基于层次分析法的民族发展问题综合评价
数学建模优秀论文基于层次分析法的模糊综合评价模型

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):广东金融学院参赛队员(打印并签名) :1. 曾彬2. 曾庆达3. 陈佳玲指导教师或指导教师组负责人(打印并签名):日期: 2013 年8 月 22日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):高校学生评教系统改进的研究摘要本文是研究关于高等学校学生评价教师的评价系统问题,用层次分析法确定了十项指标的权值,并给出了一个新的评教分数的计分模型-模糊综合评价模型。
本文亮点在于采用基于层次分析法的模糊数学模型。
首先,建立层次分析模型,充分考虑每个指标对综合评价的贡献,并把贡献按权值进行分配;通过层次分析法中的归一化处理,得到两两指标间的相对重要性的定量描述,从而解决不同指标间的差异。
其次建立模糊综合评教模型,输入一组专家(同学)的模糊评价,通过最大隶属度原则把模糊评价输出为综合评价。
最后本文在难易程度不同的课程下(在专业必修课,专业选修课,公共选修课下进行评价),得出同一教师的综合评价,发现其在不同课程下的综合评价均相同。
于是得出结论,该模型的确能解决不同课程难易程度带来的对总体评教的影响。
因为一个教师的综合教学质量并不应该在不同的课程下得到变化较大的评教。
基于层次分析法的军民融合评估指标分析

基于层次分析法的军民融合评估指标分析作者:卢雪来源:《中国集体经济》2018年第31期摘要:军民融合水平评估关系到军民融合效果的检视与相关策略制定,依据指标构建原则和实际政策,建立评价指标体系框架;再根据指标特点选取层次分析法,对决策问题分层并分解为若干个三级指标,运用模糊量化方法确定各指标的权重,最终得到量化决策,为评估融合水平和优化融合策略提供参考。
关键词:军民融合;评估指标;融合水平一、引言军民融合是国防和军队建设的重要战略依托。
从经济学角度讲,推进军民融合发展,实际上是国防和军队建设资源配置方式的转变,充分利用军队和地方的优势,实现整个国家和社会资源的优化配置。
了解军民融合的内涵,合理构建和分析评估指标,测度军民融合发展水平,摸清军民融合发展现状、融合方式、融合领域、融合效果等问题,利于准确把握军民融合发展规律,制定相应政策措施,提升军民融合水平。
二、军民融合发展水平评估指标构建根据科学全面性、可操作性、定性和定量相结合、引导性等原则,结合国家军民融合相关政策和已有成果,初步确立军民融合发展水平评估指标体系,详见表1。
融合广度,主要指区域在多大范围内实现军民融合及融合的规模、参与度、共享度及通用度等。
融合深度,主要指区域内国防建设利用经济社会资源的能力。
融合效果,通过地方的经济效益、军工企业的竞争力体现,主要评估军民融合对地方经济发展和军工企业竞争力的影响与贡献。
三、基于层次分析法的指标权重确定及分析军民融合广度/深度/效果水平:A/B/C=∑Wik·Pik。
广度、深度、效果三个一级指标彼此联系紧密,在计算综合水平Z的时候,本文将三个指标视为同等重要即权重相同,则综合水平Z=(A+B+C)/3(式1)。
(一)构建层次结构模型融合深度B、融合效果C的层次结构模型,根据表1同理构建。
(二)构造判断矩阵及一致性检验数据收集方式为专家打分法。
根据已经构建的模型,在yaahp软件中导出指标体系调查问卷表分发给军民融合领域专家,然后将各位专家的评分输入,将采集到的第一手数据统计整理后,做T检验显著,每一项取平均值,验证假设均值有效后,输入每个备选方案层的指标分数,构造判断矩阵。
基于层次分析法的模糊综合评价研究和应用共3篇

基于层次分析法的模糊综合评价研究和应用共3篇基于层次分析法的模糊综合评价研究和应用1基于层次分析法的模糊综合评价研究和应用层次分析法(Analytic Hierarchy Process,简称AHP)是一种重要的多指标决策方法,其独特的定量分析模式使其被广泛应用于各种决策场景中。
然而,在实际应用过程中,AHP所依赖的判断矩阵等参数很难满足严格的一致性要求,这就使得AHP方法的有效性存在一定的争议。
针对这一问题,模糊综合评价方法应运而生,它将AHP和模糊理论相结合,充分考虑了决策者的不确定性和模糊性,从而提高了决策效果。
本文将通过研究和应用实例,探究基于层次分析法的模糊综合评价方法的优点和不足,以及如何选取决策指标和构建评价体系。
1. 模糊综合评价方法概述模糊综合评价方法是一种基于模糊数学的决策方法,可以较好地处理决策过程中存在的不确定性和模糊性。
它的基本思想是,将决策问题转化为一个多层次、多指标的评价体系,在每个层次上进行相对重要性的判断和权重赋值,最终得出总体评价结果。
模糊综合评价方法中的模糊数常常用梯形和三角形模糊数表示,如图1所示。
图1 模糊数表示法其中,如(a)所示的梯形模糊数由四个参数a、b、c、d唯一确定,表示变量值在[a,b]和[c,d]之间的可能性;如(b)所示的三角形模糊数由三个参数a、b、c唯一确定,表示变量值在[a,c]之间的可能性。
2. 决策指标的选取和构建评价体系在使用模糊综合评价方法进行决策时,决策指标的选取和评价体系的构建是很关键的。
具体来说,决策指标应具备以下特点:(1) 目标明确:决策指标应当明确对应的决策目标,且目标应该是具有明确定义的。
(2) 可度量性强:决策指标应当具有可度量性和数量化的特点,以便进行量化分析。
(3) 影响因素少:决策指标应当尽量减少具有交叉影响的因素,以避免多重计数和重复计算。
(4) 数据可获取性高:决策指标的数据应当便于获取,能够反映决策现实,以便进行实际应用。
基于层次分析法的大学生综合素质评价

设评 价指标共有 n , x …, 它们对 最高层 的权 系数分别为 个 为 b x m W, , w , W …, 于是综合评价模型为:
y =
由以上我们出的 1 x 3比较矩阵求得权重系数分别 为 3l
,
∑
1 _l
∞1
0) 2
0 ) 3
() 1d
) 0 5
l
表 示 两 个元 素 相 比 , 有 同等 重 要 性 具
3
5 7 9
2468 , , ,
表示两个元 素相比, 前者 比后者稍重要
表示 两个 元 素相 比 , 者 比后 者 明显 重 要 前 表示 两个 元 素 相 比 , 者 比后 者 强 烈 重 要 前 表 示 两 个 元 素 相 比 , 者 比后 者 极 端 重要 前
建立 n阶方阵 A () 其中 a 就是元 素 x和 x相对于上一层准则 =a… . j 的重要 性 比例标 度。判 断矩 阵 A具有 下列性质 :
>0, : 1 a】
,
a . :1
a
3 . 断 矩 阵 2判
建立各判 断矩 阵 , 并根据 cI ( .= .
B. B B 2 3
n, 一 ) )n 1计算一致性 指标 : (
B l A B 3 ,
l 1
4 5 1
B}
=
一
30 5 , I: . 4 9 .8 8 C.. 0 0 2
33 _计算权重 将判 断矩阵 A的 I个列 向量归一化后的算术平均值 ,近似作 为权 l 1 重向量 , 求叠代序目 :
科技信息
高校 理科研 究
基 于 层 次 分 析 法 的大 学 生 综 合 素质 评 价
基于层次分析法的城市精明增长程度评价模型

基于层次分析法的城市精明增长程度评价模型随着城市化进程不断加快,城市精明增长成为当前全球城市发展的热点话题之一。
城市精明增长指的是在全球化、信息化和可持续发展的大背景下,通过科技创新、经济效率和社会包容等方面的发展,使城市在经济、社会和环境等方面实现可持续增长和优化发展。
评价城市精明增长的程度就显得尤为重要。
基于层次分析法的城市精明增长程度评价模型就是一种有效的评价方法。
基于层次分析法的城市精明增长程度评价模型是一种多层次结构的评价方法,它将城市精明增长的多个方面进行分解和层次化,通过专家打分和计算权重来进行综合评价,以便更加准确地评价城市精明增长的程度。
1. 确定评价指标体系:需要确定城市精明增长的评价指标体系,这些指标通常包括经济增长、社会发展、环境保护、科技创新等多个方面。
这些指标应该是可以度量和比较的,并且能够全面反映城市精明增长的各个方面。
2. 建立层次结构模型:根据评价指标体系,建立城市精明增长的层次结构模型,将城市精明增长的各方面分解为若干子目标和指标,形成一个多层次的网络结构。
3. 确定权重和打分:通过专家打分和计算权重,确定各个指标和子目标的重要性和影响程度。
专家打分通常采用1-9的标度,用于表示两个指标之间的相对重要性,计算权重则采用特征值法、层次排序法等方法。
4. 综合评价和排序:利用层次分析法进行综合评价和排序,得出城市精明增长的整体水平和各个方面的重要性和影响程度。
基于层次分析法的城市精明增长程度评价模型具有科学、全面和系统的特点,能够更加客观和准确地评价城市精明增长的程度,对于指导城市发展规划、政策制定和资源调配具有重要的意义。
基于层次分析法的城市精明增长程度评价模型已经在国内外许多城市的发展规划和政策制定中得到了广泛的应用。
1. 城市规划和发展:利用该评价模型,可以对城市的精明增长程度进行量化评价,发现和分析城市发展中的短板和问题,为城市规划和发展提供科学依据和支持。
层次分析及综合评价方法

采用适当的方法,将各个指标综合起来,得出一个总体的评价结果。
综合评价
对评价结果进行分析,为决策提供依据。
结果分析
07
综合评价指标体系的建立
构建步骤
明确评价目标、设计初步指标、筛选与确定指标、确定权重、建立完整的指标体系。
导向性原则
指标应具有导向性,能够引导被评价对象向正确的方向发展。
方案层可以包含多个元素,每个元素代表一个具体的方案或措施。
方案层需要具体、可行,能够针对准则层中的各个因素提出相应的解决方案。
方案层
03
构造判断矩阵
判断矩阵的定义与元素确定
判断矩阵定义
判断矩阵是层次分析法中用于表示各因素之间相对重要性的矩阵,通常采用正互反矩阵形式。
元素确定方法
判断矩阵的元素通常采用专家打分、历史数据比较等方法确定,根据实际情况选择合适的方法。
将决策问题分解成不同的组成因素,并根据因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型。
将决策问题分解成不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型。
通过较少的定量信息使决策者的思维过程数学化,为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
计算加权评价值
根据加权评价值的大小,确定最优的决策方案。
确定决策方案
将决策方案付诸实施,并根据实际情况进行反馈和调整。
决策实施与反馈
基于层次总排序的决策分析
06
综合评价方法概述
定义
综合评价是一种对多个指标进行综合分析的方法,通过对各个指标进行权重分配,得出一个综合的评价结果。
层次分析法和模糊综合评判法在研究生学业评价中的应用

第36卷第12期2020年12月商丘师范学院学报JOURNAL OF SHANGQIU NORMAL UNIVERSITY Vol.36No.12Dec.2020收稿日期:2020-03-20;修回日期:2020-03-29基金项目:教育部2018年第二批产学合作协同育人项目(201802123039);安徽省教育厅质量工程项目(2017mooc240);安庆师范大学校级教研项目(2019aqnujyzc110)作者简介:江健生(1982—),男,安徽安庆人,安庆师范大学讲师,硕士,主要从事数字图像处理、智能算法的研究.层次分析法和模糊综合评判法在研究生学业评价中的应用江健生1,吴洋2,陈飞3,钱坤1(1.安庆师范大学计算机与信息学院,安徽安庆246133;2.安庆师范大学现代教育技术中心,安徽安庆246133;3.铜陵学院数学与计算机学院,安徽铜陵244061)摘要:针对研究生学业评价过程中的复杂性、多层次性和模糊性,提出基于层次分析法和模糊综合评判法的研究生学业评价方法.首先合理确定研究生学业评判指标,接着利用层次分析法和模糊综合评判法对研究生学业进行指标权重量化及综合评价.通过应用验证,表明该方法的客观性和有效性,为研究生学业奖学金评选提供了重要参考依据.关键词:研究生培养;学业评价;层次分析法;模糊综合评判法中图分类号:TP273+.4文献标识码:A 文章编号:1672-3600(2020)12-0012-06Application of analytic hierarchy process and fuzzy comprehensive evaluationmethod in graduate students'academic evaluation JIANG Jiɑnshenɡ1,WU Yɑnɡ2,CHEN Fei 3,QIAN Kun 1(1.School of Computer and Information ,AnqinɡNormal University ,Anqinɡ246133,China ;2.Center of Modern Education Technology ,AnqinɡNormal University ,Anqinɡ246133,China ;3.School of Mathematics and Computer ,TonɡlinɡUniversity ,Tonɡlinɡ244061,China )Abstract :Aiming at the complexity ,multi-level and fuzziness in the process of graduate students'academicevaluation ,this paper proposes a method of postgraduate academic evaluation based on analytic hierarchy process and fuzzy comprehensive evaluation.Firstly the academic evaluation index of graduate students is reasonably determined.Then the analytic hierarchy process is used to quantify the weight of each index.And the comprehensive academic evaluation of graduate students is carried out by the fuzzy comprehensive evaluation method.Theapplication verification shows that the method is objective and effective ,and the experimental results provides an important reference for the selection of graduate scholarships.Key words :graduate student cultivation ;academic evaluation ;analytic hierarchy process ;fuzzy comprehensive evaluation研究生培养是高校高水平、多层次发展的重要环节,而学业发展是其中的核心和灵魂.学业贯穿整个研究生培养阶段,是根据研究生培养方案的要求,对研究生提出明确任务和发展方向,研究生通过一系列学习任务完成学业的过程[1].学业和每一位研究生密切相关,它能指导、激励、督促、约束每一位研究生健康成长.同时,学业水平与研究生的学业奖学金评选有着密切联系.所以有效评价研究生学业水平对促进研究生成长和高校发展具有重要的意义,是高校研究生管理工作者要积极思考的问题.研究生学业评价是指以教育目标为评价标准,通过完整收集研究生学习过程中的客观事实材料,以恰当、有效的评判方法,对研究生学习、科研和实践等多方面学业水平做出价值判断,为研究生学业水平的决策提供依据,进而促进研究生学业发展的评价活动[2].在实际学业评价过程中,根据研究生学业评价的复杂性、多层次性、模糊性等特点,利用层次分析法和模糊综合评判法,综合相关部门、研究生导师、研究生辅导员和所有研究生,制定一套具有合理评价指标、准确指标权重、科学评判方法的研究生学业评价模型.通过对不同年级研究生学业水平的综合评判,评价结果有效、客观.1层次分析法-模糊综合评判法的相关理论1.1层次分析法层次分析法是上世纪70年代中期由美国运筹学家萨蒂教授提出的一种决策分析法[3],该方法适合解决模糊、难以定量的决策问题,张万朋等[4]利用层次分析法和德尔菲法确定专业学习和通用学习的权重,完成研究生学习成果评判.张丽华等[5]基于层次分析法对高校学生职业能力评价体系展开研究,得到高校学生职业能力的最终评价.刘子建等[6]利用于SEEQ 与层次分析法,形成高校认证型评价体系.层次分析法为许多高校教育决策问题提供了简单、实用、有效的方法,本文将它运用到研究生学业评价中.运用层次分析法的主要步骤如下:(1)建立层次结构模型将一个复杂决策问题分解出各个因素,按其属性及关系从上到下层次化,上一层因素对下一层从属因素起支配作用,而下一层因素对上一层关联因素起影响作用.其中最上层为目标层,是一个问题的决策目标.中间层是实现目标需要的准则、指标等,又称准则层或指标层.一般当下一层因素多于9个则需要分解出子层,所以中间层可以有一至多个层次.最下层通常称为方案层,是针对目标的各种备选方案、措施等,因此又被称为措施层.(2)构造成对比较矩阵对从属于上层某一因素的下层中n 个因素X ={x 1,…,x n },按照两两比较构造如下对比矩阵A :A =(a ij )n ˑn其中a ij 是因素x i 和x j 的重要程度比,显然x j 和x i 的重要程度比为a ji =1/a ij ,另外当i =j 时有a ij =1,表示重要程度相等,a ij 可按1-9标度法进行取值,对应的重要程度含义见表1,其中2、4、6、8表示相邻程度的中间值.表11-9标度法a ij 123456789x i /x j 程度相等稍强强很强绝对强上述矩阵满足:a ij >0、a ji =1/a ij 、a ij =1(当i =j 时),所以可称为正互反矩阵.(3)层次单排序和一致性检验层次单排序是对上述矩阵A 求最大特征值λmax ,通过归一化对应特征向量W (各元素和为1),那么W 即为本层因素对上层某一因素重要程度的排序权值.由于满足a ij a jk =a ik , i ,j ,k =1,…,n 的正互反矩阵才是一致矩阵,只有在一定范围内的不一致性才可以接受,所以要进行一致性检验.按下式对A 一致性检验:CR =CI RI根据定理知λmax 比n (矩阵阶数)越大,矩阵A 的非一致性越严重,据此计算一致性指标CI 如下式:CI =λmax -n n -1萨蒂等人通过大量计算得到平均随机一致性指标RI ,n =1到9取值见表2:表2n 与RI 对应值n 123456789RI0.580.891.121.261.361.411.46图1层次总排序的分层示意只有一致性比例CR <0.1,矩阵A 才通过一致性检验,归一化的W 可作为单层权重向量,否则需要调整a ij 来修正矩阵.(4)层次总排序层次总排序是确定某层所有因素关于总目标的重要程度排序权值,按照从最上层至最下层的顺序进行.如图1所示:最上层总目标为Z ,A 层m 个因素A 1,A 2,…,A m ,对总目标Z 的排序为a 1,a 2,…,a m ,B 层n 个因素对A 层中A j 因素的单层次排序为b 1j ,b 2j ,…,b nj (j =1,2,3,…,m ),那么B 层的层次总排序如下:B 1:a 1b 11+a 2b 12+…+a m b 1mB 2:a 1b 21+a 2b 22+…+a m b 2m …B n :a 1b n 1+a 2b n 2+…+a m b nm31第12期江健生,等:层次分析法和模糊综合评判法在研究生学业评价中的应用即B 层第i 个因素对总目标的权值为:∑mj =1a jbij,那么总排序一致性比例计算如下:CR =∑mj =1CI (j )a j∑mj =1RI (j )ajCI (j ),j =1,…,m 是单排序一致性指标,RI (j ),j =1,…,m 是随机一致性指标,同样只有求得CR <0.1,层次总排序通过一致性检验.1.2模糊综合评判法模糊综合评判法是汪培庄教授基于模糊数学理论提出的一种综合评判方法[7],该方法被广泛使用于模糊、难以量化的问题上,布光等[8]利用模糊综合评判法对大学生体能进行评价.尤游等[9]结合模糊评价和熵值法对高校教师教学质量进行评价.陈志恩等[10]融合粒矩阵与模糊综合评判对课堂教学质量进行评价研究.许晶[11]在本科毕业论文质量评价中使用模糊综合评判法,上述应用都取得了良好效果.运用模糊综合评判法的主要步骤如下:(1)确定因素集因素集是一个由可以评判对象的主要因素所组成的集合,可表示为U ={u 1,u 2,…,u m },其中m 是评判因素的个数,u i 是第i 个评判因素.根据具体情况,可以将评判因素按不同属性进行分层,包括第一级评判因素集,下属的第二级评判因素集甚至第三级评判因素集等,这些因素一般都具有不同程度的模糊性.(2)建立综合评判集评判集是一个由评判对象的可能评判结果所组成的集合,可表示为V ={v 1,v 2,…,v n },其中n 是评判结果的数目,V j 是第j 种评判结果,评判集一般可划分为3至7个等级.(3)单因素模糊评判,获得评判矩阵单因素模糊评判是从一个因素出发,确定评判对象对评判集合V 的隶属程度.设r i 1是U ={u 1,u 2,…,u m }中第i 个元素对评判集V ={v 1,v 2,…,v n }中第1个元素的隶属度,则对第i 个元素单因素评判的结果可表示为:Ri ={r i 1,r i 2,…,r in },那么以m 个单因素评判集R 1,R 2,…,R m 为行组成矩阵R ,就是模糊综合评判矩阵.(4)确定因素权向量由于各因素的重要程度不同,即权重不同,设各因素u i 的权重为a i ,那么各因素的权重集合的模糊集可表示为:W ={a 1,a 2,…,a m }.这里可以通过加权平均法、频率分布确定法、层次分析法等方法计算因素权向量,本文通过层次分析法获得权向量.(5)多指标综合评判对上述因素权向量W 和矩阵R ,通过模糊算子 将模糊向量W 从因素集U 上转换到评判集V 上,即模糊向量B ,如下式:B =W R =(a 1,a 2,…,a m )r 11r 12…r 1nr 21r 22…r 2nr m 1r m 2…rmn =(b 1,b 2,…,b n )其中B 表示评判集各因素的隶属度,根据最大隶属原则,评判结果取最大的b j 对应的评判集v j .常用的模糊算子有以下4种[12]:M (∧,∨):b j =∨m i =1(a i ∧r ij )=max 1≤i ≤mmin (a i ,r ij {}),j =1,2,…,n M (·,∨):b j =∨mi =1(a i ,r ij )=max 1≤i ≤m(a i ·r ij ),j =1,2,…,n M (∧,⊕):b j =min 1,∑mi =1min (a i ,r ij {}),j =1,2,…,n M (·,⊕):b j =min 1,∑mi =1a i r ()ij ,j =1,2,…,n 4种算子的特点如表3,可以根据具体情况进行选择:表34种模糊变化合成算子比较算子类型综合程度利用信息体现权重作用M (∧,∨)主因素突出型弱不充分不明显M (·,∨)主因素突出型弱不充分明显M (∧,⊕)加权平均型强较充分不明显M (·,⊕)加权平均型强充分明显41商丘师范学院学报2020年2研究生学业评判模型的构建2.1确定评判指标、构建评判因素集评判研究生学业水平需要构建全面、合理、科学的学业评判指标,既要真实、准确反映研究生的实际学业水平,还要对研究生培养起到指导和激励作用,同时又为研究生学业奖学金的评选提供参考依据.通过和研究生导师讨论、对研究生调查反馈,结合教育部、财政部、教育厅和高校关于学业奖学金评选相关文件的规定,我们制定多层次、多因素的研究生学业评判二级指标体系.该体系由4个一级指标组成,包括学业成绩、综合素质、科研成果、创新实践,一级指标又细分为14个二级指标.所有指标是对研究生进行全面综合的评价,既包括了学业成绩和综合素质的基本要求,又包括了科研成果和创新实践的导向要求,充分体现了研究生人才培养的目标.按照模糊综合评判法,建立第一级评判因素集:U ={学业成绩U 1,综合素质U 2,科研成果U 3,创新实践U 4}第二级评判因素集分别如下:U 1={考试成绩u 11,考勤成绩u 12}U 2={思想品德u 21,荣誉表彰u 22,学生干部u 23}U 3={科研获奖u 31,科研项目u 32,学术发表u 33,发明创造u 34}U 4={A 类赛事u 41,B 类赛事u 42,C 类赛事u 43,专业实践u 44,社会实践u 45}2.2建立模糊综合评判集我们根据研究生学业奖学金设置的一、二、三等奖和无奖项为依据,将研究生学术评判结果分为4个等级,分别为很好、较好、一般、不好,写成评判集:V ={很好v 1,较好v 2,一般v 3,不好v 4}2.3层次分析法确定各指标权重研究生学业评判中,各指标的权重有所不同,而且不同年级研究生评判的侧重点也不相同.一年级学生主要以课程学习为主;二年级学生课程相对较少,且科研成果暂未体现,主要以创新实践为主;三年级学生经过两年的学习积累,有了一定的科研成果,此时主要以科研成果为主.这里以三年级研究生学业评判为例,利用层次分析法设置各指标权重:根据多元化成员对一级指标的1-9标度法对比打分,我们构造一级指标成对比较矩阵A :学业成绩综合素质科研成果创新实践学业成绩综合素质科研成果创新实践111/51/2111/51/25512221/21一级指标各因素的权重向量,按层次单排序得到.这里利用方根法求权重向量[13],令W'=(a 1',a 2',a 3',a 4'),其中a i '=4Π4j =1a 槡ij ,得W '=(0.562,0.562,2.659,1.189),通过a i =a i '/∑4i =1a i '对W'进行归一化,得到W =(a 1,a 2,a 3,a 4)=(0.113,0.113,0.535,0.239).若矩阵A 满足一致性检验,W 即一级指标学业成绩、综合成绩、科研成果、创新实践的权重向量.下面判断构建的成对比较矩阵A 是否满足一致性,计算:AW T =111/51/2111/51/25512221/210.1130.1130.5350. 239=0.45250.45252.14300.9585那么:λmax=1n∑ni =1(AW T )ia i =140.45250.113+0.45250.113+2.14300.535+0.95850.()239=4.006CI =λmax -nn -1=0.002CR =CI /RI =0.002/0.89=0.002<0.1成对比较矩阵A 通过一致性检验.同理计算4个一级指标所对应的二级指标权重如表4,且全部通过一致性检验.51第12期江健生,等:层次分析法和模糊综合评判法在研究生学业评价中的应用表4各指标权重及一致性评价指标评价指标指标权重λmax CI RI CRU1-U4(0.113,0.113,0.535,0.239)4.0060.0020.890.002u 11-u12(0.500,0.500)2000u 21-u23(0.571,0.286,0.143)300.580u 31-u34(0.128,0.128,0.522,0.114)4.0280.0090.890.010u 41-u45(0.348,0.185,0.097,0.185,0.185)5.0100.00251.120.00223应用选取我校统计学专业研三某一学生,由学院领导、导师代表、研究生辅导员、同班研究生共10人组成学业评判组,根据学生实际情况及证明材料进行评判打分.该研究生的具体打分情况如表5:表5该研三学生学业打分结果一级指标二级指标评判集很好较好一般不好U1u110910u120820U2u216310u220460u234420U3u310460u323700u338200u341720U4u4100100u423610u431900u442620u451630对表5中该研究生各指标所得评分,通过归一法得到4个二级指标评判矩阵:R 1=00.90.1000.80.[]20R2=0.60.30.1000.40.600.40.40.20R 3=00.40.600.30.7000.80.2000.10.70.20R4=00100.30.60.100.10.9000.20.60.200.10.60.30由B=W R得到综合评价结果,其中W为二级指标权重向量,这里根据算子特点,模糊变化合成算子 使用M(·,⊕),一级指标U1的综合评价结果如下:B 1=W1R1=(0.50.5)00.90.1000.80.[]20=(0,0.8500,0.1500,0)同理得到U2,U3,U4综合评判结果:B 2=W2R2=(0.3998,0.3429,0.2573,0)61商丘师范学院学报2020年B 3=W 3 R 3=(0.4836,0.3844,0.1320,0)B 4=W 4 R 4=(0.1207,0.4203,0.4590,0)由此得到总评判矩阵:R =B 1B 2B 3B 4=00.85000.150000.39980.34290.257300.48360.38440.132000.12070.42030.45900最后根据一级指标权重W =(0.113,0.113,0.535,0.239)进行综合评判:B =W R =(0.113,0.113,0.535,0.239)00.85000.150000.39980.34290.257300.48360.38440.13200.12070.42030.45900=(0.3328,0.4409,0.2263,0)由上面结果看出,该研究生学业评判“较好”占44.09%,按最大隶属度原则,该研究生的学业评判应为较好.4结语本文针对研究生学业水平评判,结合层次分析法和模糊综合评判法,运用数学思想建立模型,使用编程实现评判.整个评判过程完整、可操作性强,评判结果合理、可靠,能够较为客观、公正地体现研究生的学业水平,为高校评价研究生学业水平提供参考方法,也为研究生学业奖学金的评选提供重要依据,对提高研究生培养质量具有重要意义.参考文献:[1]黄成思,王毅磊,陆海霞,等.学术型硕士研究生学业质量评价体系结构构建研究[J ].南昌师范学院学报(社会科学版),2016,37(1):67-71.[2]刘永凤,袁顶国.高校学业评价[M ].北京:高等教育出版社,2019.[3]伍亚华,王永斌,杨小翠,等.基于层次分析法的家庭经济困难学生模糊综合评判认定[J ].蚌埠学院学报,2017,6(2):153-156.[4]张万朋,柯乐乐.基于德尔菲法和层次分析法的研究生学习成果评价研究—以教育经济与管理专业为例[J ].现代大学教育,2018(1):93-99.[5]张丽华,李雅娟,王一然.高校学生职业能力评价体系研究—基于层次分析法[J ].教育理论与实践,2019,39(24):12-14.[6]刘子建,李冉,陈富强.基于SEEQ 与层次分析法的认证型评教体系研究[J ].河南师范大学学报(自然科学版),2019,47(5):32-38.[7]汪培庄.模糊集合论及其应用[M ].上海:上海科学技术出版社,1983:33-76.[8]布光,黄冬梅.基于模糊综合评判的大学生体能评价[J ].河北北方学院学报(自然科学版),2018,34(1):50-57.[9]尤游,刘莉,刘苏兵.熵权模糊综合评判在高校教师教学质量评价中的应用[J ].宁夏师范学院学报,2019,40(4):81-86.[10]陈志恩,王喜玲.粒矩阵与模糊综合评判融合的课堂教学质量评价研究[J ].宁夏师范学院学报,2019,40(7):22-28.[11]许晶.模糊综合评判法在本科毕业论文(设计)质量评价中的应用[J ].通化师范学院学报,2019,40(6):18-21.[12]邹晨红,袁满.模糊综合评判的系统聚类算法研究[J ].吉林大学学报(信息科学版),2018,36(5):441-448.[13]斯彩英.模糊综合评判法在高职教师业绩考评中的应用[J ].石家庄职业技术学院学报,2017,29(4):55-59.[责任编辑:王军]71第12期江健生,等:层次分析法和模糊综合评判法在研究生学业评价中的应用。
中学生综合素质评价的理论框架与模糊优化算法

95
x
85
随机一 致性指标 ,从而对 该矩 阵进行一致性检验,并分别求 出单一准则下各指标层相对于相应准则层 的权重 ;最后 ,
求 出指标层相对于 目标层的归一化总权重 c= aa, ) o ( , …, 。 具体方法如下 : 假设 已经计算 出第k 1 一 层 一 个元素相对于 目标层 的合 - 成权重向量 为:
0 ) =( i- 02 , , (( I 0k ) ( … m “
.
f
x)
。 ‘
。 <
0 0
{ c 6x -, 1。 0< 一 < 7 7 0
l 1 , 6, 0
) —— ( 1 式 )
, ●●●●● 、●●, L
:
再设第k 的1个元素关于第k 1 层 3 . 一 层第j 个元素 (, 1 =… 2…
X 一 5 一 NhomakorabeaO
其 中v () X 表示得分 为X 时对等级v的隶属度 / l .5 _ :… ,。 2. 在上述5 个函数 中,令 = ,则有 : , , L , m 再 v 6) ( = 2 …,.
c ^ l C
岛
C
G
cl l
c 拍
s
(0 一 x , 10 )
95< ≤ l 00
表1 中学生综合素质评价的理论框架
9 5< s 1 0 0
V( )=
一
( 一8 1 5.
8 < xs9 5 5
根据中学生综合素质评价理论框架 ( 1 表 )。首先 ,采 用 1 标度 法 ,分别 构造准则层 相对 于 目标层和 各指标层 ~9 相对于相应准则层 的两两 比较判断矩阵 ;其 次,对构造 的 各 个的判 断矩阵 ,计算该矩 阵的一致性指 标和相应 的平均
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙源期刊网
基于层次分析法的民族发展问题综合评价
作者:马惠芳杨丽
来源:《经济研究导刊》2012年第25期
摘要:運用层次分析法对甘肃省阿克塞哈萨克族自治县当前民族经济社会发展问题定量描述,通过构建其层次体系为3个准则6项指标,分析、计算各级判断矩阵,将每个方案所得权向量作为数量化的决策依据,供当前甘肃省加快各地民族发展决策借鉴或参考,以期能够更科学地指导民族发展实践。
关键词:层次分析法;民族发展;综合评价;甘肃省。