成都石室白马中学初一数学期中试题
【3套打包】成都石室联合中学七年级下册数学期中考试题

七年级(下)数学期中考试试题(答案)一、选择题(每小题3分,共计30分) 1.下列四个方程是二元次方程的是( )A.x+9=0B.2x-a=7C.3ab=9D.11y x3+=2.以下各组长度的线段为边,能构成三角形的是( )A.1,2,3B.3,4,5C.4,5,11D.8,4,4 3.在数轴上表示不等式x ≥-2的解集 正确的是( ) A.B. C.D.4.下列设备,有利用角形的稳定性的是( )A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架 5.如果a >b ,那么下列不等式国立的是( )A.a-3>b-3B.-3b <-3aC.2a >2bD.-a <-b 6.关于x 、y 的方程组x 2y 3mx y 9m+=⎧⎨-=⎩的解是方程3x+2y=34的一组解,那么m 的值是( )A.1B.-1C.1D.-2 7.边长是整数,周长不大于12的等边三角形的个数是( ) A.1个 B.2个 C.3个 D.4个8.某种植物适宜生长的温度为18C-20C.已知山区海拔每升高100米,气器下降0.55ºC ,现测得山脚下的气温为22ºC ,问该植物种在山上的哪部分为宜? 如果该植物种植在海拔高度为x 米的山区较适宜,则由题意可列出的不等式组为( ) A..x 182205520100≤-⨯≤ B..x 182205520100≤-⨯<C..1822055x 20≤-≤D.x 182220100≤-≤9.如右图,△ABC 中,BD 是∠ABC 的角平分线,DE ∥BD ,交AB 于E ,∠A=60º,∠BDC=95º,则∠BED 的度数是( )A.35ºB.70ºC.110ºD.130º10.下列说法正确的有( )①同平面内,三条线段首尾顺次相接组成的图形三角形;②三角形的外角大于它的内角;③各边都相等的多边形是正多边形;④三角形的中线把三角形分成面积相等的两部分;⑤三角形的三条高交于一点;⑥果个三角形只有一条高在三角形的内部,那么这个三角用一定是钝角三角形A.1个B.2个C.3个D.4个 二、填空题(每小题3分,共计30分)11.已知方程x-2y=8,用含的式子表示y ,则y=____________. 12.不等式4x-3<4的解集中,最大的整数x=____________. 13.若个多边形内角和等于1260º,则该多边形边数是____________. 14.若方程m n 3m 4n x 2y 60+-++=是二元一次方程,则____________.15.已知三形的两边分别为3和5,当周长为,5的倍数时,第三边长为____________. 16.如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是___________. 17.关于x 的不等式组3x 515x a 12->⎧⎨+≤⎩有2个整数解,则a 的取值范围是____________.18.如图所示,∠A=100º,作BC 的延长线CD ,∠ABC 与∠ACD 的角平分线相交于A 1,∠A 1BC 与∠A 1CD 的角平分线相交于A 2...以此类推,∠A 5BC 与∠A 5CD 的角平分线相交于A 6,则∠A 6=__________.2A16题18题20题19.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________. 20.如图,AC ⊥BD ,AF 平分∠BAC ,DF 平∠EDB ,∠BED=100º,则∠F 的度数是___________. 21.(本题8分) 解二元一次方程组:()2x y 313x 2y 8-=⎧⎨+=⎩ ()()x y 32433x 2y 120⎧+=⎪⎨⎪--=⎩(1)解一元一次不等式52x x 247x 15210-+--<-(2)解不等式组并把它的解集在数轴上表示出来 (2x 1x 53x 22x 3+<⎧⎨+≥-⎩)+23.(本题6分)如图,在10×10的网格中的每个小正方形边长都是1,线段交点称作格点。
2020-2021四川省成都市石室中学七年级数学上期中试卷(含答案)

(1)如图1,已知 ,若 ,则 __________;
(2)如图2,已知 , ,若 ,则 __________.
(3)如图3,已知 的,点 在 轴上,且三角形 的面积为3,则 __________.
24.先化简,再求值:
,其中a=2 , b=-2
25.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.
解析:8
【解析】
【分析】
将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.
【详解】
∵x=3是方程ax﹣6=a+10的解,
∴x=3满足方程ax﹣6=a+10,
∴3a﹣6=a+10,
解得a=8.
故答案为8.
16.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时
2020-2021四川省成都市石室中学七年级数学上期中试卷(含答案)
一、选择题
1.下面四个代数式中,不能表示图中阴影部分面积的是()
A. B.
C. D.
2.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()
A.24里B.12里C.6里D.3里
3.用科学记数方法表示 ,得()
A. B. C. D.
4.解方程 ,去分母正确的是( )
【3套打包】成都石室中学初中学校七年级下册数学期中考试题

七年级下学期期中考试数学试题(含答案)一、选择题(本大题共16个小题,1-10每小题3分,11-16每小题3分,共42分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知二元一次方程3x﹣y=1,当x=2时,y等于()A.5B.﹣3C.﹣7D.72.(3分)下列运算的结果为a6的是()A.a3+a3B.(a3)3C.a3•a3D.a12÷a23.(3分)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京召开,“一带”指的是“丝绸之路经济带”,“一路”指的是“21”.“一带一路”沿线大多是新兴经济体和发展中国家,经济总量约210 000亿美元,将“210 000亿”用科学记数法表示应为()A.21×104亿B.2.1×104亿C.2.1×105亿D.0.21×106亿4.(3分)如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD 的度数是()A.20°B.40°C.50°D.80°5.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3B.①×4+②×3C.②×2﹣①D.②×2+①6.(3分)计算(﹣1)2017+(﹣)﹣3﹣(2017)0的结果是()A.﹣10B.﹣8C.8D.﹣97.(3分)已知m+n=3,m﹣n=2,那么m2﹣n2的值是()A.6B.2C.7D.58.(3分)二元一次方程组的解是()A.B.C.D.9.(3分)如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4D.∠1=∠2 10.(3分)若(2a±3)2=4a2+(k﹣1)a+9,则k的值为()A.±12B.±11C.±13D.﹣11或13 11.(2分)下列语句中是真命题的有()个①一条直线的垂线有且只有一条②不相等的两个角一定不是对顶角③同位角相等④不在同一直线上的四个点最多可以画六条直线.A.1B.2C.3D.412.(2分)下列各式中,计算结果是x2+7x﹣18的是()A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)13.(2分)若方程中的x是y的4倍,则a等于()A.﹣7B.﹣3C.D.﹣14.(2分)已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.615.(2分)如图,正方形ABCD由四个矩形构成,根据图形,写出一个含有a和b的正确的等式是()A.(a+b)(a﹣b)=a2+b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)(a+b)=a2+b2+ab+ab16.(2分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.二、填空题(本大题共3个小题,17-18每小题3分,19、20每空2分,共10分17.(3分)如图,已知∠1=∠2=∠3=62°,则∠4=度.18.(3分)已知x、y满足方程组,则x﹣y的值为.19.(2分)计算(﹣0.125)2015×82014的结果是.20.(2分)如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)21.(12分)解方程或计算(1)解方程组;(2);(3)先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=;(4)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.22.(8分)题目:如图,直线a,b被直线所截,若∠1+∠7=180°,则a∥b.在下面说理过程中的括号里填写说理依据.方法一:∵∠1+∠7=180°(已知)而∠1+∠3=180°(平角定义)∴∠7=∠3()∴a∥b()方法二:∵∠1+∠7=180°(已知)∠1+∠3=180°(平角定义)∴∠7=∠3()又∠7=∠6()∴∠3=∠6()∴a∥b()方法三:∵∠1+∠7=180°(已知)而∠1=∠4,∠7=∠6()∠4+∠6=180°(平角定义)∴a∥b()23.(9分)请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.24.(9分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.25.(10分)用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3?26.(10分)如图所示,已知AB∥CD,直线l分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=40°,求∠EGF的度数.27.(10分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)x2+4y2的值;(ii)求(x+2y)2的值.2017-2018学年河北省承德市兴隆县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1-10每小题3分,11-16每小题3分,共42分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:把x=2代入原方程,得到6﹣y=1,所以y=5.故选:A.2.【解答】解:A、a3+a3=2a3,故本选项错误;B、(a3)3=a9,故本选项错误;C、a3•a3=a6,故本选项正确;D、a12÷a2=a10,故本选项错误.故选:C.3.【解答】解:210 000亿=2.1×105亿.故选:C.4.【解答】解:∵∠EOC=100°且OA平分∠EOC,∴∠BOD=∠AOC=×100°=50°.故选:C.5.【解答】解:用加减法解方程组时,如果消去y,最简捷的方法是②×2+①.故选:D.6.【解答】解:∵(﹣1)2017=﹣1,(﹣)﹣3=﹣8,(2017)0=1,∴(﹣1)2017+(﹣)﹣3﹣(2017)0=﹣1﹣8﹣1=﹣10.故选:A.7.【解答】解:∵m+n=3,m﹣n=2∴原式=(m+n)(m﹣n)=6故选:A.8.【解答】解:二元一次方程组,即,解得x=2.则y=﹣3.9.【解答】解:∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选:C.10.【解答】解:∵4a2+(k﹣1)a+9是一个关于a的完全平方式,∴(k﹣1)a=±2•2a•3,k=13或﹣11,故选:D.11.【解答】解:一条直线的垂线有无数条,①是假命题;不相等的两个角一定不是对顶角,②是真命题;两直线平行,同位角相等,③是假命题;不在同一直线上的四个点最多可以画六条直线是真命题,故选:B.12.【解答】解:A、原式=x2+17x﹣18;B、原式=x2+11x+18;C、原式=x2+3x﹣18;D、原式=x2+7x﹣18.故选:D.13.【解答】解:∵x=4y,∴4y+4=y,解得y=﹣,∴x=4×(﹣)=﹣,∴a=[2×(﹣)﹣(﹣)]÷4=(﹣+)÷4=(﹣)÷4=﹣故选:D.14.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.15.【解答】解:由图象得出正方形的边长为(a+b),∴正方形的面积可以表示为(a+b)(a+b),∵正方形的面积也可以看成是两个小正方形和两个矩形的面积之和,∴正方形的面积也可以表示为a2+b2+ab+ab,∴(a+b)(a+b)=a2+b2+ab+ab,故选:D.16.【解答】解:设大马有x匹,小马有y匹,由题意得:,故选:C.二、填空题(本大题共3个小题,17-18每小题3分,19、20每空2分,共10分17.【解答】解:∵∠1=∠3,∴两直线a、b平行;∴∠2=∠5=62°,∵∠4与∠5互补,∴∠4=180°﹣62°=118°.18.【解答】解:在方程组中,①﹣②得:x﹣y=1.故答案为:1.19.【解答】解:(﹣0.125)2015×82014=(﹣0.125)2014×82014×(﹣0.125)=[(﹣0.125)×(﹣8)]2014×(﹣0.125)=,故答案为:,20.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)21.【解答】解:(1),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为;(2),①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(3)原式=x2﹣3x+2﹣x2﹣2x﹣1=﹣5x+1,当x=时,原式=﹣2.5+1=﹣1.5;(4)原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3(x2﹣4x)+9,∵x2﹣4x﹣1=0,∴x2﹣4x=1,则原式=3+9=12.22.【解答】解:方法一:∵∠1+∠7=180°(已知)而∠1+∠3=180°(平角定义)∴∠7=∠3(同角的补角相等)∴a∥b(同位角相等,两直线平行)方法二:∵∠1+∠7=180°(已知)∠1+∠3=180°(平角定义)∴∠7=∠3(同角的补角相等)又∠7=∠6(对顶角相等)∴∠3=∠6(等量代换)∴a∥b(内错角相等,两直线平行)方法三:∵∠1+∠7=180°(已知)而∠1=∠4,∠7=∠6(对顶角相等)∠4+∠6=180°(平角定义)∴a∥b(同旁内角互补,两直线平行).故答案是:方法一:同角的补角相等;同位角相等,两直线平行;方法二:同角的补角相等;对顶角相等;等量代换;内错角相等,两直线平行;方法三:对顶角相等;同旁内角互补,两直线平行.23.【解答】解:(1)根据题意得:2◎4=2x+4y=﹣18,把x=﹣5代入得:﹣10+4y=﹣18,解得:y=﹣2;(2)根据题意得:,即,②﹣①得:x=2,把x=2代入得:y=6.24.【解答】证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.25.【解答】解:设第一架掘土机每小时掘土xm3,那么第二架掘土机每小时掘土(x﹣40)m3,依题意得:16x+24(x﹣40)=8640,解得:x=240,∴(x﹣40)=200m3.答:第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200m3.26.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣40°=140°,∵EG平分∠BEF,∴∠BEG=∠BEF=70°,而AB∥CD,∴∠EGF=∠BEG=70°.27.【解答】解:(1)把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为;(2)(i )原方程组变形为,①+②×2得,7(x 2+4y 2)=119,∴x 2+4y 2=17,(ii )由x 2+4y 2=17代入②得xy =2,∴(x +2y )2=x 2+4y 2+4xy =17+8=25.七年级(下)数学期中考试题【答案】一、仔细选一选(本题有12个小题,每小题3分,共36分)1、在下列各数:3.1415926、、0.2、、、、中无理数的个数是( )A .2B .3C .4D .52、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④3、在平面直角坐标系中,点(﹣1,m 2+1)一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4、如图,将△AB C 沿AB 方向向右平移得到△DEF ,其中AF=8,DB=2,则平移的距离为( )A. 5B. 4C. 3D. 25、如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .56°C .66°D .54°6、下列各组数中,互为相反数的组是( )A 、-2与2)2(-B 、-2和38-C 、-21与2 D 、︱-2︱和27、在平面直角坐标系中,若A 点坐标为(﹣3,3),B 点坐标为(2,0),则△ABO 的面积为( )A. 15B. 7.5C. 6D. 38、在实数范围内,下列判断正确的是( )A. 若n m =,则m=nB. 若22b a >,则a >bC. 若22)(b a =,则a=bD. 若33b a =,则a=b9、如图,直线AB ∥CD ,∠C=44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°10、如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )A .(3,2)B .(﹣3,2)C .(3,﹣2)D .(﹣3,﹣2)11、估计76的值在哪两个整数之间( )A 、75和77B 、6和7C 、7和8D 、8和912、如下图,AB ∥EF ∥CD ,∠ABC=46°,∠BCE=20°,则∠CEF=( )A. 144°B. 154°C. 164°D. 160°二、填空题(每小题3分,共18分)13、点P (2a ,1﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为4,则点P 的坐标是 .14、如图将一条两边都互相平行的纸带进行折叠,设∠1为a 度,则∠2=________(请用含有a 的代数式表示)15、绝对值等于5的数是 ;38-的相反数是 ;21-的绝对值是________。
四川省成都市青羊区石室教育集团2019-2020学年七年级上学期期中数学试卷 (含答案解析)

四川省成都市青羊区石室教育集团2019-2020学年七年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.−6的倒数是()A. 16B. −16C. 6D. −62.下列说法正确的是()A. 52a2b的次数是5次B. −x+y3−2x不是整式C. x是单项式D. 4xy3+3x2y的次数是7次3.已知a−2b=4,则代数式2a−4b+10的值为()A. 18B. 14C. 6D. 24.下列结论中,正确的有()①一个数不是正数就是负数;②一个数的绝对值越大,表示它的点在数轴上越靠右;③符号相反的数互为相反数;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数.A. 4个B. 3个C. 2个D. 1个5.25x m+1y n−2与−2x2y4是同类项,则m+n=()A. 2B. 4C. 5D. 76.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A. ①②B. ①④C. ①②④D. ①②③④7.“人间四月天,麻城看杜鹃”,2016年麻城市杜鹃花期间共接待游客约1200000人次,同比增长约26%,将1200000用科学记数法表示应是()A. 12×105B. 1.2×106C. 1.2×105D. 0.12×1058.若|x−12|+(2y−1)2=0,则x2+y2的值是()A. 38B. 12C. −18D. −389.一种商品每件进价为a元,按进价增加20%定为售价,后因库存积压降价,按售价的八折出售,每件亏损()A. 0.01a元B. 0.15a元C. 0.25a元D. 0.04a元10.下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A. 32B. 29C. 28D. 26二、填空题(本大题共13小题,共31.0分)11.如果某学生向右走10步记作+10,那么向左走5步,应记作______.12.单项式−πx2y37的系数是______,次数是______,多项式5x2y−3y2的次数是______.13.数轴上,点A表示的数是−3,并且AB=5,则点B表示的数是____________.14.比较大小:−23−35.15.若要使如图中平面展开图折叠成正方体后,相对面上的两个数互为相反数,x+y=______ .16.一个多项式加上2x2−4x−3得−x2+3x,则这个多项式为______.17.长方形的长是3a,它的周长是10a−2b,则宽是______.18.已知A,B,C是同一直线上的三个点,点O为AB的中点,AC=2BC,若OC=6,则线段AB的长为______.19.有理数−56,−13,0.001中最小的数是____________20.已知mn|mn|=−1,则m|m|+n|n|的值是_________.21.定义一种新运算:新定义运算a∗b=a×(a−b)3,则3∗4的结果是______.22.当x=1时,代数式px5+3qx3+4的值为2014,则当x=−1时,代数式px5+3qx3+4的值为______.23.实数a在数轴的位置如图所示,则|a−2|=_______.三、计算题(本大题共1小题,共4.0分)24.已知a的相反数是2,b的绝对值是3,c的倒数是−1.(1)写出a,b,c的值;(2)求代数式3a(b+c)−b(3a−2b)的值.四、解答题(本大题共8小题,共85.0分)25.计算:(1)7+(−2)−(−8)(2)(−7)×5−(−36)÷4(3)−14−16×[2−(−3)2](4)(5xy2−3x2y)−3(xy2−2x2y)26.如图所示,在数轴上有A,B两点,点A在点B的左侧,已知点B对应的数为2,点A对应的数为a.(1)若a=−3,则线段AB的长为_________(直接写出结果).(2)若点C在线段AB之间,且AC−BC=2,求点C表示的数(用含a的式子表示).27.按要求画图:直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,线段AP.28.化简求值:已知x=−2,求代数式3x2−3x+7−4x2−6+3x的值.29.如图,点C是线段AB的中点,AD=6,BD=4,求CD的长.30.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是______、______、______;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.31.21.已知:A=4a2−7ab+b,且B=2a2+6ab+7.(1)求A−2B.(2)若A+B+C=0,求C所表示的多项式.32.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费3元,如果每户每月用水超过10吨,则超过部分每吨水收费3.8元.(1)如果小红家9月用水25吨,则水费是_______元;如果小红家10月水费是94.6元,则小红家10月用水__________吨.(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?-------- 答案与解析 --------1.答案:B)=1,解析:解:∵(−6)×(−16∴−6的倒数是−1.6故选:B.根据乘积是1的两个数叫做互为倒数解答.本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.答案:C解析:解:A、52a2b的次数是3次,故本选项错误;−2x是整式,故本选项错误;B、−x+y3C、x是单项式,该说法正确,故本选项正确;D、4xy3+3x2y的次数是4次,故本选项错误.故选C.根据多项式、单项式、单项式次数的定义求解.本题考查了单项式和多项式的知识,解答本题的关键是掌握单项式次数、多项式次数的定义.3.答案:A解析:解:∵a−2b=4,∴原式=2(a−2b)+10=8+10=18,故选:A.原式变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.4.答案:C解析:本题考查了有理数,利用了有理数的分类:正数、零、负数;正数大于负数;数轴上的点表示的数右边的总比左边的大.根据有理数的分类,相反数是符号相反,绝对值相同的数,有理数的大小比较,可得答案.解:①一个数,不是正数就是负数或者是零,故①错误;②一个正数的绝对值越大,表示它的点在数轴上越靠右,故②错误;③符号相反,绝对值相同的数互为相反数,故③错误;④正数大于一切负数,故④正确;⑤在数轴上,右边的数总大于左边的数,故⑤正确;故选C.5.答案:Dx m+1y n−2与−2x2y4是同类项,得:解析:解:由25m+1=2,n−2=4.解得m=1,n=6则m+n=1+6=7,故选:D.根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,根据有理数的加法,可得答案.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.6.答案:B解析:本题考查了正方体的截面,注意:正方体的截面的四种情况应熟记.正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选B.7.答案:B解析:解:1200000=1.2×106,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.8.答案:B解析:解:∵|x −12|+(2y −1)2=0,∴x =12,y =12. 因此x 2+y 2=(12)2+(12)2=12.故选:B .根据非负数的性质可求出x 、y 的值,再代入x 2+y 2中求解即可.本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零. 9.答案:D解析:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.根据题意可以用代数式表示出每件亏损多少,本题得以解决.解:由题意可得,每件亏损为:a −a(1+20%)×0.8=a −0.96a =0.04a 元,故选:D .10.答案:B解析:解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2−1)=5个黑色正方形,图③中有2+3×(3−1)=8个黑色正方形,图④中有2+3×(4−1)=11个黑色正方形,…,图n 中有2+3(n −1)=3n −1个黑色的正方形,当n =10时,2+3×(10−1)=29,故选:B .仔细观察图形,找到图形的个数与黑色正方形的个数的通项公式后代入n =11后即可求解.本题是对图形变化规律的考查,难点在于利用求和公式求出第n 个图形的黑色正方形的数目的通项表达式.11.答案:−5解析:解:把向右走10步记作+10,那么向左走5步应记作−5,故答案为:−5.“正”和“负”是表示互为相反意义的量,向右走记作正数,那么向由的反方向,向左走应记为负数.本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.12.答案:−π75 3解析:根据单项式和多项式的有关概念解答即可.此题考查多项式与单项式,关键是根据单项式和多项式的有关概念解:单项式−πx2y37的系数是−π7,次数是5,多项式5x2y−3y2的次数是3;故答案为:−π7,5;3.解答.13.答案:−8或2解析:此题主要考查两点间的距离,借助数轴用数形结合的方法求解.由题意知:点B和点A距离是5,点B可以在A的左边或右边.利用两点间的距离与A表示−3,求得点B表示的数.解:如图:∵AB=5,∴点B到点A的距离是5.∵A表示−3,∴B表示为−3−5=−8或−3+5=2.故答案是−8或2.14.答案:<解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:∵|−23|=23,|−35|=35,23>35,∴−23<−35.故答案为<.15.答案:−8解析:本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题,结合正方体及其表面展开图的特点进行求解即可.解:这是一个正方体的平面展开图,共有六个面,其中面“−2”与面“y”相对,面“3”与面“−3”相对,面“x”与面“10”相对.∵相对面上的两个数互为相反数,∴x=−10,y=2,∴x+y=−8.故答案为−8.16.答案:−3x2+7x+3解析:解:根据题意得:(−x2+3x)−(2x2−4x−3)=−x2+3x−2x2+4x+3=−3x2+7x+3,故答案为:−3x2+7x+3根据题意列出关系式,去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.答案:2a−b解析:解:根据题意得:12(10a−2b)−3a=5a−b−3a=2a−b,故答案为:2a−b根据长方形的周长=2(长+宽),表示出宽即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.答案:4或36解析:本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.点C在线段AB上,若点C在线段AB延长线上两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.解:∵AC=2BC,∴设BC=x,AC=2x,若点C在线段AB上,则AB=AC+BC=3x,∵点O为AB的中点,∴AO=BO=32x,∴CO=BO−BC=x2=6,∴x=12,∴AB=3×12=36;若点C在线段AB延长线上,则AB=BC=x,∵点O为AB的中点,∴AO=BO=x2,∴CO=OB+BC=32x=6,∴x=4,∴AB=4.故答案为4或36.19.答案:−56解析:本题考查的是有理数的大小比较有关知识,先对各数进行比较,然后再解答即可.解:∵−56<−13<0.001,∴最小的数为−56故答案为−56 20.答案:0解析:此题考查了代数式求值及绝对值的意义,解题的关键是:根据绝对值的意义先判断出mn<0.由mn|mn|=−1,可得mn<0,即m、n一正一负,然后根据绝对值的意义即可求出答案.解:∵mn|mn|=−1,∴mn<0,即m>0,n<0或m<0,n>0,∴m|m|+n|n|=1−1=0.故答案为:0.21.答案:−3解析:解:∵a∗b=a×(a−b)3,∴3∗4=3×(3−4)3=3×(−1)3=3×(−1)=−3,故答案为:−3.根据a∗b=a×(a−b)3,可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.答案:−2006解析:解:∵当x=1时,px5+3qx3+4=2014,∴p+3q+4=2014,即p+3q=2010;当x=−1时,px5+3qx3+4=−p−3q+4=−(p+3q)+4=−2010+4=−2006.故答案为:−2006.将x=1代入可得p+3q=2010,将p+3q整体代入到px5+3qx3+4=−p−3q+4可得代数式的值.本题主要考查整体思想求代数式的值,由条件求出p+3q是解题的关键,属中档题.23.答案:2−a解析:本题考查了数轴和绝对值的知识,掌握数轴和绝对值的知识是解决问题的关键.根据点在数轴的位置确定a−2的符号,然后根据绝对值的知识进行化简即可.解:由题意可得:a<2,∴a−2<0,∴|a−2|=2−a.故答案为2−a.24.答案:解:(1)∵a的相反数是2,b的绝对值是3,c的倒数是−1,∴a=−2,b=±3,c=−1;(2)3a(b+c)−b(3a−2b)=3ab+3ac−3ab+2b2=3ac+2b2,∵a=−2,b=±3,c=−1,∴b2=9,∴原式=3×(−2)×(−1)+2×9=6+18=24.解析:(1)根据a的相反数是2,b的绝对值是3,c的倒数是−1,可以求得a、b、c的值;(2)先对题目中的式子化简,然后将(1)a、b、c的值代入即可解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.25.答案:解:(1)原式=7−2+8=13;(2)原式=−35+9=−26;(3)原式=−1−16×[2−9]=−1−16×(−7)=−1+112=111;(4)原式=5xy2−3x2y−3xy2+6x2y=2xy2+3x2y.解析:(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数的混合运算法则计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接去括号进而合并同类项得出答案.此题主要考查了整式的加减以及有理数的混合运算,正确掌握相关运算法则是解题关键.26.答案:解:(1)AB=2−(−3)=5,故答案为:5.(2)设点C表示的数为x,则AC=x−a,BC=2−x,∵AC−BC=x−a−(2−x)=2,∴x=2+a,2∴点C表示的数为2+a.2解析:本题考查了数轴.两点间的距离以及一元一次方程的应用,解题的关键是:(1)根据点A、B表示的数利用两点间的距离公式求出AB的长度;(2)根据两点间的距离公式结合AC−BC=2列出关于x 的一元一次方程.(1)根据点A、B表示的数利用两点间的距离公式即可求出AB的长度;(2)设点C表示的数为x,则AC=x−a,BC=2−x,根据AC−BC=2,即可得出关于x的一元一次方程,解之即可得出结论.27.答案:解:如图所示:解析:本题主要考查了直线、射线、线段,解题的关键是明确直线、射线、线段及点的位置关系.利用直线、射线、线段的位置关系画图即可.28.答案:解:原式=(3−4)x2+(−3+3)x+(7−6)=−x2+1,当x=−2时,原式=−(−2)2+1=−4+1=−3.解析:原式合并同类项得到最简结果,把x的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.29.答案:解:∵AD=6,BD=4,∴AB=AD+BD=10.∵点C是线段AB的中点,∴AC=CB=1AB=5.2∴CD=AD−AC=1.解析:根据线段的和差,可得AB的长,根据线段中点的性质,可得AC的长,再根据线段的和差,可得答案.本题考查了两点间的距离,利用线段中点的性质得出AC的长是解题关键.30.答案:(1)③、②、①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).解析:(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.本题考查了简单组合体的三视图以及几何体的表面积,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)见答案.31.答案:(1)−19ab+b−14;(2)−6a2+ab−b−7.解析:根据整式的运算法则即可求出答案.【详解】(1)A−2B=4a2−7ab+b−2a2−12ab−14=−19ab+b−14;(2)由A+B+C=0,得:C=−A−B=−(4a2−7ab+b)−(2a2+6ab+7)=−4a2+7ab−b−2a2−6ab−7=−6a2+ab−b−7.本题考查了整式的运算法则,解题的关键是熟练运用整式运算法则,本题属于基础题型.32.答案:解:(1)87,27;(2)①如果每月用水x≤10吨,水费为:3x元;②如果每月用水x>10吨,水费为:3.8(x−10)+30=(3.8x−8)元;解析:本题主要考查列代数式和代数式求值的知识点,解答本题的关键是理解题意,列出代数式.(1)9月用水25吨时,水费为:10吨按3元算;超过10吨的部分每吨水收费3.8元可得;10月份的水费是94.6元可知一定超过10吨,(94.6−10×3)÷3.8+10可得;(2)分类讨论:①如果每月用水x≤10吨,水费为:3x元,②如果每月用水x>10吨,水费为:3.8(x−10)+30元.解:(1)9月用水25吨时,水费为:10×3+(25−10)×3.8=87(元);(94.6−10×3)÷3.8+10=64.6÷3.8+10=27(吨).故答案为87,27;(2)见答案.。
成都石室外语学校数学七年级上册期中试卷

成都石室外语学校数学七年级上册期中试卷一、选择题1.4-的相反数是( ) A .4-B .14-C .14D .42.陕西省位于中国中部黄河中游地区,南部北跨长江支流汉江流城和嘉陵江上游的秦巴山地区,总面积约20.6万平方千米,其中“20.6万”用科学记数法表示为( ) A .420.610⨯ B .42.0610⨯ C .52.0610⨯ D .40.20610⨯ 3.下列运算中正确的是( )A .a 5+a 5=a 10B .a 7÷a =a 6C .a 3•a 2=a 6D .(﹣a 3)2=﹣a 64.若多项式()523mx m x ---是一个二次三项式,则m 的值为( ). A .2±B .2C .2-D .无法确定5.按下面的程序计算,若输入的数为6,则输出的数为( )A .24B .25C .26D .276.若关于x 、y 的多项式2226431x ax y ax x +-+--中没有二次项,则a =( ) A .3B .2C .12-D .3-7.已知数a ,b 在数轴上对应点的位置如图所示,则下列结论不正确的是( )A .a +b <0B .a ﹣b >0C .b <﹣a <a <﹣bD .ba>08.对于有理数x ,我们规定[]x 表示不大于x 的最大整数,例如[][]1.21,33,==[]2.53,-=-若2106,x +⎡⎤⎢⎥=⎣⎦则x 的取值可以是( ) A .52 B .62 C .56 D .689.观察图中每一个正方形各顶点所标数字的规律,2021应标在( )A .第505个正方形右下角顶点处B .第504个正方形右上角顶点处C .第506个正方形右下角顶点处D .第506个正方形左上角顶点处10.已知整数1a ,2a ,3a ,4a ,…,满足下列条件:10a =,211a a =-+,322a a =-+,433a a =-+,…,以此类推,则2019a 的值为( )A .-1007B .-1008C .-1009D .-2018二、填空题11.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章中,在世界数学史上首次正式引入负数.如果收入100元记作100+元,那么支出80元可表示为____.12.下列说法:①23xy -的系数是2-;②232mn 的次数是3次;③23341xy x y -+是七次三项式;④6x y+是多项式.其中说法正确的是______(写出所有正确结论的序号). 13.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.14.如图,长方形ABCD 被分成六个小的正方,已知中间一个小正方形的边长为1,其它正方形的边长分别为a 、b 、c 、d .观察图形并探索:(1)b =_____,d =_____;(用含a 的代数式表示)(2)长方形ABCD 的面积为_____.15.已知a 2=(-4)2,|b|=2,当ab ﹥0时,a-b=______.16.有理数a 、b 在数轴上分别对应的点为M 、N ,则下列式子结果为正数的是_____ ①a+b ;②a ﹣b ;③﹣a+b ;④﹣a ﹣b ;⑤ab ;⑥ab;⑦a 3b 3.17.《庄子天下篇》中“一尺之棰,日取其半,万世不竭”的意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图,由图易得: 233111112222++=-,那么231111 (2222)n ++++=________.18.将正整数按如图方式进行有规律的排列,第2行最后一个数是4,第3行最后一个数是7,第4行最后一个数是10,…,依次类推,第一个2021出现在第______行. 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 5 6 7 8 9 10 11 12 13 ……三、解答题19.(1)在数轴上把下列各数表示出来:2-,1.5,()4--,5--,1001-.(2)将上列各数用“<”连接起来:______. 20.计算 (1)2(8)+- (2)(32)(27)--- (3)418516⎛⎫⨯-⨯ ⎪⎝⎭(4)3116(2)(4)8÷--⨯-21.先化简,再求值:()()()()224x y x y x y y ⎡⎤---+÷-⎣⎦,其中1x =,4y =-. 22.计算:(1)()()2x y 33x 2y 6x +--+; (2)()()214a 2a 8b a 2b 4-+----. 23.小明同学一周计划每天看《朝花夕拾》10页,实际每天阅读量与计划阅读量相比情况如下表(以计划量为标准,超出的页数记为正数,不足记为负数) 星期 一二三四 五 六 日超出或不足(页)2+ 5-4-10+ 12+ 3-多看了几页?(2)求这一周小明共看的页数.(3)下表是小明第二周的阅读情况星期一二三四五超出或不足(页)a 12b3-12a b若该书共144页,小明第二周用了5天就读完了剩下的部分,则a b+的值为______.24.如图,四边形ABCD和ECGF都是正方形,边长分别为a和6.(1)写出表示阴影部分面积的代数式;(结果要求化简)(2)当a=3.5时,求阴影部分的面积.25.如图,在边长都为a的正方形内分别排列着一些大小相等的圆.(1)根据图中的规律,第4个正方形内圆的个数是_________,第n个正方形内圆的个数是_________(用含n的代数式表示,结果需化简);(2)如果把正方形内除去圆的部分都涂上阴影.①用含a的代数式分别表示第1个正方形中和第3个正方形中阴影部分的面积(结果保留π);②若10a=,请直接写出第2019个正方形中阴影部分的面积_________(结果保留π).二26.如图,点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB a b请你利用数轴回答下列问题:(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和2-的两点之间的距离为________.(2)数轴上表示x和1两点之间的距离为_______,数轴上表示x和3-两点之间的距离为(3)若x 表示一个实数,且53x -<<,化简35x x -++=________. (4)12345x x x x x -+-+-+-+-的最小值为________. (5)13x x +--的最大值为________.【参考答案】一、选择题 1.D 解析:D 【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可. 【详解】解:根据概念,-4的相反数是4. 故选:D . 【点睛】本题考查了相反数的性质,解题的关键是掌握相反数的定义为:只有符号不同的两个数互为相反数,0的相反数是0.2.C 【分析】根据科学记数法的定义即可得. 【详解】科学记数法:将一个数表示成的形式,其中,n 为整数,这种记数的方法叫做科学记数法, 则万, 故选:C . 【点睛】本题考查了科学记数法的定义,熟记解析:C 【分析】根据科学记数法的定义即可得. 【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法,则20.6万452.061010 2.0610=⨯⨯=⨯, 故选:C . 【点睛】本题考查了科学记数法的定义,熟记定义是解题关键. 3.B根据合并同类项、同底数幂除法、同底数幂乘法、幂的乘方,分别进行判断,即可得到答案. 【详解】解:a 5+a 5=2a 5,故A 错误; a 7÷a =a 6,故B 正确; a 3•a 2=a 5,故C 错误; (﹣a 3)2=a 6,故D 错误; 故选:B. 【点睛】本题考查了合并同类项、同底数幂除法、同底数幂乘法、幂的乘方的运算法则,解题的关键是掌握运算法则进行解题. 4.C 【分析】由多项式定义|m|=2,再根据多项式为三项式确定m 的值. 【详解】解:由已知220m m ⎧=⎨-≠⎩,则可知m=2-故应选C 【点睛】本题考查了多项式的项和次数,解答关键是按照定义求出相关字母的数值. 5.D 【分析】按照数值转换机,运用有理数的计算法则进行计算即可得出答案. 【详解】若输入的数为6,232631520x --=-⨯-=-< 输入-15,232(15)32720x --=-⨯--=> 所以输出27 故选D 【点睛】本题主要考查有理数的运算,掌握有理数的运算法则是解题的关键.6.C 【分析】先进行合并,再根据没有二次项分析可知二次项的系数为0,据此可解. 【详解】 解:∵=,而关于、的多项式中没有二次项, ∴2+4a=0,解得:a=. 故选:C . 【点睛】 此题主要解析:C 【分析】先进行合并,再根据没有二次项分析可知二次项的系数为0,据此可解. 【详解】解:∵2226431x ax y ax x +-+--=2(24)(3)61a x a x y ++---, 而关于x 、y 的多项式2226431x ax y ax x +-+--中没有二次项, ∴2+4a=0, 解得:a=12-.故选:C . 【点睛】此题主要考查了多项式,正确把握多项式次数与系数确定方法是解题关键.7.D 【分析】根据数轴上a 、b 的位置结合有理数的运算法则即可判断. 【详解】解:由数轴可知:b <0<a ,|b|>|a|, ∴﹣b >a ,∴a+b <0,a ﹣b >0,<0,b <﹣a <0<a <﹣b .解析:D 【分析】根据数轴上a 、b 的位置结合有理数的运算法则即可判断. 【详解】解:由数轴可知:b <0<a ,|b |>|a |, ∴﹣b >a ,∴a +b <0,a ﹣b >0,ba<0,b <﹣a <0<a <﹣b .故选:D . 【点睛】本题考查数轴的定义,解题的关键是正确理解数轴与有理数之间的关系,本题属于基础题型.8.B 【分析】根据题意可得,再对各项进行判断即可. 【详解】 ∵ ∴ 解得则的取值可以是62 故答案为:B . 【点睛】本题考查了解不等式的问题,掌握解不等式的方法是解题的关键.解析:B 【分析】根据题意可得5868x ≤<,再对各项进行判断即可. 【详解】 ∵2106,x +⎡⎤⎢⎥=⎣⎦∴26710x +≤< 解得5868x ≤< 则x 的取值可以是62 故答案为:B . 【点睛】本题考查了解不等式的问题,掌握解不等式的方法是解题的关键.9.C 【分析】观察可知,每个正方形标四个数字,从右上角的顶点开始,按照逆时针方向每四个正方形为一组依次循环,用2021除以4确定出所在的正方形的序号为506,再用506除以4确定出循环组的第几个正方解析:C 【分析】观察可知,每个正方形标四个数字,从右上角的顶点开始,按照逆时针方向每四个正方形为一组依次循环,用2021除以4确定出所在的正方形的序号为506,再用506除以4确定出循环组的第几个正方形,然后确定出在正方形的位置,即可得解. 【详解】解:观察可知,第1个正方形的第一个数字标在正方形的右上角, 第2个正方形的第一个数字标在正方形的左上角, 第3个正方形的第一个数字标在正方形的左下角, 第4个正方形的第一个数字标在正方形的右下角, 第5个正方形的第一个数字标在正方形的右上角,…,依此类推,每四个正方形为一组依次循环, 2021÷4=505…1, 506÷4=126…2,所以,2021应标在第506个正方形的第二个顶点,是第127个循环组的第1个正方形,在正方形的右下角,即2021应标在第506个正方形右下角顶点处. 故选:C . 【点睛】本题是对数字变化规律的考查,观察出数字的排列特点然后准确确定出2021所在的正方形以及所在循环组的序号是解题的关键.10.C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于,n 是偶数时,结果等于,然后把n 的值代入进行计算即可得解. 【详解】 解:a1=0,a2=−|a1+1|=−|0+1|=−1, a3解析:C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --,n 是偶数时,结果等于2n-,然后把n 的值代入进行计算即可得解. 【详解】 解:a 1=0,a 2=−|a 1+1|=−|0+1|=−1, a 3=−|a 2+2|=−|−1+2|=−1, a 4=−|a 3+3|=−|−1+3|=−2, a 5=−|a 4+4|=−|−2+4|=−2, …所以,n 是奇数时,a n =12n --,n 是偶数时,a n =2n-, ∴20192019110092a -=-=-, 故选:C . 【点睛】本题是对数字变化规律的考查,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.二、填空题 11.元 【分析】根据题意得出:收入记作为正,支出记作为负,表示出来即可. 【详解】解:如果收入100元记作+100元,那么支出80元记作-80元, 故答案为:-80元. 【点睛】本题考查了正数和负解析:80-元 【分析】根据题意得出:收入记作为正,支出记作为负,表示出来即可. 【详解】解:如果收入100元记作+100元,那么支出80元记作-80元, 故答案为:-80元. 【点睛】本题考查了正数和负数,能用正数和负数表示题目中的数是解此题的关键.12.②④ 【解析】 【详解】试题解析:①-的系数是-,故原说法错误;. ②的次数是3次,说法正确;.③3xy2-4x3y+1是四次三项式,故原说法错误;. ④是多项式,说法正确;. 故答案为②④.解析:②④ 【解析】 【详解】 试题解析:①-23xy 的系数是-23,故原说法错误;. ②232mn 的次数是3次,说法正确;.③3xy 2-4x 3y+1是四次三项式,故原说法错误;. ④6x y+是多项式,说法正确;. 故答案为②④.点睛:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;多项式中次数最高的项的次数叫做多项式的次数;多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数.13.131或26或5或.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.14.a+1 2a﹣1 143【分析】(1)利用中间一个小正方形的边长为1,得出b,d与a的关系;(2)利用c=b+1,b=a+1,得出c=a+2,再利用c=d﹣1,d=2a﹣1解析:a+1 2a﹣1 143【分析】(1)利用中间一个小正方形的边长为1,得出b,d与a的关系;(2)利用c=b+1,b=a+1,得出c=a+2,再利用c=d﹣1,d=2a﹣1,得出c=2a﹣2,那么2a﹣2=a+2,解方程求出a的值,然后分别计算出长方形ABCD的长与宽,进而求出面积.【详解】(1)∵中间一个小正方形的边长为1,∴b=a+1,d=2a﹣1;故答案为:a+1,2a﹣1;(2)∵c=b+1,b=a+1,∴c=a+2,又∵c=d﹣1,d=2a﹣1,∴c=2a﹣2,∴2a﹣2=a+2,解得a=4.则长方形ABCD的长为c+d=a+2+2a﹣1=3a+1=13,宽为a+d=a+2a﹣1=3a﹣1=11,所以长方形ABCD的面积为:11×13=143.故答案为:143.【点睛】此题主要考查列代数式,解题的关键是根据图形找到等量关系进行求解.15.2或-2.【分析】先根据乘方的意义和绝对值的意义求出a,b,再根据ab﹥0得到a、b同号,进而求出a、b的值,即可求出a-b的值.【详解】解:因为a 2=(-4)2,|b|=2,所以a=±解析:2或-2.【分析】先根据乘方的意义和绝对值的意义求出a,b,再根据ab﹥0得到a、b同号,进而求出a、b的值,即可求出a-b的值.【详解】解:因为a 2=(-4)2,|b|=2,所以a=±4, b=±2,因为ab﹥0,所以a,b同号,当a=4,b=2时,a-b=2,当a=-4,b=-2时,a-b=-2.所以a-b=2或-2.故答案为:2或-2.【点睛】本题考查了乘方的意义、绝对值的意义,有理数运算等知识,根据乘方的意义、绝对值的意义和有理数乘法法则求出a ,b ,并分类讨论是解题关键.16.③④【解析】试题解析:观察数轴,可知:∴①;②;③ ④ ⑤ ⑥;⑦故答案为:③④.解析:③④【解析】 试题解析:观察数轴,可知:00a b a b >,,, 0a b b a ,∴<-<<<- ∴①0a b +<;②0a b -<;③0a b ;-+> ④0a b ;--> ⑤0ab <; ⑥0a b<;⑦()3330a b ab =<.故答案为:③④. 17.【分析】结合题意,通过找出数据的规律,经计算即可得到答案.【详解】设S=+++···+ ∴2S=1+++···+∴2S-S=1∴S=1故答案为:.【点睛】本题考查了图形和数字规 解析:112n - 【分析】结合题意,通过找出数据的规律,经计算即可得到答案.【详解】设S =12+212+312+ (12)∴2S =1+12+212+···+112n -∴2S-S=1-1 2n∴S=1-12n故答案为:112n-.【点睛】本题考查了图形和数字规律的知识;解题的关键是熟练掌握数字规律的性质,从而完成求解.18.675【分析】由题意易得第一行最后一个数是3×1-2=1,第二行最后一个数是3×2-2=4,第三行最后一个数是3×3-2=7,第四行最后一个数是3×4-2=10,第五行最后一个数字是3×5-2=解析:675【分析】由题意易得第一行最后一个数是3×1-2=1,第二行最后一个数是3×2-2=4,第三行最后一个数是3×3-2=7,第四行最后一个数是3×4-2=10,第五行最后一个数字是3×5-2=13……;依此规律可得第n行最后一个数是(3n-2),然后问题可求解.【详解】解:由题意得:第一行最后一个数是3×1-2=1,第二行最后一个数是3×2-2=4,第三行最后一个数是3×3-2=7,第四行最后一个数是3×4-2=10,第五行最后一个数字是3×5-2=13……;∴该列数的规律为:第n行最后一个数是(3n-2),∴322021n-=,解得:16743n=,∴第674行最后一个数字是674×3-2=2020,∴第一个2021出现在第675行;故答案为675.【点睛】本题主要考查数字规律,关键是根据题中所给数字中得到一般规律,然后进行求解即可.三、解答题19.(1)见详解;(2)【分析】首先在数轴上确定各点位置,然后再根据在数轴上表示的两个有理数,右边的数总比左边的数大用“”号连接即可.【详解】解:(1)∵,,∴画图如下:(2)将各数用“”解析:(1)见详解;(2)()100521 1.54--<-<-<<--【分析】首先在数轴上确定各点位置,然后再根据在数轴上表示的两个有理数,右边的数总比左边的数大用“<”号连接即可.【详解】解:(1)∵()44--=,55--=-,10011-=-∴画图如下:(2)将各数用“<”连接起来:()100521 1.54--<-<-<<--.故答案是:()100521 1.54--<-<-<<--.【点睛】本题主要考查了有理数的大小比较,关键是正确在数轴上确定各点位置.20.(1);(2);(3);(4)【分析】(1)根据有理数的加法运算法则进行求解;(2)根据有理数的减法运算法则进行求解;(3)根据有理数的乘法运算法则进行求解;(4)根据有理数的混合运算法则解析:(1)6-;(2) 5-;(3)25-;(4)32- 【分析】(1)根据有理数的加法运算法则进行求解;(2)根据有理数的减法运算法则进行求解;(3)根据有理数的乘法运算法则进行求解; (4)根据有理数的混合运算法则进行求解.【详解】解:(1)原式(82)6=--=-;(2)原式(32)275=-+=-;(3)原式41285165=-⨯⨯=-; (4)原式11316(8)(4)2822=÷--⨯-=-+=-. 【点睛】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.21.,6【分析】首先将括号里面进行运算,进而利用整式混合运算法则化简,再把已知数代入求出答案.【详解】解:原式,当,时,原式【点睛】此题主要考查了整式的化简求值,正确化简整式是解题关键. 解析:54-x y ,6 【分析】首先将括号里面进行运算,进而利用整式混合运算法则化简,再把已知数代入求出答案.【详解】解:原式()()2222444x xy y x y y =-+-+÷-()()254544xy y y x y =-+÷-=-, 当1x =,4y =-时,原式()51464=-⨯-= 【点睛】此题主要考查了整式的化简求值,正确化简整式是解题关键.22.(1);(2)【分析】直接去括号进而合并同类项得出答案;直接去括号进而合并同类项得出答案.【详解】解:原式原式.【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.解析:(1)8x y -+;(2)232a a -+【分析】 ()1直接去括号进而合并同类项得出答案;()2直接去括号进而合并同类项得出答案.【详解】解:()1原式229668x y x y x x y =+-++=-+()2原式22132222a ab a b a a =-+-++=-+. 【点睛】 此题主要考查了整式的加减,正确合并同类项是解题关键.23.(1)周六阅读量最多,22页,17页;(2)82页;(3)10【分析】(1)根据表格中数据,找出绝对值最大(小)的即为日阅读量最多(少)的是哪天,从而计算;(2)将表格中的数据相加,再加上每天解析:(1)周六阅读量最多,22页,17页;(2)82页;(3)10【分析】(1)根据表格中数据,找出绝对值最大(小)的即为日阅读量最多(少)的是哪天,从而计算;(2)将表格中的数据相加,再加上每天的计划量;(3)根据第一周所看页数,得到第二周的页数,依照(2)中方法列出关于a 和b 的等式,化简得到a +b 的值.【详解】解:(1)由表格知,阅读量周六超出12页,阅读量最多,所以周六看了:10+12=22(页),日阅读量最少的是周二,比预计少5页,∴周六比周二多看了12-(-5)=17页;(2)这一周小明共看了:()10725401012382⨯+--+++-=页;(3)该书共144页,第一周共看了82页,剩下144-82=62页,用了5天读完剩下的62页, ∴1131056222a b a b ⎛⎫+-+++⨯= ⎪⎝⎭, ∴()3152a b +=, ∴10a b +=.【点睛】本题考查了正、负数的应用,有理数的混合运算的实际应用,代数式求值,解题的关键是理解题意,列出相应算式.24.(1)-3a +18 ;(2)【分析】(1)阴影部分面积可视为大小正方形减去空白部分(即△ABD 和△BFG ),把对应的三角形面积代入即可得S=-3a+18;(2)直接把a=3.5代入(1)中可求解析:(1)22a -3a +18 ;(2)1098 【分析】(1)阴影部分面积可视为大小正方形减去空白部分(即△ABD 和△BFG ),把对应的三角形面积代入即可得S=22a -3a+18; (2)直接把a=3.5代入(1)中可求出阴影部分的面积.【详解】(1)S=a 2+62-22a -12(a+6)×6 =a 2+62-12a 2-12a×6-12×62 =12a 2-3a+18. (2)当a=3.5时,S=12×3.52-3×3.5+18=1098. 【点睛】本题考查列代数式.要求对图形间的关系准确把握,找到阴影部分的面积是哪些规则图形的面积差是解题的关键.在考查代数式的同时也考查了学生的读图能力,培养了思维的缜密性和数形结合能力.25.(1)16,n2;(2)①第一个正方形:;第三个正方形:;②100-25π【分析】(1)观察上图可知第①个图形圆的个数是12=1,第②个图形圆的个数是22=4,第③个图形圆的个数是32=9,第④解析:(1)16,n 2;(2)①第一个正方形:244a π-;第三个正方形:244a π-;②100-25π【分析】(1)观察上图可知第①个图形圆的个数是12=1,第②个图形圆的个数是22=4,第③个图形圆的个数是32=9,第④个图形圆的个数是42=16,…;可知第n 个正方形中圆的个数为n 2个;(2)①阴影部分的面积等于正方形的面积减去圆的面积,由此列式后即可得到答案; ②根据①中结论,将a=10代入计算得到结果.【详解】解:(1)图形①圆的个数是1,图形②圆的个数是4,图形③圆的个数是9,图形④圆的个数是16,…第n 个正方形中圆的个数为n 2个,故答案为:16,n 2;(2)①第一个S 阴影=a 2-π•(2a )2=244a π-;第二个S 阴影=a 2-4•π•(4a )2=244a π-; 第三个S 阴影=a 2-9•π•(6a )2=244a π-; ②从以上计算看出三个图形中阴影部分的面积均相等,与圆的个数无关.则第n 图形中阴影部分的面积是S 阴影=a 2-n 2•π•(2a n )2=244a π-, 当a=10,第2019个阴影部分的面积为24104π-⨯=100-25π. 故答案为:100-25π.【点睛】此题考查了规律型:图形的变化,认真观察图形,发现图形的变化规律,得出第n 个正方形中圆的个数为n 2个和圆面积的变化是解决此题的关键. 二26.(1)4,3;(2)|x-1|,|x+3|;(3)8;(4)6;(5)4【分析】(1)(2)直接代入公式即可;(3)实质是在点表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(4)解析:(1)4,3;(2)|x-1|,|x+3|;(3)8;(4)6;(5)4【分析】(1)(2)直接代入公式即可;(3)实质是在点表示3和-5的点之间取一点,计算该点到点3和-5的距离和; (4)可知x 对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(5)分当-1<x <3时,当x≤-1时,当x≥3时,三种情况分别化简,从而求出最大值.【详解】解:(1)|6-2|=4,|-2-1|=3,答案为:4,3;(2)根据两点间距离公式可知:数轴上表示x 和1两点之间的距离为|x-1|,数轴上表示x 和-3两点之间的距离为|x+3|,故答案为:|x-1|,|x+3|;(3)x 对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8,故答案为:8;(4)|x-1|+|x-2|+|x-3|+|x-4|+|x-5|表示数x 到1,2,3,4,5的距离之和,可知:当x 对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6,故答案为:6;(5)当-1<x <3时,|x+1|-|x-3|=x+1+x-3=2x-2,-4<2x-2<4,当x≤-1时,|x+1|-|x-3|=-x-1+x-3=-4,当x≥3时,|x+1|-|x-3|=x+1-x+3=4, 综上:13x x +--的最大值为4.【点睛】此题主要考查了绝对值、数轴等知识,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.。
2020-2021成都石室外语学校七年级数学下期中试题附答案

2020-2021成都石室外语学校七年级数学下期中试题附答案一、选择题1.无理数23的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°3.若点(),P a b 在第四象限,则( )A .0a >,0b >B .0a <,0b <C .0a <,0b >D .0a >,0b <4.下列说法一定正确的是( )A .若直线a b ∥,a c P ,则b c ∥B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .两条不相交的直线叫做平行线 5.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( )A .1600名学生的体重是总体B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本6.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度7.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)8.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a (a >1),那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位长度C.图案向左平移了a个单位长度,并且向下平移了a个单位长度D.图案向右平移了a个单位长度,并且向上平移了a个单位长度9.下列图中∠1和∠2是同位角的是( )A.(1)、(2)、(3)B.(2)、(3)、(4)C.(3)、(4)、(5)D.(1)、(2)、(5)10.不等式组324323x xx+⎧⎪-⎨≥⎪⎩<的解集,在数轴上表示正确的是()A.B.C.D.11.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°12.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°二、填空题13.已知实数x的两个平方根分别为2a+1和3-4a,实数y的立方根为-a2x y+的值为______.14.已知AB∥x轴,A(-2,4),AB=5,则B点横纵坐标之和为______.15.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.16.请设计一个解为51x y =⎧⎨=⎩的二元一次方程组________________. 17.如图,直线a 和b 被直线c 所截,∠1=110°,当∠2=_____时,直线a ∥b 成立18.若α∠与β∠的两边分别平行,且()210x α∠=+︒,()320x β=-︒∠,则α∠的度数为__________.19.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.20.若264a =3a =______.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.22.某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?23.如图,AD//BC,∠A=∠C.求证:AB//DC.24.甲、乙两名同学在解方程组5{213mx yx ny+=-=时,甲解题时看错了m,解得7{22xy==-;乙解题时看错了n,解得3{7xy==-.请你以上两种结果,求出原方程组的正确解.25.解二元一次方程组:(1)23532 x yx y+=⎧⎨-=-⎩(2)25 411 x yx y-=⎧⎨+=⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先确定3的范围,然后再确定23的取值范围即可.【详解】∵1.52=2.25,22=4,2.25<3<4,<<,∴1.532<<,∴3234故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.3.D解析:D【解析】【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】由点P(a,b)在第四象限内,得a>0,b<0,故选:D.【点睛】此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.A解析:A【解析】【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【详解】A、在同一平面内,平行于同一直线的两条直线平行.故正确;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、根据平行线的定义知是错误的.D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;故选:A.【点睛】此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.5.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.7.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.8.C解析:C【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比,图案向左平移了a个单位长度,并且向下平移了a个单位长度.故选:C.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.10.A解析:A【解析】【分析】【详解】324{32?3x xx<+-≥①②,由①,得x<4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选A.11.B解析:B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B .点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.12.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°. 故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.二、填空题13.3【解析】【分析】利用平方根立方根的定义求出x 与y 的值即可确定的值【详解】解:根据题意的2a+1+3-4a=0解得a=2∴故答案为:3【点睛】本题考查了平方根和立方根熟练掌握相关的定义是解题的关键解析:3【解析】【分析】利用平方根、立方根的定义求出x 与y 2x y +的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,2252(8)=3x y ∴+=+⨯-,故答案为:3.【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.14.-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同再根据线段AB的长度为5B点在A点的坐标或右边分别求出B点的坐标即可得到答案【详解】解:∵AB∥x轴∴B点的纵坐标和A点的纵坐标解析:-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB 5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.15.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;当AB ∥DE 时,∵∠E =∠EAB =90°, ∴∠BAD =∠DAE +∠EAB =45°+90°=135°. 故答案为:45°,60°,105°,135°. 点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).16.(答案不唯一)【解析】【分析】由写出方程组即可【详解】解:∵二元一次方程组的解为∴即所求方程组为:故答案为:(答案不唯一)【点睛】此题考查二元一次方程组的解的概念:使方程左右两边相等的未知数的值叫做解析:64x y x y +=⎧⎨-=⎩(答案不唯一) 【解析】【分析】由516+=,514-=写出方程组即可.【详解】解:∵二元一次方程组的解为51x y =⎧⎨=⎩, ∴6x y +=,4x y -=,即所求方程组为:64x y x y +=⎧⎨-=⎩, 故答案为:64x y x y +=⎧⎨-=⎩.(答案不唯一) 【点睛】 此题考查二元一次方程组的解的概念:使方程左右两边相等的未知数的值叫做方程的解. 17.70°【解析】【分析】根据平行的判定要使直线a∥b 成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a∥b 成立则∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠3解析:70°【解析】【分析】根据平行的判定,要使直线a ∥b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a ∥b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.【点睛】本题主要考查了平行的判定(同位角相等,两直线平行),掌握直线平行的判定方法是解题的关键.18.70°或86°【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x然后求解即可【详解】∵∠α与∠β的两边分别平行∴①∠α=∠β∴(2x+10)°=(3x−20)°解得x=30∠α=(2×解析:70°或86°.【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x,然后求解即可.【详解】∵∠α与∠β的两边分别平行,∴①∠α=∠β,∴(2x+10)°=(3x−20)°,解得x=30,∠α=(2×30+10)°=70°,或②∠α+∠β=180°,∴(2x+10)°+(3x−20)°=180°,解得x=38,∠α=(2×38+10)°=86°,综上所述,∠α的度数为70°或86°.故答案为70°或86°.【点睛】此题考查平行线的性质,解题关键在于掌握其性质.19.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.20.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】a ,∴a=±8.2解:∵264故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..三、解答题21.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.26元.【解析】【分析】通过理解题意,可知本题存在两个等量关系,即甲种服装的标价+乙种服装的标价=240元,甲种服装的标价×0.7+乙种服装的标价×0.8=186元,根据这两个等量关系可列出方程组求出甲、乙服装的进价,用售价减进价即可求出利润.【详解】解:设甲种服装的进价是x 元,乙种服装的进价是y 元.由题意得(150%)(150%)240(150%)0.7(150%)0.8186x y x y +++=⎧⎨+⨯++⨯=⎩解,得40120x y =⎧⎨=⎩186-(40+120)=26(元)答:这两种服装打折之后售出的利润是26元.故答案为26元.【点睛】本题考查了二元一次方程组的应用.解题的关键是弄清题意,找到合适的等量关系,列出方程组,在设未知量时知道到底设哪个更简单,否则较难列出方程.23.证明见解析.【解析】【分析】根据AD ∥BC 得到∠C=∠CDE ,再根据∠A=∠C ,利用等量替换得到∠A=∠CDE 即可判定;【详解】证明:∵AD ∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB ∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.24.n = 3 , m = 4, 2{3x y ==-【解析】试题分析: 由题意可知722x y ⎧=⎪⎨⎪=-⎩是方程213x ny -=的解,由此即可求得n 的值;37x y =⎧⎨=-⎩是方程5mx y +=的解,由此看求得m 的值;这样即可得到正确的原方程组,再解方程组,即可求得原方程组的正确解;试题解析: 由题意可知722x y ⎧=⎪⎨⎪=-⎩是方程213x ny -=的解, ∴72(2)132n ⨯--=,解得n=3; 37x y =⎧⎨=-⎩是方程5mx y +=的解, ∴375m -=,解得m=4;∴原方程组为:452313x y x y +=⎧⎨-=⎩,解此方程组得23x y =⎧⎨=-⎩, ∴m=4,n=3,原方程组的解为:23x y =⎧⎨=-⎩. 点睛:在本题中“甲、乙两名同学在解方程组5213mx y x ny +=⎧⎨-=⎩时,甲解题时看错了m ,解得722x y ⎧=⎪⎨⎪=-⎩ ”这句话的含义是:“722x y ⎧=⎪⎨⎪=-⎩”是关于x y 、的二元一次方程“213x ny -=”的解.25.(1)11x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【解析】【分析】(1)利用加减消元法,先消去y ,解出x ,再代入原式解出y 即可;(2)先将411x y +=两边同时乘2,得8222x y +=与25x y -=相加,消去y ,解出x ,再代入原式解出y 即可.【详解】解:(1)23532x y x y +=⎧⎨-=-⎩①②, ①+②得:33x =,解得:1x =,将1x =代入①得:1y =,所以方程组的解为:11x y =⎧⎨=⎩, 故答案为:11x y =⎧⎨=⎩; (2)25411x y x y -=⎧⎨+=⎩①②, ②×2得:8222x y +=③, ①+③得:927x =,解得:3x =,将3x =代入①中解得:1y =-,所以方程组的解为:31x y =⎧⎨=-⎩, 故答案为:31x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法,此题运用加减消元法.。
2022-2023学年四川省成都市成华区石室中学北湖校区七年级(上)期中数学试卷

2022-2023学年石室中学北湖校区七年级(上)期中数学试卷一、选择题(每题4分,共32分)1.(4分)﹣3的绝对值是()A.3B.C.D.﹣32.(4分)下列立体图形中,主视图是圆的是()A.B.C.D.3.(4分)2022年10月16日,中国共产党第二十次全国代表大会在人民大会堂开幕.习近平代表第十九届中央委员会向大会作了题为《高举中国特色社会主义伟大旗帜为全面建设社会主义现代化国家而团结奋斗》的报告,习近平在报告中指出,我国经济实力实现历史性跃升,制造业规模、外汇储备稳居世界第一.全社会研发经费支出从一万亿元增加到二万八千亿元,居世界第二位.数字“2800000000000”用科学记数法可表示为()A.28×1011B.2.8×1012C.0.28×1013D.2.8×10114.(4分)若单项式的系数、次数分别是a、b,则()A.a=,b=6B.a=﹣,b=6C.a=,b=7D.a=﹣,b=75.(4分)如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“向”相对的汉字是()A.一B.起C.向D.来6.(4分)下列各题正确的是()A.3x+3y=6xy B.﹣x﹣x=0C.3y2﹣9y2=6y2D.9a2b﹣9a2b=07.(4分)若a是最小的自然数,b是最大的负整数,c是倒数等于它本身的数,则a+b+c=()A.0B.﹣2C.0或﹣2D.﹣1或18.(4分)有理数a,b在数轴上的位置如图,那么下列选项正确的是()A.|﹣a|<|﹣b|B.ab>0C.a2>b2D.a+b>0二、填空题(每题4分,共20分)9.(4分)一个棱柱有10个面,则这个棱柱有个顶点.10.(4分)用“>、<、=”号填空:|+9||﹣9|,.11.(4分)值日生小明想把教室桌椅摆放整齐,为了将一列课桌对齐,他把这列课桌的最前面一张和最后面一张先拉成一条线,其余课桌按这条直线摆放,这样做用到的数学知识是.12.(4分)若3a m b3与﹣6a2b n是同类项,则2m+n=.13.(4分)如图,∠AOB=120°,OC平分∠AOB,若∠COD=20°,∠BOD=°.三.解答题(共5小题,共48分)14.(16分)计算:(1)6+(﹣15)﹣(﹣8);(2)﹣2.5÷(﹣)×(﹣);(3)36×(+﹣);(4)﹣22﹣[﹣9+(﹣2)4÷23].15.(6分)先化简,再求值:3(2x2y﹣3xy)﹣(xy+6x2y),其中x=2,y=﹣1.16.(8分)解答下列问题.(1)若有理数x、y满足|x|=3,|y|=2,且xy<0,求x+y的值;.(2)已知有理数a、b、c在数轴上的位置如图所示,请化简|a+b|﹣|a|+|c﹣b|﹣|c|17.(8分)如图,点C在线段AB上,点M是AC的中点,AB=15,BC=11.(1)求线段AM的长;(2)在线段BC上取一点N,使得CN:NB=5:6,求线段MN的长.18.(10分)如表记录的是大沽河一周内的水位变化情况,上周末(上个星期日)的水位已达到15米(正号表示水位比前一天上升,负号表示水位比前一天下降).星期一二三四五六日+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2水位变化(米)(1)本周内,星期的水位最高,星期的水位最低,最高水位比最低水位高米.(2)与上周末相比,本周末河流的水位是上升了还是下降了?变化了多少?(要求写出求解过程)(3)气象局预报,即将迎来大降雨天气,工作人员预测水位将会以每小时0.08米的速度上升,当水位达到16.6米时,就要开闸泄洪,请你计算下,再经过几个小时工作人员就需要开闸泄洪?一.填空题(共5小题,满分20分,每小题4分)19.(4分)已知x2﹣2x=1,则3x2﹣6x﹣3的值为.20.(4分)由若干个相同的小正方体构成的几何体的三视图如图所示,那么构成这个几何体的小正方体的个数是.21.(4分)如图是一个娱乐场,其中半圆形休息区和长方形游泳池以外的地方都是绿地,已知娱乐场的长为3a,宽为2a,游泳池的长、宽分别是娱乐场长、宽的一半,且半圆形休息区的直径是娱乐场宽的一半,则绿地的面积为.(用含a的代数式表示,将结果化为最简)22.(4分)如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第100个图案有个黑棋子.23.(4分)规定:f(x)=|x﹣2|,g(y)=|y+3|,例如f(﹣4)=|﹣4﹣2|=6,g(﹣4)=|﹣4+3|=1.下列结论中,正确的是(填写正确选项的番号).①若f(x)+g(y)=0,则2x﹣3y=13;②若x<﹣3,则f(x)+g(x)=﹣1﹣2x;③能使f(x)=g(x)成立的x的值不存在;④式子f(x﹣1)+g(x+1)的最小值是7.二.解答题(共3小题,满分30分)24.(8分)观察算式:①1×3+1=4=22;②2×4+1=9=32;③3×5+1=16=42;④4×6+1=25=52.根据你发现的规律解决下列问题:(1)写出第5个算式:;(2)写出第n个算式:;(3)计算:25.(10分)为了在我校进行爱校荣校教育,我校决定开展“石室中学校史知识竞赛”活动,并设立了一、二、三等奖,根据需要购买了100件奖品,其中二等奖的奖品件数比一等奖奖品的件数的3倍多10,各种奖品的单价如表所示:一等奖奖品二等奖奖品三等奖奖品单价/元22155数量/件x(1)请用含x的代数式表示:二等奖奖品的数量是件;三等奖奖品的数量是件(填化简后的);(2)请用含x的代数式表示购买100件奖品所需的总费用(要化简);(3)若一等奖奖品购买了12件,则我校共花费多少元?26.(12分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了许多重要的规律;若数轴上点A,点B表示的数分别为a,b,则A,B两点之间的距离为:AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】已知,点A、B、O在数轴上对应的数为a、b、0,且关于x的多项式﹣x3+6x2+ax2+24x﹣3bx+5不含x2项和x的一次项,点M、N分别从O、B出发,同时向左匀速运动,M的速度为1个单位长度每秒,N 的速度为2个单位长度每秒,设运动的时间为t秒(t>0).【综合运用】(1)直接写出OA=;OB=;(2)①用含t的代数式表示:t秒后,点M表示的数为;点N表示的数为.②当t为何值时,恰好有AN=AM?(3)若点P为线段AM的中点,Q为线段BN的中点,M、N在运动的过程中,的长度会随着t的改变而改变,请直接写出当t满足什么条件时,有最小值,最小值是多少?。
四川省成都市石室中学2017-2018年度数学七上期期中考试试题

成都石室中学七年级上期期中数学试题1、-8的绝对值等于( ) A.8 B.-8 C.-81 D.81 2、下列各式计算正确的是( )A. 2a 2b+3b 2a=5a 2bB. 12x 3-20x 2=-8xC. 5+a=5aD. 6ab-ab=5ab3、中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A.44⨯108B.4.4⨯109C.4.4⨯108D.4.4⨯1010 4、若X-Y=-3,则代数式5-x+y 的值为( )A. 2B. -2C. 8D.-85、下列生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有( )①用两颗钉子就可以把木条固定在墙上;②植树时,只要栽下两棵树,就可以把同一行树栽在同一直线上;③从A 到B 架设电线,总是尽可能沿线段AB 架设;④用两颗钉子就可以把木条固定在墙上( )A .①②B .①③C .②④D .③④6、下列调查中,最适合采用全面调查(普查)的是( ) A .对成都市居民平均用水量的调查 B .对一批LED 节能灯使用寿命的调查C .对成都新闻频道“天天630”栏目收视率的调查D .对某校七年级(1)班同学的身高情况的调查7、如图,OC ⊥AB ,垂足为O ,直线EF 经过点O ,如果∠BOF=50° ,那么∠COE 为( )A.40°B.50°C.90°D.130°ABC8、如图是一个正方体展开图,把展开图折叠成正方体后,“感”字一面相对面上的字是( )A .恩B .中C .心D .常9、如图,AB ∥CD,直线EF 与AB ,CD 分别交于点M,N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )A. ∠1=∠ENDB. ∠2=∠3C. ∠4=∠5D. ∠6=∠710、某班组每天需生产50个零件,才能在规定时间完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定时间提前3天,并超额生产了120个零件,若设该班组要完成的零件任务为x 个,则可列方程( )A.3605050120=+-+xx B. 365050=+-x xC.365012050x =++-xD.350650120=-++xx二、填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都石室白马中学2013—2014学年度上期半期考试试题
七年级数学
(全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟.)
A卷(100分)
一.认真选一选,你一定能行!(每题3分,共30分.)
1、四位同学画数轴如下图所示,你认为正确的是()
(A)
(B)
(C)(D)
2、下列各式中,不是同类项的是()
B.ab
-和ba C. D.
3、下面说法正确的有( ).
(1)正整数和负整数统称有理数; (2)0既不是正数,又不是负数;
(3) 数轴上原点两侧的两个点所表示的数互为相反数
(4)正数和负数统称有理数.
(A)4个 (B)3个 (C)2个 (D)1个
4、下列图形中,不是正方体的表面展开图的是()
(A)(B)(C)D)5、下列各对数中,数值相等的是()
(A)-32与-23;(B)(-3)2与-32;
(C)-23与(-2)3;(D)(-3×2)3与-3×23.
6、下列各题运算正确的是()
A.336
x y xy
+=B.2
x x x
+=C.22
9167
y y
-+=D.22
990
a b a b
-= 7、用一个平面去截几何体,如果截面是一个长方形,则这个几何体不可能是()
(A)正方体(B)圆柱(C)圆锥 D.棱柱
8、地球上的海洋面积约为361000000千米2,用科学计数法表示为()
A、3.61×109千米2
B、3.61×108千米2
-2 -1 0 1 2
C 、3.61×107千米2
D 、3.61×106千米2
9、如图,阴影部分的面积是( )
(A )
xy 27; (B )xy 2
9
; (C)xy 4 ; (D)xy 2
10、按照如下排列规律,第102个图形是( )
……
B. C. D. 不能确定
二、耐心填一填,请沉着冷静!(每空1分,共10分) 11、5
2
-
的绝对值是 ,相反数是 。
12.单项式2715
x y
π-的系数是________;多项式532123--y x x 的次数是 。
13、把下列各数分别填在表示它所在的集合里: 99.1,2003,7
22,4.2,14.3,0,43,5----
-,-(-6),12-- (1)负数集合:{ };
(2)整数集合;{ };
14、若7=a ,则=a ___________;若162
=x ,则=x ___________.
15、若m b a 53与2
2b a n -是同类项,那么______=m ,______=n
三、细心算一算:(每小题5分,共30分)
16、)()(3
2
312115--+---
17、()()5
2531144222
⨯÷---+-
1819、
()2215130.34130.343737
-⨯-⨯+⨯--⨯ 20、化简:)2(3)6(42
2
xy x xy x ---+
21、化简:()()
2222321439752n mn m n mn m +--+-
四、综合应用:(共30分)
22、化简,求值(6分)
已知:()()[]
2
22237653x y xy y x --+-,其中23、已知当2x =-时,代数式31ax bx ++的值为5.求2x =时,代数式3
1ax bx ++的值。
(8分)
24、请画出下面几何体的三视图.(6分)
主视图 左视图 俯视图
25、(10分)某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,•小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下: +10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.
(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?
(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?
B 卷(50分)
一、填空题(每空4分,共20分)
1、若代数式7322++x x 的值为8,则代数式9642
-+x x 的值是
2、如果0<xy ,且42=x ,92
=y ,则=+y x
3、已知()02|4|2
=-++b a a ,则2
43b ab -=_________
4.观察下列各式:
21312;⨯+=
22413;⨯+=
23514;⨯+=
24615⨯+=;
……
请你将猜想到的规律用含自然数()1n n ≥的等式表示出来 .
5、如果522)3(5x m y x n -+是关于x,y 的六次二项式,则m 、n 应满足条件____________. 二、解答题(共30分)
6、(6分)已知数m ,n 在数轴的位置如图:
化简:||2||||)(n m n m m n m --++--+-
7、(6分)已知代数式]3)45([)132(2222x y x x x mx ++---++-的值与x 无关,求m m -2
的值。
8、(6分)如果225a ab +=,222ab b +=-,求 2
2252b ab a ++的值
9.(12分)迪雅服装厂生产一种夹克和T 恤,夹克每件定价100元,T 恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T 恤;②夹克和T 恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T 恤x 件(x >30).
(1)若该客户按方案①购买,夹克需付款 元,T 恤需付款 元(用含x 的式子表示);若该客户按方案②购买,夹克需付款 元,T 恤需付款 元(用含x 的式子表示);
(2)按方案①、购买夹克和T 恤共需付款 元(用含x 的式子表示),方案②购买夹克和T 恤共需付款 元(用含x 的式子表示),购买多少件时两种方案一样? (3)若两种优惠方案可同时使用,当x =40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由
0 m n。