,大正六边形是由9个小正六边形组成的.一个小正六边形的面积为:180÷6=30(平方厘米),大正六边形的面积为:30⨯9=270(平方厘米),故选:B.l17.如图所示,在 5 ⨯ 8 的方格中,阴影部分的面积为 37cm 2 .则非阴影部分的面积为 ()cm 2 .A.43【解析】如图,B.74C.80 D .111阴影部分占了 18.5 个格,面积为 37cm 2 ,每格的面积是: 37 ÷ 18.5 = 2(cm 2 ) ;非阴影就分占 21.5 格,其面积是: 21.5 ⨯ 2 = 43(cm 2 ) ; 答:则非阴影部分的面积为 43cm 2 ;故选: A .18.图中,将两个正方形放在一起,大、小正方形的边长分别为 0 ,6,则图中阴影部分面积为 ()A.42B.40C.38D .36【解析】10 ⨯10 + 6 ⨯ 6 - 6 ⨯ (10 + 6) ÷ 2 - 10 ⨯10 ÷ 2= 100 + 36 - 48 - 50【解析】由以上可知,两个阴影面积比为 : = 3: 2 ,= 38答:阴影部分的面积是 38.故选: C .19.下图中,四边形 ABCD 都是边长为 1 的正方形,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m + n 的值等于 ()mn,那么,A.5B.7C.8 D .121 12 33 + 2 = 5.故选: A .20.有 5 个长方形,它们的长和宽都是整数,且 5 个长和 5 个宽恰好是1~10 这 10 个整数;现在用这 5 个长方形拼成 1 个大正方形,那么,大正方形面积的最小值为()A.169【解析】如图所示,B.144C.121 D .100,于是可得:正方形的边长为 11,则其面积为11⨯11 = 121.答:大正方形面积的最小值为 121.故选: C .3B. 2C.1则正方形的面积是 ( )2 + ( )2 = + =小等腰三角形与大等腰三角形的面积和: + =21.一个梯形的上底增加 2 厘米,下底减少 2 厘米,高不变,它的面积与原面积相比 ()A.变大了C.不变B.变小了D.高不知道,所以无法比较【解析】因为梯形的面积 = (上底 + 下底) ⨯ 高 ÷2 ,若“上底增加 2 厘米,下底减少 2 厘米,高不变”则(上底 + 下底)的和不变,且高不变,所以梯形的面积不变.故选: C .22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值是 ()A.1 1D.32【解析】设小等腰三角形的边长是 a ,大等腰三角形的边长为 b , 则小三角形的斜边是 2a ,大三角形的斜边为 2b2a 2b a 2 b 2 a 2 + b 22 2 2 2 2a 2b 2 a 2 + b 22 2 2又因小等腰直角三角形与正方形中的圆面积相等,所以正方形中的阴影面积与大等腰直角三角形面积相等.所以它们的比值是 1.故选: C .23.如图,梯形 ABCD 中,AB / / D C ,∠ADC + ∠BCD = 90︒ ,且 DC = 2 A B ,分别以 DA 、AB 、BC 为边向梯形外作正方形,其面积分别为S , S , S ,则 S , S , S 之间的关系是下12 3 1 2 3列选项中的 ()A.S+S>S;B.S+S=S;C.S+S<S;D.无法确定.123132132【解析】过点A作AE//BC交CD于点E,因为AB//D C,所以四边形AECB是平行四边形,所以AB=CE,BC=AE,∠BCD=∠AED,因为∠ADC+∠BCD=90︒,DC=2A B,所以AB=DE,∠ADC+∠AED=90︒,所以∠DAE=90︒那么AD2+AE2=DE2,因为S=AD2,S=AB2=DE2,S=BC2=AE2,123所以S=S+S.213故选:B.24.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片()张.A.571B.572C.573D.574【解析】根据分析可得,.第 20 次摆放后,该图形共用:1 + 3 + 6 + 9 +⋯+ 3 ⨯ (20 - 1)= 1 + 3 + 6 + 9 +⋯+ 57= (3 + 57) ⨯ (20 - 1) ÷ 2 + 1= 570 + 1= 571 (个 )答:第 20 次摆放后,该图形共用了正三角形纸片 571 张.故选: A .25.在 8 ⨯ 8 网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个8 ⨯ 8 网格中共有 () 枚黑色棋子.A.42B.32C.22 D .12【解析】由分析得0 + 1 + 2 + 3 + 5 + 6 + 7 + 8 = 32 (枚 )8 ⨯ 8 - 32 = 32 (枚 )故选: B .26.在 6 ⨯ 6 网格的所有方格中放入围棋子,每个方格放 1 枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个 6 ⨯ 6 网格中共有 () 枚黑色围棋子.A.18B.14C.12 D .10【解析】每行的数目可以为 0 ~ 6 个,每列都相等,所以一定是 6 的倍数,0 + 1 + 2 + 3 + 4 + 5 + 6 = 21 ,如果去掉 3,那么剩下的数: 21 - 3 = 18 正好是 6 的倍数,所以,白棋子有 18 个,则,黑色围棋子有: 6 ⨯ 6 - 18 = 18 (个 )故选: A .27.一块木板上有 13 枚钉子(如图 1 所示)用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图 2) .请回答:可以构成 () 个正方形.A.9【解析】B.10C.11D.12第一种正方形有5个,第二种正方形有4个,第三个正方形有1个,第四种正方形有1个,共11个.故选:C.28.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.14【解析】根据分析可得,共有:6+6=12(个);答:图中,一共能数出12个含有“☆”的长方形.故选:C.29.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.15【解析】单个的三角形有9个,4个三角形组成的大三角形3个,最外面的最大的三角形1个,共有:9+3+1=13(个)答:用橡皮筋可套出13个正三角形.故选:C.30.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.A.5B.2C.4D.3【解析】如图,平面上任意4点构成了4个钝角三角形:∆ABC、∆ABD、∆ACD、∆BCD,所以以平面上任意4个点为顶点的三角形中,钝角三角形最多有4个.故选:C.31.图中,有()个三角形.A.13B.15C.14D.16【解析】由题意,由一个小三角形构成的,有6个;由两个小三角形构成的,有3个;由三个小三角形构成的,有6个;大三角形1个,所以三角形的个数为6+3+6+1=16个,故选:D.32.图中共有()个三角形.A.10B.9C.19D.18而实际空白部分面积总和是 10 平方厘米,可得单位 1 的实际面积是10 ÷ 15 = (平方厘米);【解析】根据题干分析可得:8 + 8 + 2 = 18 (个 ) ,答:图中一共有 18 个三角形.故选: D .33.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由() 拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形【解析】因为拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,A 、因为两个锐角的和小于 180 度,所以,两个锐角三角形不可能拼成一个大三角形;B 、因为 90︒ + 90︒ = 180︒ ,所以两个直角三角形能拼成一个大三角形;C 、因为钝角 + 锐角有可能等于180︒ ,所以两个钝角三角形可能拼成一个大三角形;D 、因为钝角 + 锐角有可能等于180︒ ,所以两个钝角三角形可能拼成一个大三角形;故选: A .34.将长方形 ABCD 对角线平均分成 12 段,连接成如图,长方形 ABCD 内部空白部分面积总和是 10 平方厘米,那么阴影部分面积总和是() 平方厘米.A.14B.16C.18 D .20【解析】设把中间最小的空白长方形的面积看作单位1 = ab ,那么与它相邻的阴影部分的面积就是 2a ⨯ 2b - ab = 3ab = 3 ,同理,相邻的空白部分的面积就是 5ab = 5 ,依此规律,面积依次下去为 7,9,11,则空白部分的面积总和是1 + 5 + 9 = 15 ,23那么阴影部分面积总和是: 3 + 7 + 11 = 21 ,;则实际面积是:21⨯23=14(平方厘米)答:阴影部分面积总和是14平方厘米.故选:A.35.在桌面上,将一个边长为1的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.5【解析】180︒⨯(6-2)÷6=180︒⨯4÷6=120︒180︒÷6=60︒120︒+60︒=180︒所以,拼接后的图形是:6+3-4=5(条)答:得到的新图形的边数为5.故选:D.36.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.8【解析】210=2⨯3⨯5⨯7因数的总个数:(1+1)⨯(1+1)⨯(1+1)⨯(1+1)=16(个)不同的拼法有:16÷2=8(种)答:不同的拼法有8种.故选:D.37.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面积为()cm2.(A.960B.256C.240D.128【解析】64÷[(5+3)⨯2]=64÷16=4(厘米)4⨯4⨯15=240(平方厘米)答:它的面积为240cm2.故选:C.38.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为)平方厘米.A.16B.20C.24D.32【解析】如右图进行分割,把图形分成了8个边长是2厘米的小正方形2⨯2⨯8=32(平方厘米)答:这个图形的面积是32平方厘米.故选:D.39.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关【解析】四边形ABCD为长方形,所以BC=AD,AB=CD,因为四边形CDEF为平行四边形,所以C D=EF,所以AB=EF,两边同时加上BE,所以BF=AE;根据等底等高的三角形的面积相等,所以得出三角形CBF的面积=三角形DAE的面积,则:三角形CBF的面积-丁的面积=三角形DAE的面积-丁的面积,所以甲、乙两部分面积总是相等,与与丙、丁两部分面积的大小无关;故选:D.40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.80【解析】10⨯10-8⨯5=60(平方厘米)故选:C.41.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小l80平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米【解析】设N部分的面积为x,那么M部分的面积为x-180,x+(x-180)=30⨯202x-180=600;2x=600+1802x=780x=390;N部分的面积是390平方厘米.设梯形的上底为y,(y+30)⨯20⨯1=390210y+300=39010y=90y=9;AE=30-9=21(厘米)故选:B.42.如图,一个3⨯3的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.2【解析】通过观察可知,阴影部分的面积=长是3宽是1的长方形的面积-中间边长是1的正方形的面积.3⨯1-1⨯1=2故选:D.43.如图所示,四边形BCDE为平行四边形,∆AOE的面积为6,求∆BOC的面积.()A.3【解析】连接BD,B.4C.5D.6因为,BE//CD,OB=OB,所以,∆BOC的面积等于∆BOD的面积,又因为,DE//AC,AB=AB,所以,∆ABE的面积等于∆ABD的面积,又因为,∆ABO是∆ABE和∆ABD的公共部分,所以,∆BOD的面积等于∆AOE的面积,即,∆BOD的面积=∆AOE的面积=6.答:∆BOC的面积是6.故选:D.44.如图,M为平行四边形ABCD的边BC上的一点,且BM:MC=2:3,已知三角形C MN的面积为45cm2,则平行四边形ABCD的面积为()cm2.A.30B.45C.90D.100【解析】如图,连接AC.Q四边形ABCD是平行四边形,∴AD//B N,∴∆A DM∽∆NCM,)2 = ,= S∴ S∆ADM = (S∆MNCDM 4CM 9Q S∴ S∆MNC ∆ADM= 45 ,= 20 ,Q CM : DM = 3: 2 ,∴ S∴ S∴ S = 30 , ∆ACM= 50 ,∆ADC平行四边形ABCD= 2S∆ADC= 100 ,故选: D .45.如图,长方形 ABCD 中的 AE 、 AF 、 AG 、 AH 四条线段把此长方形面积五等分,又长方形长 20 厘米、宽 12 厘米,那么三角形 AFG 的面积 S∆AFG等于 ( ) 平方厘米.A.41.2B.43.2C.43.1D .42.3【解析】由题意可知 S∆ABE= S∆AEF= S∆AGH= S∆ADH=20 ⨯125= 48 ,∴ B E = EF , DH = HG ,Q 1g BE g AB = 48 ,2∴ BE = EF = 8 , CF = 20 - 16 = 4 ,Q 1g DH g AD = 48 ,2∴ DH = HG = 4.8 , CG = 2.4 ,∴ S 1 2∴ S∆AFG= 48- 4.8 = 43.2 ,故选: B .46.在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84【解析】如图,B.80C.75D.64连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,则AF=BG,AB=FG=6,DF=CG=4.在直角∆AFC中,AC2=AF2+FC2=AF2+102=AF2+100,在直角∆BGC中,BC2=BG2+GC2=AF2+42=AF2+16,又Q CE=CB,∠AEC=90︒,∴AE2=AC2-EC2=AF2+100-(A F2+16)=84,即AE2=84.故选:A.47.下面的四个图形中,第()幅图只有2条对称轴.A. B.C. D.【解析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.观察易知,符合题意的是C.故选:C.48.下面图形中,恰有2条对称轴()A. B. C. D.【解析】根据轴对称图形的定义,可得:A有4条对称轴,B没有对称轴,C有2条对称轴,D有1条对称轴.故选:C.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B.C. D.【解析】根据分析,可以逆向思维,可以将题中的阴影三角形经过旋转、平移,长直角边旋转和短直角边旋转后得到的图形,不难看出,只有A选项是不可能出现的.图中图中①、②、③三边应为顺时针关系,A不合要求.故选:A.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B. C. D.【解析】解析:由图可知:A、C、D都可由原三角形经过旋转和平移得到,而B选项必须经过对称才能与原三角形重合,故选:B.。
小学奥数几何图练习及答案【三篇】

小学奥数几何图练习及答案【三篇】【第一篇】习题:一个长方形,如果宽不变,长增加8米,面积增加72平方米,如果长不变,宽减少4米,面积减少48平方米,原长方形的面积是( )。
考点:长方形、正方形的面积分析:用增加的面积除以增加的长,就是原来的宽,即72÷8=9米;用减少的面积除以减少的宽,就是原来的长,即48÷4=12米,从而利用长方形的面积公式即可求解。
解答:解:72÷8=9(米)48÷4=12(米)12×9=108(平方米);答:长方形的面积是108平方米。
故答案为:108平方米【第二篇】鸟头定理即共角定理。
燕尾定理即共边定理的一种。
共角定理:若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。
共边定理:有一条公共边的三角形叫做共边三角形。
共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM 这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。
为了避开相似,我们用相应的底,高的比来推出三角形面积的比。
例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。
连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。
很显然,三角形ABD和ACD面积之比是1:2因为共边,所以两个对应高之比是1:2而四个小三角形也会存在类似关系三角形ABE和三角形ACE的面积比是1:2三角形BED和三角形CED的面积比也是1:2所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。
以上是根据共边后,高之比等于三角形面积之比证明所得。
必须要强记,只要理解,到时候如何变形,你都能会做。
至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。
【第三篇】习题:两条直线相交,四个交角中的一个锐角或一个直角称为这两条直线的“夹角”。
小学奥数题库《几何》-曲线型-圆环-2星题(含解析)

几何-曲线型几何-圆环-2星题课程目标知识提要圆环•概述圆环是由两个半径不相等的同心圆构成的,大圆面积比小圆面积多的部分就是圆环。
•面积公式S=πR2−πr2=π(R2−r2)精选例题圆环1. 如下图所示,已知圆环的面积是141.3平方厘米,那么阴影部分的面积是平方厘米.(π取3.14)【答案】45【分析】设大圆半径为R,小圆半径为r,则圆环面积为π(R2−r2)=141.3(平方厘米),所以阴影部分面积为R2−r2=141.3÷3.14=45(平方厘米).2. 如下图所示,有10个同心圆,任意两个相邻的同心圆半径之差等于里面最小圆的半径.如果射击时命中最里面的小圆得10环,命中最外面的圆环得1环.得1环圆环的面积是10环圆面积的倍.【答案】19【分析】1环、2环、10环的外圈的圆的半径值比为10:9:1,面积比为100:81:1,1环面积是10面积的(100−81)÷1=19倍.3. 如下图所示,大正方形的面积是400平方厘米,则圆环的面积是平方厘米.(π取3.14)【答案】157平方厘米【分析】将小正方形转45∘,如下图所示,可以看出大正方形的面积是小正方形面积的两倍,所以大圆面积是小圆面积的两倍.因为大正方形面积是400平方厘米,所以大圆面积为314平方厘米,小圆面积为157平方厘米,圆环面积为314−157=157(平方厘米).4. 如图,大正方形的面积是400平方厘米,则圆环面积是平方厘米.(π取3.14)【答案】157【分析】如图所示,由大正方形的面积为400平方厘米知AB=20(厘米).取圆心O,AB中点M,连接OM交小正方形于点E,连接OB交大圆于点F.于是MB=OM=OF=10(厘米),易知△OEF为等腰直角三角形,所以2OE2=OF2=100(平方厘米),于是OE2=50(平方厘米),所以圆环的面积为π⋅OM2−π⋅OE2=π×102−π×50=50π≈157(平方厘米).5. 两个半径不等的同心圆,内圆半径3cm,外圆直径8cm,圆环面积是多少?【答案】21.98平方厘米.【分析】注意外圆的直径是8cm,半径应是4cm,那么圆环的面积是π×4×4—π×3×3=21.98(平方厘米).6. 在直径为6米的圆形花坛的外面,围绕着一条宽1米的环形小路,这条小路的面积是多少?【答案】21.98平方米.【分析】此题相当于知道小圆直径和环宽,求圆环的面积.小圆半径3米,大圆半径4米,圆环的面积是21.98平方米.7. 大圆半径为R,小圆半径为r,两个同心圆构成一个环形.以圆心O为顶点,半径R为边长作一个正方形:再以O为顶点,以r为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)【答案】157平方厘米【分析】环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是R2−r2=50平方厘米,那么环形的面积为:πR2−πr2=π(R2−r2)=π×50=157(平方厘米).8. 图中阴影部分的面积为50平方厘米,求环形面积.(π取3.14)【答案】157平方厘米【分析】环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是R2−r2=50平方厘米,那么环形的面积为:πR2−πr2=π(R2−r2)=π×50=157(平方厘米).9. 奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π=3.14)【答案】 4.1平方厘米.【分析】⑴每个圆环的面积为:π×42−π×32=7π=21.98(平方厘米)⑵五个圆环的面积和为:21.98×5=109.9(平方厘米)⑶八个阴影的面积为:109.9−77.1=32.8(平方厘米)⑷每个阴影的面积为:32.8÷8=4.1(平方厘米)10. 已知与小圆相切的线段长度是10厘米,那么图中圆环的面积是多少?【答案】 25π 平方厘米【分析】连接 OC 、OB ,则 OC ⊥AB ,在直角三角形 OBC 中,OB 2−OC 2=BC 2=(12AB)2=25, 图中圆环的面积为πR 2−πr 2=π(R 2−r 2)=π×(OB 2−OC 2)=25π(平方厘米).11. 图为一卷紧绕成的牛皮纸,纸卷直径为 20 厘米,中间有一直径为 6 厘米的卷轴.已知纸的厚度为 0.4 毫米,问:这卷纸展开后大约有多长?【答案】71.4米.【分析】将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积.因此,纸的长度≈纸卷侧面积纸的厚度≈3.14×102−3.14×320.04=3.14×(100−9)0.04=7143.5(厘米)所以,这卷纸展开后大约71.4米.12. 图中阴影部分的面积是25cm2,求圆环的面积.【答案】157cm2.【分析】设大圆半径为R,小圆半径为r,依题有R 22−r22=25,即R2−r2=50.则圆环面积为:πR2−πr2=π(R2−r2)=50π=157(cm2).13. 如图所示,在两个同心圆上有一条两端点都在大圆上的线段与小圆相切,其长度为10厘米.求阴影部分的面积.(π取3.14)【答案】78.5平方厘米.【分析】如图所示,从圆心连结其中一个端点,长度为大圆半径,再从圆心向线段作垂线,长度为小圆半径,图中的三角形为直角三角形,由勾股定理可得R2−r2=52=25,所以图中阴影部分面积为πR2−πr2=π×(R2−r2)=25π=78.5(平方厘米).14. 图中阴影部分的面积是25平方厘米,求圆环的面积.(π取3.14)【答案】157平方厘米.【分析】记大圆半径为R,小圆半径为r,那么圆环的面积为π(R2−r2),只要能够求出R2−r2即可.阴影部分是两个等腰直角三角形的面积差,等于12(R2−r2),所以R2−r2=2×25=50(厘米).由此可得圆环面积等于50×3.14=157(平方厘米).15. 如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【答案】9388.6【分析】卷在一起时铜版纸的横截面的面积为π×(1802)2−π×(502)2=7475π(平方厘米),如果将其展开,展开后横截面的面积不变,形状为一个长方形,宽为0.25毫米(即0.025厘米),所以长为7475π÷0.025=938860(厘米)=9388.6(米).所以这卷铜版纸的总长是9388.6米.16. 如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径是20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是多少平方米?(π取3.14)【答案】 65.94【分析】 卷纸问题:依据体积不变原则求解,缠绕在一起时塑料薄膜的体积为:[π×(202)2−π×(82)2]×100=8400π(立方厘米)薄膜展开后为一个长方形,体积保持不变,而厚度为 0.04 厘米,所以薄膜展开后的面积为8400π÷0.04=659400(平方厘米)=65.94(平方米).17. 如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为 20 厘米,中间有一直径为 8 厘米的卷轴,已知薄膜的厚度为 0.04 厘米,则薄膜展开后的面积是多少平方米?【答案】 65.94 平方米.【分析】 缠绕在一起时塑料薄膜的体积为:[π×(202)2−π×(82)2]×100=8400π(立方厘米), 薄膜展开后为一个长方体,体积保持不变,而厚度为 0.04 厘米,所以薄膜展开后的面积为8400π÷0.04=659400(平方厘米)=65.94(平方米).另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为π×(202)2−π×(82)2=84π(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π÷0.04=6594(厘米),所以展开后薄膜的面积为6594×100=659400(平方厘米)=65.94(平方米).。