2017-2018学年成都市高新区七年级(上)期中数学试卷(含解析)

合集下载

2017-2018学年四川省成都七中初中学校七年级(上)月考数学试卷(10月份)

2017-2018学年四川省成都七中初中学校七年级(上)月考数学试卷(10月份)

2017-2018学年四川省成都七中初中学校七年级(上)月考数学试卷(10月份)一、选择题(共30分):1.(3分)|﹣3|的相反数是()A.3B.﹣3C.D.﹣2.(3分)下列平面图形中,不是正方体的表面展开图的是()A.B.C.D.3.(3分)下列说法正确的是()A.正有理数和负有理数统称为有理数B.a是任意一个有理数,2a一定大于aC.绝对值等于本身的数是非负数D.a、b是任意两个有理数,a+b一定大于a4.(3分)下面几种图形:①三角形;②长方形;③圆锥;④圆;⑤正方形;⑥圆柱.其中属于立体图形的是()A.④⑤B.⑤⑥C.①②⑤D.③⑥5.(3分)在数﹣3,﹣2,﹣0.5,3中,大小在﹣1和2之间的数是()A.﹣3B.﹣2C.﹣0.5D.36.(3分)实数a在数轴上的位置如图所示,若|a|>2,则下列说法不正确的是()A.a的相反数大于2B.﹣a<2C.|a﹣2|=2﹣a D.a<﹣27.(3分)如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有()A.4个B.5个C.6个D.7个8.(3分)若a、b满足2|a﹣2|+|b+3|=0,则a+b的值等于()A.﹣1B.1C.﹣5D.59.(3分)把下列算式:8﹣(﹣3)+(﹣5)+(﹣7),写成省略括号的和的形式为()A.8﹣3+5﹣7B.8+3﹣5﹣7C.8﹣3﹣5﹣7D.8+3﹣5+7 10.(3分)如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.二、填空题(每小题3分,共15分):11.(3分)比较大小:(1)﹣﹣;(2)+(﹣2)﹣|﹣3|.12.(3分)如图,一个正方体六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态,则?表示的数字是.13.(3分)已知a=﹣5,b=﹣3,c=6,则a﹣b﹣c=.14.(3分)下列各数中:①﹣5,②20%,③3.14,④﹣2,⑤0,⑥﹣5.25,⑦125,⑧﹣(+2),⑨+|﹣8|.自然数有,非负数有.15.(3分)如图是立方体的展开图,则原来正方体相对的面上的数字之和最大的.三、解答题(共55分):16.(20分)计算:(1)(﹣12)+(﹣5)﹣(+14)﹣(﹣19);(2)﹣|﹣6+2|﹣(﹣9);(3)(﹣36)×(﹣+﹣);(4)﹣9×12.17.(6分)画出如图所示的几何体的三视图.18.(9分)在数轴上表示下列各数:﹣(+3),﹣|﹣1.5|,0,+|﹣2|,﹣(﹣3.5),+(﹣4),并用“>”把它们连接起来.19.(10分)如图是某几何体的三视图(俯视图是直角三角形).(1)这个几何体是;(2)画出它的表面展开图;(3)若主视图的宽为4cm,长为8cm,左视图的宽为3cm,俯视图中斜边长为5cm,求这个几何体中所有棱长的和、表面积.20.(10分)去年12月小亮到银行开户,存入1200元,以后每月根据自己的收支酌情存入一笔钱,下表是今年1月﹣6月的存款情况:月份123456与上一月比较+300﹣200+600﹣300+400﹣150(1)在今年上半年的6个月中,哪一个月存入金额最多?哪一个月存入金额最少?并求出最多与最少的存额分别是多少?(2)6月底,小亮的存折的余额是多少?四、填空题(共20分)21.(3分)m是﹣|+3|的绝对值,n是最小的正整数的相反数,则m﹣n=.22.(3分)如图,是由若干个相同的小立方体搭成的几何体从正面看和从左面看得到的形状.则小立方体的个数最少是个;最多是个.23.(3分)如图:化简:|a|+|a+b|﹣|b﹣c|=.24.(3分)如图所示是长方体的表面展开图,折叠成一个长方体,那么与点N重合的点是.25.(3分)一跳蚤从数轴上的原点开始,第1次向右跳1个单位,紧接着第2次再向右跳2个单位,第3次向左跳3个单位,第4次再向左跳4个单位…(两次向右,紧接着两次向左…,依此规律跳下去,当它跳第200次落下时,落点处离原点的距离是.五、解答题:(共30分)26.(8分)已知:|a+1|与|b﹣1|互为相反数,求:++ +…+的值.。

四川省成都市七年级(上)期中数学试卷(附答案解析)

四川省成都市七年级(上)期中数学试卷(附答案解析)

四川省成都市七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是()A. 3a2−a2=3B. a2⋅a3=a6 C. (a2)3=a6 D. a6÷a2=a32.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A. 5.6×10−1B. 5.6×10−2C. 5.6×10−3D. 0.56×10−13.化简5a⋅(2a2−ab),结果正确的是()A. −10a3−5abB. 10a3−5a2bC. −10a2+5a2bD. −10a3+5a2b4.下列各式中能用平方差公式计算的是()A. (a+3b)(3a−b)B. (3a−b)(3a−b)C. (3a−b)(−3a+b)D. (3a−b)(3a+b)5.下列各组线段中,能组成三角形的是()A. 4,6,10B. 3,6,7C. 5,6,12D. 2,3,66.已知a+b=3,ab=32,则(a+b)2的值等于()A. 6B. 7C. 8D. 97.下列乘法公式的运用,不正确的是()A. (2a+b)(2a−b)=4a2−b2B. (−2a+3)(3+2a)=9−4a2C. (3−2x)2=4x2+9−12xD. (−1−3x)2=9x2−6x+18.如图,直线l与直线a、b相交,且a//b,∠1=50°,则∠2的度数是()A. 130°B. 50°C. 100°D. 120°9.如图,点E在AD延长线上,下列条件中不能判定BC//AD的是()A. ∠1=∠2B. ∠C=∠CDEC. ∠3=∠4D. ∠C+∠ADC=180°10.如图,直线a//b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为()A. 45°B. 35°C. 30°D. 25°二、填空题(本大题共9小题,共32.0分)11.若a m=2,a n=4,则a m+n=______.12.已知m+2n=2,m−2n=2,则m2−4n2=______.13.x2−4x+k是完全平方式,则k=______.14.如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别在M、N的位置上,EM与BC的交点为G,若∠EFG=65°,则∠2=______.15.已知:3m=2,9n=5,则33m−2n=______.16.若a−b=2,则a2−b2−4b=______.17.已知a2−2(k−1)ab+9b2是一个完全平方式,那么k=______ .18.设a,b,c为△ABC的三边,化简|a−b+c|−|a+b−c|−|a−b−c|=______.19.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论是______ .三、计算题(本大题共1小题,共10.0分)20.计算:(1)(−12)0+|3−π|+(13)−2.(2)(x+3)(x−3)−(x−2)2.四、解答题(本大题共8小题,共74.0分)21.计算:(1)(a+3)2−(a+2)(a−1);(2)(15x2y−10xy2)÷5xy.22.如图,直线AB//CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.23.如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG//AB.请把证明的过程填写完整.证明:∵AD⊥BC,EF⊥BC(______),∴∠EFB=∠ADB=90°(垂直的定义)∴EF//______(______)∴∠1=______(______)又∵∠1=∠2(已知)∴______(______)∴DG//AB(______)24.如图,在△ABC中,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=3.5cm,BD=4.5cm.(1)说明△AED≌△ACD的理由;(2)求线段BC的长.25.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.26.乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是______(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是______,长是______,面积是______(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:______(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n−p)(2m−n+p)27.已知:AB//CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.28.如图,在△ABC中,AB=AC,∠B=30°,点D从点B出发,沿B→C方向运动到C(D不与B、C重合),连接AD,作∠ADE=30°,DE交线段AC于E.(1)在点D的运动过程中,若∠BDA=100°,求∠DEC的大小;(2)在点D的运动过程中,若AB=DC,请证明△ABD≌△DCE;(3)若BC=6cm,点D的运动速度是1cm/s,运动时间为t(s).在点D的运动过程中,是否存在这样的t,使得△ADE的形状是直角三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A、3a2−a2=2a2,故此选项错误;B、a2⋅a3=a5,故此选项错误;C、(a2)3=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.2.【答案】B【解析】解:将0.056用科学记数法表示为5.6×10−2,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:5a⋅(2a2−ab)=10a3−5a2b.故选B.4.【答案】D【解析】解:A、不符合两个数的和与这两个数的差相乘,不能用平方差公式,故本选项错误;B、原式=(3a−b)2,故本选项错误;C、原式=−(3a−b)2,故本选项错误;D、符合平方差公式,故本选项正确.故选D.根据平方差公式对各选项进行逐一计算即可.本题考查的是平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解答此题的关键.5.【答案】B【解析】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选:B.三角形的任意两边之和都大于第三边,根据以上定理逐个判断即可.本题考查了对三角形三边关系定理的应用,能熟记三角形三边关系定理的内容是解此题的关键.6.【答案】D【解析】解:∵a+b=3,∴(a+b)2=32=9.故选:D.利用整体代入的方法计算.本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2= a2±2ab+b2.7.【答案】D【解析】解:A选项运用平方差公式(2a+b)(2a−b)=(2a)2−b2=4a2−b2;B选项运用平方差公式(−2a+3)(3+2a)=32−(2a)2=9−4a2;C选项是运用了完全平方公式计算正确;D选项运用完全平方公式计算(−1−3x)2=(1+3x)2=1+6x+9x2,所以D选项错误.故选:D.A选项运用了平方差公式,计算正确;B选项运用了平方差公式,计算正确;C选项运用了完全平方公式,计算正确;D选项运用了完全平方公式(−1−3x)2=(1+3x)2=1+6x+9x2,所以原题计算错误.本题主要考查了平方差公式和完全平方公式,解决此类问题要熟知两个公式的形式:平方差是两数的和与两数的差的乘积等于两数的平方差,完全平方公式是两数的和或差的平方等于两数的平方和加上或减去这两数的乘积的2倍(首平方,尾平方,2倍在中央,符号看前方).8.【答案】B【解析】解:如图,∠3=∠1=50°,∵a//b,∴∠2=∠3=50°.故选:B.根据对顶角相等求出∠3,再根据两直线平行,同位角相等求解即可.本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.9.【答案】A【解析】【分析】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.分别利用同旁内角互补两直线平行,内错角相等两直线平行进行判断,即可得出答案.【解答】解:A、∵∠1=∠2,∴AB//CD,本选项符合题意;B、∵∠C=∠CDE,∴BC//AD,本选项不符合题意;C、∵∠3=∠4,∴BC//AD,本选项不符合题意;D、∵∠C+∠ADC=180°,∴AD//BC,本选项不符合题意.故选:A.10.【答案】C【解析】解:∵a//b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.11.【答案】8【解析】解:a m+n=a m⋅a n=2×4=8,故答案为:8.因为a m和a n是同底数的幂,所以根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加解答即可.此题主要考查了同底数幂的乘法,此题逆用了同底数幂的乘法法则,是考试中经常出现的题目类型.12.【答案】4【解析】解:∵m+2n=2,m−2n=2,∴m2−4n2=(m+2n)(m−2n)=2×2=4.故答案为:4.原式利用平方差公式分解,把各自的值代入计算即可求出值.本题考查平方差公式,掌握平方差公式的结构特征是正确应用的前提.13.【答案】4【解析】解:∵x2−4x+k是完全平方式,∴k=22=4,故答案为:4利用完全平方公式的结构特征判断即可求出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.【答案】130°【解析】【分析】本题考查了两直线平行,内错角相等,同旁内角互补的性质,以及翻折变换的性质,熟记各性质是解题的关键.据两直线平行,内错角相等求出∠3,再根据翻折的性质以及平角等于180°,求出∠1,然后根据两直线平行,同旁内角互补,列式计算即可得解.【解答】解:长方形纸片ABCD的边AD//BC,∴∠3=∠EFG=65°,根据翻折的性质,可得∠1=180°−2∠3=180°−2×65°=50°,又∵AD//BC,∴∠2=180°−∠1=180°−50°=130°.故答案为:130°.15.【答案】85【解析】解:∵3m=2,9n=32n=5,∴33m−2n=(3m)3÷32n=23÷5=85.故答案为:85.直接利用同底数幂的除法运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的除法运算以及幂的乘方运算,正确将原式变形是解题关键.16.【答案】4 【解析】解:∵a−b=2∴原式=(a+b)(a−b)−4b=2(a+b)−4b=2a−2b=2(a−b)=4故答案为:4先将多项式因式分解,然后再代入求值.本题考查因式分解,涉及平方差公式,代入求值等知识.17.【答案】4或−2【解析】解:∵a2−2(k−1)ab+9b2=a2±6ab+(3b)2,∴−2(k−1)=±6,解得k=4或−2,故答案为:4或−2.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.【答案】a−3b+c【解析】解:∵a,b,c为△ABC的三边,∴a−b+c>0,a+b−c>0,a−b−c<0,∴|a−b+c|−|a+b−c|−|a−b−c|=a−b+c−(a+b−c)+(a−b−c)=a−b+c−a−b+c+a−b−c=a−3b+c.故答案为:a−3b+c.直接利用三角形三边关系进而化简得出答案.此题主要考查了三角形三边关系以及绝对值的性质,正确化简绝对值是解题关键.19.【答案】①②③④【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF//AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△BDF中,{∠C=∠CBFCD=BD∠EDC=∠FDB,∴△CDE≌△BDF(ASA),∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确;故答案为①②③④.20.【答案】解:(1)原式=1+π−3+9=7+π.(2)原式=x2−9−(x2−4x+4)=x2−9−x2+4x−4=4x−13.【解析】(1)利用零指数幂、负整数指数幂法则,绝对值的意义计算即可得到结果;(2)根据平方差公式和完全平方公式计算即可得到结果.本题考查了实数和整式的运算,平方差公式和完全平方公式,解答本题的关键是明确它们各自的计算方法.21.【答案】解:(1)(a+3)2−(a+2)(a−1)=(a2+6a+9)−(a2−a+2a−2)=a2+6a+9−a2+a−2a+2=5a+11;(2)(15x2y−10xy2)÷5xy=3x−2y.【解析】(1)先根据完全平方公式和多项式乘以多项式法则算乘法,再合并同类项即可;(2)根据多项式除以单项式法则求出即可.本题考查了完全平方公式,多项式乘以多项式法则,多项式除以单项式法则,整式的混合运算等知识点,能正确根据知识点进行化简是解此题的关键.22.【答案】解:∵AB//CD,∠1=68°,∴∠1=∠QPA=68°.∵PM⊥EF,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【解析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.23.【答案】已知AD同位角相等,两直线平行∠3两直线平行,同位角相等∠2=∠3等量代换内错角相等,两直线平行【解析】解:证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义)∴EF//AD(同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴DG//AB(内错角相等,两直线平行)故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;根据三角形内角和定理以及平行线的性质即可求出答案.本题考查三角形的综合问题,解题的关键是熟练运用三角形内角和定理以及平行线的性质与判定,本题属于基础题型.24.【答案】(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD;在△ADE和△ADC中,{AE=AC∠EAD=∠CAD AD=AD,∴△ADE≌△ADC(SAS);(2)解:由(1)知,△ADE≌△ADC,∴DE=DC(全等三角形的对应边相等),∴BC=BD+DC=BD+DE=4.5+3.5=8(cm).【解析】(1)根据角平分线的意义知∠BAD=∠CAD,又因为AE=AC,AD=AD,所以根据三角形的判定定理SAS易证得△AED≌△ACD;(2)利用(1)的结果,根据全等三角形的性质:对应边相等,知CD=DE,而BC=BD+DC,可求BC的长.本题考查全等三角形的判定与性质.解答此题时,充分利用了角平分线的意义.25.【答案】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB−∠DCB,∠BCE=∠DCE−∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,{AC=BC∠ACD=∠BCE CD=CE∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,AD=BE,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.【解析】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB−∠DCB,∠BCE=∠DCE−∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS);(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,AD=BE,可得BE=BF,从而可求出∠BEF的度数.26.【答案】(1)a2−b2;(2)a−b;a+b;(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)(2m+n−p)(2m−n+p)=(2m)2−(n−p)2=4m2−(n2−2np+p2)=4m2−n2+2np−p2【解析】解:(1)由图可得,阴影部分的面积=a2−b2;故答案为:a2−b2;(2)由图可得,矩形的宽是a−b,长是a+b,面积是(a+b)(a−b);故答案为:a−b,a+b,(a+b)(a−b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a−b)=a2−b2;故答案为:(a+b)(a−b)=a2−b2;(4)(2m+n−p)(2m−n+p)=(2m)2−(n−p)2=4m2−(n2−2np+p2)=4m2−n2+2np−p2.(1)由图形的面积关系即可得出结论;(2)由图形即可得到长方形的长,宽以及面积;(3)依据两图的阴影部分面积相等,可以得到乘法公式;(4)依据平方差公式以及完全平方公式,即可得到计算结果.本题考查了平方差公式的几何背景,此类题目,关键在于表示出阴影部分的面积,然后根据阴影部分面积相等求解.27.【答案】解:(1)①∵AB//CD,∴∠1=∠3,∵∠1=∠2,∠3=∠4,∴∠2=∠4=36°;②位置关系是:EM//FN.理由:由①知,∠1=∠3=∠2=∠4,∴∠MEF=∠EFN=180°−2∠1,∴∠MEF=∠EFN∴EM//FN(内错角相等,两直线平行)(2)关系是:∠EFD=2∠GEH.理由:∵EG平分∠MEF,∴∠MEG=∠GEH+∠HEF①∵EH平分∠AEM,∴∠MEG+∠GEH=∠AEF+∠HEF②由①②可得:∴∠AEF=2∠GEH,∵AB//CD,∴∠AEF=∠EFD,∴∠EFD=2∠GEH.【解析】(1)根据平行线的性质和判定解答即可;(2)利用角平分线的定义和平行线的性质解答即可.此题考查平行线的性质,关键是根据平行线的性质和判定解答.28.【答案】解:(1)∵AB=AC,∠B=30°,∴∠C=∠B=30°,∵∠BDA=100°,∠ADE=30°,∴∠EDC=180°−100°−30°=50°,∴∠DEC=180°−50°−30°=100°;(2)∵∠C=30°,∴∠CED+∠CDE=150°,∵∠ADE=30°,∴∠ADB+∠CDE=150°,∴∠CED=∠ADB,在△ABD和△DCE中,{∠ADB=∠DEC∠B=∠CAB=DC,∴△ABD≌△DCE(AAS);(3)存在,∵AB=AC,∠B=30°,∴∠BAC=120°,∵BC=6cm,点D的运动速度是1cm/s,运动时间为t(s),∴BD=t,CD=6−t,①如图1,当∠DAE=90,则∠BAD=30°,∴∠BAD=∠B=30°,∴AD=BD=t,∵∠C=30°,∴CD=2AD,即6−t=2t,∴t=2;②如图2,当∠AED=90°时,则∠DAE=60°,∴AD平分∠BAC,∴BD=CD,即t=6−t,∴t=3,综上所述,当t=2或3时,△ADE的形状是直角三角形.【解析】(1)根据等腰三角形的性质得到∠C=∠B=30°,根据已知条件得到∠EDC=180°−100°−30°=50°,于是得到∠DEC=180°−50°−30°=100°;(2)根据三角形的内角和和平角的定义得到∠CED=∠ADB根据全等三角形的判定定理即可得到结论;(3)根据三角形的内角和得到∠BAC=120°,求得BD=t,CD=6−t,①如图1,当∠DAE=90,则∠BAD=30°,根据直角三角形的性质列方程求得t的值;②如图2,当∠AED=90°时,则∠DAE=60°,根据等腰三角形的性质列方程求得t的值.本题考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,三角形的内角和,正确的作出图形是解题的关键.。

2017-2018学年成都七中实验学校七年级(上)月考数学试卷(12月份)(含解析)

2017-2018学年成都七中实验学校七年级(上)月考数学试卷(12月份)(含解析)

2017-2018学年成都七中实验学校七年级(上)12月月考数学试卷(考试时间:100分钟满分:100分)一、选择题(每小题3分,共30分)1.下列各组数中,互为相反数的是()A.2与|﹣2| B.﹣1与(﹣1)2C.(﹣1)2与1 D.2与2.下列各题运算正确的是()A.9a2b﹣9a2b=0 B.x+x=x2C.﹣9y2+16y2=7 D.3x+3y=6xy3.如图,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC的中点,则DE的长()A.4cm B.8cm C.10cm D.16cm4.下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d5.光在真空中的速度约为每秒30万千米,用科学记数法表示()千米/秒.A.0.3×106B.3×105C.30×104D.300×1036.在数轴上,a,b所表示的数如图所示,下列结论正确的是()A.a+b>0 B.|b|<|a| C.a﹣b>0 D.a•b>07.下列说法正确的是()A.﹣2不是单项式B.﹣a表示负数C.的系数是3 D.不是多项式8.某商品进价为a元/件,在销售旺季,该商品售价较进价高50%,销售旺季过后,又以7折(即原价的70%)的价格对商品开展促销活动,这时一件商品的售价为()A.1.5a元B.0.7a元C.1.2a元D.1.05a元9.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.5010.有如下说法:①直线是一个平角;②如果线段AB=BC,则B是线段AC的中点;③射线AB与射线BA表示同一射线;④用一个扩大2倍的放大镜去看一个角,这个角扩大2倍;⑤两点之间,直线最短;⑥120.5°=120°30′,其中正确的有()A.1个B.2个C.3个D.4个二、填空题:(每题3分,共15分)11.关于x的一元一次方程2x+a=x+1的解是﹣4,则a=.12.如图,将长方形纸片ABCD沿AE折叠,点D落在长方形内的点D′处,如图所示,已知∠CED′=68°,则∠AED等于度.13.一件衣服标价220元,若以9折降价出售,仍可获利10%,这件衣服的进价是元.14.如果4a﹣3b=7,并且3a+2b=19,求14a﹣2b的值是.15.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m=;(2)(m,n)是“相伴数对”,则代数式m﹣[n+(6﹣12n﹣15m)]的值为.三、解答题(共55分)16.(12分)计算:(1)﹣23×(﹣8)﹣(﹣)3×(﹣16)+×(﹣3)2 (2)[2﹣()×24]÷517.(12分)解方程:(1)2(y+2)﹣3(4y﹣1)=9(1﹣y)(2)x﹣18.(7分)化简求值:3(x2﹣2xy)﹣[2x2+2y﹣2(xy+y)],其中|x﹣3|+2(y+)2=019.(8分)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图,当OB、OC重合时,求∠EOF的度数;(2)如图,当OB、OC重合时,求∠AOE﹣∠BOF的值;(3)当∠COD从图示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10);在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.20.(6分)列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,甲、乙两种商品的进价和售价如表:甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原售价销售,乙商品在原售价上打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多720元,求第二次乙种商品是按原价打几折销售?21.(10分)如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.参考答案与试题解析1.【解答】解:∵|﹣2|=2,∴2与|﹣2|不互为相反数,故选项A错误;∵(﹣1)2=1,﹣1与1互为相反数,∴﹣1与(﹣1)2互为相反数,故选项B正确;∵(﹣1)2=1,∴(﹣1)2与1不是互为相反数;故选项C错误;∵2与不是互为相反数,故选项D错误;故选:B.2.【解答】解:A、9a2b﹣9a2b=0,故正确;B、x+x=2x,故错误;C、﹣9y2+16y2=7y2,故错误;D、3x,3y不是同类项,不能合并,故错误.故选:A.3.【解答】解:∵点D、E分别是AC和BC的中点,∴DE=DC+CE=AC+BC=AB而AB=16cm,∴DE=×16=8(cm).故选:B.4.【解答】解:A、a﹣(b﹣c)=a﹣b+c,原式计算错误,故本选项错误;B、x2﹣[﹣(﹣x+y)]=x2﹣x+y,原式计算正确,故本选项正确;C、m﹣2(p﹣q)=m﹣2p+2q,原式计算错误,故本选项错误;D、a+(b﹣c﹣2d)=a+b﹣c﹣2d,原式计算错误,故本选项错误;故选:B.5.【解答】解:每秒30万千米,用科学记数法表示3×105千米/秒.故选:B.6.【解答】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故选:C.7.【解答】解:A、﹣2是单项式,故A错误;B、﹣a表示负数、零、正数,故B错误;C、的系数是,故C错误;D、是分式,故D正确;故选:D.8.【解答】解:a×(1+50%)×0.7=1.05a元.故选:D.9.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.10.【解答】解:①直线是一个平角,错误;②如果线段AB=BC,则B是线段AC的中点,错误;(3)射线AB与射线BA表示同一条射线,错误;(4)用一个放大2倍的放大镜去看一个角,这个角会扩大2倍,错误;(5)两点之间,直线最短,错误;(6)120.5°=120°30,′正确,故选:A.11.【解答】解:把x=﹣4代入2x+a=x+1,得:﹣8+a=﹣4+1,解得:a=5.故答案为:5.12.【解答】解:∵长方形ABCD沿AE折叠得到△AED′,∴∠AED=∠AED′,而∠AED+∠AED′+∠CED′=180°,∠CED′=68°,∴2∠DEA=180°﹣68°=112°,∴∠AED=56°.故答案为:56.13.【解答】解:设该玩具的进价为x元.根据题意得:220×90%﹣x=10%x.解得:x=180.故答案是:180.14.【解答】解:∵4a﹣3b=7,并且3a+2b=19,∴14a﹣2b=2(7a﹣b)=2[(4a+3a)+(﹣3b+2b)]=2[(4a﹣3b)+(3a+2b)]=2×(7+19)=52.故14a﹣2b的值为52.故答案为:52.15.【解答】解:(1)根据题意得:+=,去分母得:15m+10=6m+6,移项合并得:9m=﹣4,解得:m=﹣;(2)由题意得:+=,即=,整理得:15m+10n=6m+6n,即9m+4n=0,则原式=m﹣n﹣3+6n+m=m+5n﹣3=(9m+4n)﹣3=﹣3,故答案为:(1)﹣;(2)﹣316.【解答】解:(1)﹣23×(﹣8)﹣(﹣)3×(﹣16)+×(﹣3)2=﹣8×(﹣8)﹣(﹣)×(﹣16)+=64﹣2+4=66;(2)[2﹣()×24]÷5===.17.【解答】解:(1)2y+4﹣12y+3=9﹣9y,2y﹣12y+9y=9﹣4﹣3,﹣y=2,y=﹣2;(2)12x﹣(2x+1)=12﹣3(3x﹣2),12x﹣2x﹣1=12﹣9x+6,12x﹣2x+9x=12+6+1,19x=19,x=1.18.【解答】解:原式=3x2﹣6xy﹣2x2﹣2y+2xy+2y=x2﹣4xy,∵|x﹣3|+2(y+)2=0,∴x=3,y=﹣,则原式=9+6=15.19.【解答】解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠EOF=∠EOB+∠BOF=∠AOB+∠BOD,∵∠AOB=110°,∠COD=40°,∴∠EOF=75°;(2)∵OE平分∠AOC,OF平分∠BOD,∠AOB=110°,∠COD=40°,∴∠AOE=55°,∠BOF=20°,∴∠AOE﹣∠BOF=35°;(3)∵OF平分∠BOD,∴∠BOF=∠BOD,∵∠AOB=110°,BO从边绕点O以每秒3°的速度顺时针旋转t秒,∴∠AOB=110°+3°t,∠BOF=(40°+3°t),∴OE平分∠AOB,∴∠AOE=(110°+3°t),∴∠AOE﹣∠BOF=(110°+3°t)﹣20°﹣t=35°,∴在旋转过程中∠AOE﹣∠BOF的值是不会因t的变化而变化.20.【解答】解:(1)设第一次购进乙种商品x件,则甲种商品的件数是(2x﹣30)件,根据题意列方程,得:30x+22(2x﹣30)=6000,解得:x=90,所以甲商品的件数为:2x﹣30=2×90﹣30=150(件),可获得的利润为:(29﹣22)×150+(40﹣30)×90=1950(元).答:两种商品全部卖完后可获得1950元利润;(2)设第二次乙种商品是按原价打y折销售,根据题意列方程,得:(29﹣22)×150+(40×﹣30)×90×3=1950+720,解得:y=9,答:第二次乙种商品是按原价打9折销售.21.【解答】解:(1)如图1,由题意得:AP=2t,则PB=12﹣2t,∵M为AP的中点,∴AM=t,由PB=2AM得:12﹣2t=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=BP=(2t﹣12)=t﹣6,①MN=PA﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.。

2017-2018学年初中七年级(上)期中数学试卷

2017-2018学年初中七年级(上)期中数学试卷

2017-2018学年集益初中七年级(上)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)1.(4分)2017的相反数是()A.2017B.﹣2017C.D.﹣2.(4分)计算(﹣3)+(﹣2)的结果是()A.5B.﹣5C.1D.﹣13.(4分)在﹣(﹣5),﹣(+5),+(﹣5),﹣|﹣5|这四个数中,正数的个数是()A.4个B.3个C.2个D.1个4.(4分)下列计算正确的是()A.3a+2a=5a2B.3a﹣a=3C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b5.(4分)下列说法中,正确的是()A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式6.(4分)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 7.(4分)某地今年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的是()A.1月1日B.1月2日C.1月3日D.1月4日8.(4分)已知代数式x﹣2y的值是3,则代数式1﹣x+2y的值是()A.﹣2B.2C.4D.﹣49.(4分)若代数式xy2与﹣3x m﹣1y2n的和是﹣2xy2,则2m+n的值是()A.3B.4C.5D.610.(4分)下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第9个图案中基础图形个数为()A.27B.28C.30D.3611.(4分)已知数a,b,c的大小关系如图所示,则下列各式:①b+a+(﹣c)>0;②bc﹣a>0;③(a﹣b)(b﹣c)>0;④(﹣a)﹣b+c>0;⑤=1.其中正确的个数为()A.1个B.2个C.3个D.4个12.(4分)某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,九折优惠;(3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某公司分两次在该供应商处购买原料,分别付款7800元和25200元.如果该公司把两次购买的原料改为一次购买的话,那么该公司一共可少付款()A.1460元B.2780元C.3360元D.1360元二、填空题(本大题6个小题,每小题4分,共24分)13.(4分)据报道,2017年重庆主城区私家车拥有量近785000辆.将数据785000用科学记数法表示为.14.(4分)2xy2+x2y2﹣7x3y+7按x的降幂排列:.15.(4分)若﹣7x m+2y与﹣3x3y n是同类项,则m=,n=.16.(4分)某服装店,第一天销售a件,第二天销售量是第一天的2倍少12件,则第二天销售了件.17.(4分)数学家发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b+1.例如把(3,﹣2)放入其中,就会得到32+(﹣2)+1=8.现将实数对(﹣2,3)放入其中得到实数m,再将实数对(m,1)放入其中后,得到的实数是.18.(4分)初一某班以6个同学为一组,一共分了n组.在捐书活动中,各组捐书的本数按一定规律增加,第1组捐了10本,第2组捐了13本,第3组捐了16本,…,第n组捐的本数比第1组的3倍还多1本,由此可知该班一共有学生人.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.19.(8分)计算:﹣12017+(﹣3+2)×(5﹣9)﹣(﹣2)2÷.20.(8分)化简:(﹣a2+2ab﹣b2)﹣2(ab﹣3a2+b2).四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)计算:﹣14+×[|﹣2|﹣(﹣3)3﹣(﹣2)2]÷(﹣)2.22.(10分)先化简,再求值:5x2y﹣[xy2﹣2(2xy2﹣3x2y)+x2y]﹣4xy2,其中x,y满足(x+2)2+|y﹣3|=0.23.(10分)化简求值:3a2b﹣2[2ab2﹣4(ab﹣a2b)+ab]+(4ab2﹣a2b),其中a、b使得关于x的多项式2x3+(a+1)x2+(b﹣)x+3不含x2项和x项.24.(10分)某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+15,﹣2,﹣6,+7,﹣18,+12,﹣4,﹣5,+24,﹣3.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.08升,每升油7.5元,则这辆出租车这天下午耗油费用多少元?(3)若出租车起步价为8元,起步里程为3千米(包括3千米),超过部分每千米2.4元,问这天下午这辆出租车司机的营业额是多少元?25.(12分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的.如图所示是该市自来水收费价格见价目表.(1)填空:若该户居民2月份用水4m3,则应收水费元;(2)若该户居民3月份用水am3(其中6<a<10),则应收水费多少元?(用a 的整式表示并化简)(3)若该户居民4,5月份共用水15m3(5月份用水量超过了4月份),设4月份用水xm3,求该户居民4,5月份共交水费多少元?(用x的整式表示并化简)五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上.26.(10分)每年春节前夕,重庆市中山古镇老街居民都将在千米长街上大摆百家宴,吸引众多游客慕名前来,共享团圆宴.百家宴用的桌子都是一样的,一张桌子可坐6人,有如图所示两种摆放方式.(1)若有8张这样的桌子,两种摆放方式各能坐________人?(2)当有n张这样的桌子时,两种摆放方式各能坐_______人?(3)若有若干名游客预约了今年除夕这天的午餐,由于人数较多,古镇老街百家宴组委会决定分批接待这些游客,现已备好480张这样的餐桌,若一批想要同时接待2000位游客共同就餐,组委会备好的这些餐桌够用吗?如果够用,请说明理由;如果不够用,请计算说明至少还需要准备多少张这样的餐桌?第6页七年级数学期中考试数学答题卡姓名一、 选择题(每题4分,共48分)5 13. 14.15.16. 17. 18. 三、解答题(每小题 8分,共16分)第7页第8页。

2017-2018学年成都市高新区七年级(上)期末数学试卷(含解析)

2017-2018学年成都市高新区七年级(上)期末数学试卷(含解析)

2017-2018学年成都市高新区七年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.东、西为两个相反方向,如果﹣4m表示一个物体向西运动4m,那么物体向东运动2m应记作()A.+2m B.﹣2m C.+4m D.﹣4m2.如图所示的几何体是由4个大小相同的小立方体搭成,从正面看到的几何体的形状图是()A.B.C.D.3.2017年12月7日,成都首条地铁环线一7号线正式开通,开通后的第三日,成都地铁线网单日客运量首次突破300万大关,达到308万乘次.用科学记数法表示308万为()A.308×104B.308×104C.3.08×105D.3.08×1064.下列各式运算正确的是()A.3a+2b=6ab B.7a﹣5a=2C.﹣a2﹣a2=0 D.19a2b﹣9a2b=10a2b5.将一副三角尺按如图所示那样拼在一起(三角尺边AE、AC重合,边AB、AD在一条直线上),则图中∠BCE的度数为()A.120°B.150°C.135°D.45°6.已知a=b,下列变形不正确的是()A.a+5=b+5 B.a﹣5=b﹣5 C.5a=5b D.7.为了完成任务,你认为采取普查方式更合适的是()A.了解一批圆珠笔的使用寿命B.了解我国七年级学生的视力情况C.了解一沓钞票中有没有假钞D.了解一批西瓜是否甜8.在直线l上顺次取A、B、C三个点,使得AB=4cm,BC=3cm,如果O为线段AC中点,则线段OB=()A.0.5cm B.1cm C.3.5cm D.7cm9.已知x=1是方程2x+2a=ax﹣3的解,那么a的值是()A.﹣1 B.﹣5 C.1 D.510.某商店出售两件衣服,每件售价60元,其中一件赚20%,而另一件赔20%,那么这家商店销售这两件衣服的总体收益情况是()A.赚了5元B.赔了5元C.赚了8元D.赔了8元二、填空题(每小题4分,共16分)11.﹣的倒数是.12.若一个点在数轴上从原点处向左移动3个单位长度,再向右移动2个单位长度,此时终点所表示的数是.13.多项式xy﹣pqx2+p3+9是次项式.14.过某一个多边形一个顶点的所有对角线,将这个多边形分成4个三角形,这个多边形的边数是.三、解答题(共54分)15.(8分)计算:(1)16÷(﹣2)3﹣(﹣)×4 (2)﹣13﹣16.(10分)按要求解答:(1)化简:(a2b﹣2ab2+a3)﹣(a2b﹣2ab2)(2)化简求值:当xy=1时,求代数式(3x2+y)﹣2(x2+y﹣xy)﹣1的值.17.(10分)解方程:(1)4x+4=3(20﹣x)(2)18.(8分)小明同学想了解周围同学见到长辈主动问好情况,于是他设计了一份简单的问卷调查,并在学校七、八、九三个年级学生中随机抽取了200名学生进行调査,并将调查结果绘制如下两幅统计图,请你结合图中所给出的信息解答下列问题:小明设计的调查问卷:你所在年级:你见到长辈会主动问好吗?A.经常这样;B.有时这样;C.从不这样(1)小明调查的200人中,七、八、九三个年级各有多少人接受调查?(2)求出扇形统计图中“八年级”所在扇形的圆心角的度数(3)从调查情况来看,你认为哪个年级的学生做得更好(通过计算说明)?19.(8分)列方程解应用题:小彬同学今年12岁,他的祖父今年72岁,问几年后小彬他祖父的年龄是小彬年龄的4倍?20.(10分)已知∠AOD=40°,射线OC从OD出发,绕点O以20°/秒的速度逆时针旋转,旋转时间为t 秒(t≤7).射线OE、OF分别平分∠AOC、∠AOD.(1)如图①,如果t=4秒,求∠EOA的度数;(2)如图①,若射线OC旋转时间为t秒,求∠EOF的度数(用含t的代数式表示);(3)射线OC从OD出发时,射线OB也同时从OA出发,绕点O以10°/秒的速度逆时针旋转,射线OC、OB 在旋转过程中(t≤7),若∠BOD=∠EOB,请你借助图②和备用图进行分析后,直接写出的值.B卷(50分)一、填空题(每小题4分,共20分)21.若x+y=﹣2,则(x2﹣x)﹣(x2+y﹣1)=.22.若关于x的方程(|k|﹣2)x2﹣(k+2)x+2=0是一元一次方程,则k的值为.23.用如图所示的十字框在日历表上任意框住5个相连的数,则这5个数之和的个位数字是.24.如图,数轴上点A、B、C对应的有理数分别为a、b、c.三个有理数a、b、c满足a﹣b=2,c﹣a=3,abc>0,且a+b+c与a、b、c三个数中其中一个相等,则a=.25.如图,长方形ABCD内绘有等距离网格线(每个小四边形都是正方形),一只小球从点A射出,在边框上(边框指边AB、BC、CD、DA)的第一个反弹点是C5,第二个反弹点是A8,第三个反弹点是B1,….(1)如果小球持续地依此规律进行反弹,那么当小球与右边框BC第二次撞击时,接触点是;(2)若小球在反弹过程中射向角点(角点指A、B、C、D四点),则将按照原路弹回.那么,小球在上述整个反弹过程中,第2018个反弹点是.二、解答题(共30分)26.(8分)已知有理数a、b、c在数轴上位置如图所示.(1)比较大小:用“<”符号把a、b、c、﹣a、﹣b、﹣c连接起来;(2)化简:|a+1|﹣|c﹣b|﹣|a+b+c|.27.(10分)目前,成都市城市“一户一表”居民用电实行阶梯电价,具体收费标准如下:一户居民一个月用电量(单位:度)电价(单位:元/度)第1档不超过180度的部分0.50.6第2档超过180度但不超过280度的部分第3档超过280度的部分0.8(1)若我市某户12月用电量为300度,求该户应交电费多少?(2)若我市某户12月用电量为x度.请用含x的代数式表示该户12月应交电费多少?(3)若我市某户12月电费平均为每度0.615元,求该户12月用电量为多少?28.(12分)如图,数轴上A、B两点分别位于原点两侧(点A在原点左侧,点B在原点右侧),AO=2BO,点A在数轴上对应数是﹣800.动点P、Q同时从原点出发分别向左、向右运动,速度分别为8个单位长度/秒、4个单位长度/秒,同时,动点R也从点A出发向右运动,速度为2个单位长度/秒.设运动时间为t秒.(1)填空:①点B在数轴上对应的数是;②点P在数轴上对应的数是;点Q在数轴上对应的数是;点R在数轴上对应的数是;(用含t的代数式表示)(2)t为何值时,动点R与动点P之间距离为200个单位长度?(3)若点M、N分别为线段PQ、RP的中点,当t≤100秒时,2MN﹣MB的值是否发生变化?若变化,请说明理由:若不变,求其值.参考答案与试题解析一、选择题1.【解答】解:东、西为两个相反方向,如果﹣4m表示一个物体向西运动4m,那么物体向东运动2m应记作+2m.故选:A.2.【解答】解:从正面看到的几何体的形状图是C故选:C.3.【解答】解:用科学记数法表示308万为308×104=3.08×106.故选:D.4.【解答】解:A.3a与2b不是同类项,不能合并;B.7a﹣5a=2a,此选项计算错误;C.﹣a2﹣a2=﹣2a2,此选项错误;D.19a2b﹣9a2b=10a2b,此选项计算正确;故选:D.5.【解答】解:∵∠ACB=45°,∠ACE=180°∴∠BCE=180°﹣45°=135°故选:C.6.【解答】解:由a=b得:(c≠0)故选:D.7.【解答】解:A、了解一批圆珠笔的使用寿命适合抽样调查,故A不符合题意;B、了解我国七年级学生的视力情况调查范围广适合抽样调查,故B不符合题意;C、了解一沓钞票中有没有假钞适合普查,故C符合题意;D、了解一批西瓜是否甜适合抽样调查,故D不符合题意;故选:C.8.【解答】解:根据上图所示OB=AB﹣OA,∵OA=(AB+BC)÷2=3.5cm,∴OB=0.5cm.故选:A.9.【解答】解:把x=1代入方程得:2+2a=a﹣3,解得:a=﹣5,故选:B.10.【解答】解:设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,依题意,得:(1+20%)x=60,(1﹣20%)y=60,解得:x=50,y=75,∴60+60﹣50﹣75=﹣5(元).故选:B.二、填空题11.【解答】解:﹣的倒数是﹣2.故答案为:﹣2.12.【解答】解:一个点在数轴上从原点处向左移动3个单位长度,表示的数是﹣3;再向右移动2个单位长度,表示的数是﹣1.故答案为:﹣113.【解答】解:多项式xy﹣pqx2+p3+9是四次四项式.故答案为:四,四.14.【解答】解:这个多边形的边数是4+2=6.故答案为:6.三、解答题15.【解答】解:(1)原式=16÷(﹣8)+×4=﹣2+=﹣1;(2)原式=﹣1﹣(﹣6+8﹣3)=﹣1+6﹣8+3=0.16.【解答】解:(1)原式=a2b﹣2ab2+a3﹣a2b+2ab2=a3;(2)原式=3x2+y﹣3x2﹣y+2xy﹣1=2xy﹣1,把xy=1代入2xy﹣1中得,原式=2xy﹣1=1.17.【解答】解:(1)去括号得:4x+4=60﹣3x,移项合并得:7x=56,解得:x=8;(2)去分母得:2y+4=12﹣3y﹣6,移项合并得:5y=2,解得;y=0.4.18.【解答】解:(1)小明调查的200人中,七年级的接受调查的有:200×50%=100(人),八年级的接受调查的有:200×(1﹣50%﹣20%)=60(人),九年级的接受调查的有:200×20%=40(人),即小明调查的200人中,七、八、九三个年级各有100人、60人、40人接受调查;(2)扇形统计图中“八年级”所在扇形的圆心角的度数是:360°×(1﹣50%﹣20%)=108°;(3)七年级经常这样做的学生所占的百分比是:×100%=50%,八年级经常这样做的学生所占的百分比是:×100%=70%,九年级经常这样做的学生所占的百分比是:×100%=90%,∴九年级的学生做得更好.19.【解答】解:设x年后小彬他祖父的年龄是小彬年龄的4倍,4(12+x)=72+x,解得,x=8,答:8年后小彬他祖父的年龄是小彬年龄的4倍.20.【解答】解:(1)如图①,根据题意,得∠DOC=4×20°=80°∴∠AOC=∠AOD+∠DOC=40°+80°=120°,∵射线OE平分∠AOC,∴=60°,答:∠EOA的度数为60°.(2)根据题意,得∠COD=(20t)°∴∠AOC=(40+20t)°∵射线OE、OF分别平分∠AOC、∠AOD,∴=(20+10t)°,∠AOF=20°,∴∠EOF=∠AOE﹣∠AOF=(10t)°,答:∠EOF的度数为(10t)°.(3)∵射线OE、OF分别平分∠AOC、∠AOD,根据题意,得∠EOB=∠AOE﹣∠AOB==20+10t﹣10t=20°∴∠BOD=∠EOB=10°,①如图②:当OB落在OF和OD之间时,∠BOD=40﹣10t,40﹣10t=10,解得t=3.②如图3:当OB落在OD和OE之间时,∠BOD=10t﹣40,10t﹣40=10解得t=5.∵===当t=3时,的值为,当t=5时,的值为.答:的值为或.一、填空题21.【解答】解:∵(x2﹣x)﹣(x2+y﹣1)=x2﹣x﹣x2﹣y+1=﹣(x+y)+1,∴把x+y=﹣2代入得,原式=2+1=3.故答案为:3.22.【解答】解:由题意可知:|k|﹣2=0,﹣(k+2)≠0即|k|=2,k+2≠0∴k=2,故答案为:2.23.【解答】解:设中间的数为x,则这5个数字之和为:(x﹣7)+(x﹣1)+x+(x﹣1)+(x+7)=5x,∵x>0且x为整数,∴5x的个位数字是0或5,故答案为:0或5.24.【解答】解:∵三个有理数a、b、c满足a﹣b=2,c﹣a=3,∴b=a﹣2,c=a+3,①a+b+c与a相等时,a+a﹣2+a+3=a,解得a=﹣0.5,b=﹣0.5﹣2=﹣2.5,c=﹣0.5+3=2.5,abc>0,符合题意;②a+b+c与b相等时,a+a﹣2+a+3=a﹣2,解得a=﹣1.5,b=﹣1.5﹣2=﹣3.5,c=﹣1.5+3=1.5,abc>0,符合题意;③a+b+c与c相等时,a+a﹣2+a+3=a+3,解得a=1,b=1﹣2=﹣1,c=1+3=4,abc<0,不符合题意.故a=﹣0.5或1.5.故答案为:﹣0.5或1.5.25.【解答】解:由题意得:小球始终走等腰直角三角形的斜边,即正方形的对角线,∴小球从点A射出,在边框上的第一个反弹点是C5,第二个反弹点是A8,第三个反弹点是B1,第四个反弹点是C3,第五个反弹点是A2,第六个反弹点是D2,第七个反弹点是C7,第八个反弹点是A6,第九个反弹点是B3,第十个反弹点是C1,第十一个反弹点是A4,第十二个反弹点是D,然后按原路返回,第二十四个反弹点是A,依次循环;(1)由循环规律得:如果小球持续地依此规律进行反弹,那么当小球与右边框BC第二次撞击时,接触点是B3,故答案为:B3;(2)∵每24个反弹点完成一次循环,∴=84……2,∵第2个反弹点是A8,∴第2018个反弹点是A8,故答案为:A8.二、解答题26.【解答】解:(1)由图可得:a<b<﹣1<0<c<1,所以a<b<﹣c<c<﹣b<﹣a;(2)因为a+1<0,c﹣b>0,a+b+c<0,所以|a+1|﹣|c﹣b|﹣|a+b+c|=﹣(a+1)﹣(c﹣b)+(a+b+c)=﹣a﹣1﹣c+b+a+b+c=2b﹣1.27.【解答】解:(1)180×0.5+(280﹣180)×0.6+(300﹣280)×0.8=166(元),答:该户应交电费166元.(2)设该户12月应交电费y元,当x≤180时,y=0.5x;当180<x≤280时,y=180×0.5+(x﹣180)×0.6=0.6x﹣18;当x>280时,y=180×0.5+(280﹣180)×0.6+(x﹣280)×0.8=0.8x﹣74.∴y=.(3)∵0.6<0.615<0.8,∴该户12月用电量超过280度.依题意,得:0.8x﹣74=0.615x,解得:x=400.答:该户12月用电量为400度.28.【解答】解:(1)①∵AO=2BO,点A在数轴上对应数是﹣800,∴BO=400,∵点B在原点右侧,∴点B在数轴上对应的数是400;故答案为:400;②由题意得:OP=8t,OQ=4t,AR=2t,∴点P在数轴上对应的数是﹣8t;点Q在数轴上对应的数是4t;OR=800﹣2t,或OR=2t﹣800,∴点R在数轴上对应的数是2t﹣800或800﹣2t;故答案为:﹣8t;4t;2t﹣800或800﹣2t;(2)①如图1所示:由题意得:2t+8t=800﹣299,解得:t=60;②如图2所示:2t+8t=800+200,解得:t=100;综上所述,t为60秒或100秒时,动点R与动点P之间距离为200个单位长度;(3)t秒后点M表示的数为=﹣2t,点N表示的数为=﹣400﹣3t,∴MN=|﹣2t﹣(﹣400﹣3t)|=|t+400|=t+400,MB=400﹣(﹣2t)=400+2t,∴2MN﹣MB=2(t+400)﹣(400+2t)=400,∴2MN﹣MB为定值400。

2018-2019学年四川省成都市高新区七年级(上)期中数学试卷(解析版)

2018-2019学年四川省成都市高新区七年级(上)期中数学试卷(解析版)

2018-2019学年四川省成都市高新区七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走10步记作+10步,那么向西走9步记作()A.+9步B.﹣9步C.+1步D.﹣19步2.长虹卧波碧海上,泽被后世万年长.2018年10月24日,我国又一项世界级工程﹣﹣港珠澳大桥正式建成通车.大桥主体工程及三地口岸、连接线共投资约1200亿元.用科学记数法表示1200亿元为()元.A.1.2×1011B.12×1011C.1.2×108D.1.2×1033.代数式﹣的系数是()A.B.﹣C.D.﹣4.若a、b互为相反数,c为最大的负整数,d的倒数等于它本身,则2a+2b﹣cd的值是()A.1B.﹣2C.﹣1D.1或﹣15.下列各组运算中,运算中结果正确的是()A.(﹣1)2018=﹣12018B.(﹣1)2017=﹣12017C.﹣2(x﹣3)=﹣2x﹣3D.﹣2x2+5x2=3x46.点A在数轴上距原点3个单位长度,若一个点从点A处左移4个单位长度,此时终点所表示的数是()A.﹣1B.±1C.±7D.﹣1或﹣77.如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.8.如图,这是一个数值转换机的示意图,若输入x的值为﹣5,则输出的结果为()A.﹣10B.﹣15C.﹣30D.﹣409.下列说法正确的是()A.一个数,如果不是正数,必定是负数B.两个数相加,和一定大于任何一个加数C.是二次二项式D.单独的一个数或一个字母也是单项式,其次数为0次10.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“S”形的图案,如图2所示,则这个“S”形的图案的周长可表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b二、填空题(每空4分,共16分)11.一个直棱柱有18条棱,则它是一个直棱柱.12.不超过(﹣)3的最大整数是.13.已知|a+1|+(b﹣4)2=0,则3a﹣b的值为.14.某件商品的成本价为a元,按成本价提高30%后标价,再以8折(即按标价的80%)销售,这件商品的售价为元.三、计算题(共24分)15.(16分)计算:(1)﹣32﹣(﹣14)+4;(2)×(3)37﹣()×(﹣6)2;(4)﹣22×[4﹣(﹣6)2].16.化简:(1)(7y﹣3z)﹣(8y﹣5z)(2)﹣(﹣2k2+4k﹣28)+(k2﹣k).四、解答题(共30分)17.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.18.某工厂一周计划每日生产某产品100吨,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为“+”,减少的吨数记为“﹣”)(1)生产量最多的一天比生产量最少的一天多生产多少吨?(2)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?19.已知A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y.(1)求A﹣B;(2)当x=﹣2,y=﹣1时,求5A﹣(2A﹣6B)的值.20.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.一、填空题(每题4分,共20分)21.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,则A点表示的数是.22.当x=﹣1时,代数式ax2+2bx+1的值为0,则﹣2a+4b﹣3=.23.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原两位数大27,这样的两位数共有个.24.已知整数a1,a2,a3,a4,…满足下列条件a1=0,a2=|a1﹣1|,a3=|a2﹣2|,a4=|a3﹣3|,……以此类推,则a2018的值为.25.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个面体.二、解答题(共30分)26.(1)若多项式2x3﹣8x2y+x+1与多项式﹣3x3﹣2mx2y+6x﹣9的差的值与字母y的取值无关,求m的值.(2)已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|b+c|+|a+c|.27.用火柴按下图中的方式搭图形:(1)按图示规律补全表格:(2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;(3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用187根火柴搭图形,图中会产生多少个正方形?28.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.2018-2019学年四川省成都市高新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走10步记作+10步,那么向西走9步记作()A.+9步B.﹣9步C.+1步D.﹣19步【解答】解:∵向东走10步记作+10步,∴向西走9步记作﹣9步.故选:B.2.长虹卧波碧海上,泽被后世万年长.2018年10月24日,我国又一项世界级工程﹣﹣港珠澳大桥正式建成通车.大桥主体工程及三地口岸、连接线共投资约1200亿元.用科学记数法表示1200亿元为()元.A.1.2×1011B.12×1011C.1.2×108D.1.2×103【解答】解:将1200亿用科学记数法表示为1200×108=1.2×1011.故选:A.3.代数式﹣的系数是()A.B.﹣C.D.﹣【解答】解:代数式﹣的系数是﹣.故选:D.4.若a、b互为相反数,c为最大的负整数,d的倒数等于它本身,则2a+2b﹣cd的值是()A.1B.﹣2C.﹣1D.1或﹣1【解答】解:根据题意得:a+b=0,c=﹣1,d=1或﹣1,则原式=2(a+b)﹣cd=1或﹣1.故选:D.5.下列各组运算中,运算中结果正确的是()A.(﹣1)2018=﹣12018B.(﹣1)2017=﹣12017C.﹣2(x﹣3)=﹣2x﹣3D.﹣2x2+5x2=3x4【解答】解:A、(﹣1)2018=12018,故此选项错误;B、(﹣1)2017=﹣12017,正确;C、﹣2(x﹣3)=﹣2x+6,故此选项错误;D、﹣2x2+5x2=3x2,故此选项错误;故选:B.6.点A在数轴上距原点3个单位长度,若一个点从点A处左移4个单位长度,此时终点所表示的数是()A.﹣1B.±1C.±7D.﹣1或﹣7【解答】解:根据题意得:3﹣4=﹣1或﹣3﹣4=﹣7,此时终点所表示的数是﹣1或﹣7,故选:D.7.如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.【解答】解:∵正方体纸盒无盖,∴底面M没有对面,∵沿图中的粗线将其剪开展成平面图形,∴底面与侧面的从左边数第2个正方形相连,根据正方体的表面展开图,相对的面之间一定相隔一个正方形可知,只有C选项图形符合.故选:C.8.如图,这是一个数值转换机的示意图,若输入x的值为﹣5,则输出的结果为()A.﹣10B.﹣15C.﹣30D.﹣40【解答】解:把x=﹣5代入得:5﹣10﹣25=﹣30<0,则输出的结果为﹣30,故选:C.9.下列说法正确的是()A.一个数,如果不是正数,必定是负数B.两个数相加,和一定大于任何一个加数C.是二次二项式D.单独的一个数或一个字母也是单项式,其次数为0次【解答】解:A、一个数,如果不是正数,必定是非负数,故A错误;B、两个数相加,和不一定大于任何一个加数,故B错误;C、是二次二项式,故C正确;D、单独的一个数或一个字母也是单项式,其次数不一定为0次,故D错误.故选:C.10.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“S”形的图案,如图2所示,则这个“S”形的图案的周长可表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b【解答】解:根据题意得:新矩形的长为(a﹣b),则“S”形的图案的周长可表示为:4a+4(a﹣b)=8a﹣4b.故选:B.二、填空题(每空4分,共16分)11.一个直棱柱有18条棱,则它是一个直六棱柱.【解答】解:一个直棱柱有18条棱,则它是直六棱柱.故答案为:六.12.不超过(﹣)3的最大整数是﹣3.【解答】解:(﹣)3=﹣,则不超过﹣的最大整数是﹣3,故答案为:﹣313.已知|a+1|+(b﹣4)2=0,则3a﹣b的值为﹣7.【解答】解:∵|a+1|+(b﹣4)2=0,∴a+1=0,b﹣4=0,解得:a=﹣1,b=4,故3a﹣b=﹣3﹣4=﹣7.故答案为:﹣7.14.某件商品的成本价为a元,按成本价提高30%后标价,再以8折(即按标价的80%)销售,这件商品的售价为 1.04a元.【解答】解:依题意得(1+30%)a×80%=1.04a(元).故答案是:1.04a.三、计算题(共24分)15.(16分)计算:(1)﹣32﹣(﹣14)+4;(2)×(3)37﹣()×(﹣6)2;(4)﹣22×[4﹣(﹣6)2].【解答】解:(1)原式=﹣32+14+4=﹣14;(2)原式=×(﹣)×=﹣2;(3)原式=37﹣(﹣)×36=37﹣28+6=15;(4)原式=﹣4×(﹣)﹣×(﹣32)=﹣×(﹣4﹣32)=﹣×(﹣36)=12.16.化简:(1)(7y﹣3z)﹣(8y﹣5z)(2)﹣(﹣2k2+4k﹣28)+(k2﹣k).【解答】解:(1)原式=7y﹣3z﹣8y+5z=﹣y+2z;(2)原式=k2﹣k+7+k2﹣k=k2﹣k+7.四、解答题(共30分)17.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【解答】解:如图所示:18.某工厂一周计划每日生产某产品100吨,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为“+”,减少的吨数记为“﹣”)(1)生产量最多的一天比生产量最少的一天多生产多少吨?(2)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?【解答】解:(1)生产量最多的一天星期五+7,生产量最少的一天是星期日﹣11,∴生产量最多的一天比生产量最少的一天多生产+7﹣(﹣10)=17,即生产量最多的一天比生产量最少的一天多生产17吨;(2)﹣1+3﹣2+4+7﹣7﹣11=﹣7,本周总生产量为100×7+(﹣7)=693(吨),平均每辆装载量为=19.8吨,即平均每辆货车大约需装载19.8吨.19.已知A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y.(1)求A﹣B;(2)当x=﹣2,y=﹣1时,求5A﹣(2A﹣6B)的值.【解答】解:(1)∵A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y,∴A﹣B=x2﹣3xy﹣y+x2﹣xy+3y=2x2﹣4xy+2y;(2)∵A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y,∴原式=5A﹣2A+6B=3A+6B=3x2﹣9xy﹣3y﹣6x2+6xy﹣18y=﹣3x2﹣3xy﹣21y,当x=﹣2,y=﹣1时,原式=﹣12﹣6+21=3.20.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.【解答】解:(1)若实际购票:因为31+4=35<40,则需费用为:31×15+4×30=585(元),若购团体票,则需费用为:(4×30+36×15)×0.9=660×0.9=594(元),∵594>585,∴若学生人数为31人,该班买票至少应付585元;(2)若实际购票:因为32+4=36<40,则需费用为:32×15+4×30=600(元),若购团体票,则需费用为:(4×30+36×15)×0.9=660×0.9=594(元),∵600>594,∴若学生人数为32人,选择购40人团体票,最少付费594元;(3)根据(1)与(2)计算结果可知,购团体票比实际票便宜时的人数为x≥32;分三种情况讨论:①若32≤x≤36时,购团体票最少,则需费用:(4×30+36×15)×0.9=660×0.9=594(元),②若x>36时,则需费用为:(4×30+15x)×0.9=108+13.5x(元),③若0<x≤31时,则需费用:4×30+15x=120+15x(元),答:若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.一、填空题(每题4分,共20分)21.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,则A点表示的数是1﹣π.【解答】解:由直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,得A点与1之间的距离是π.由两点间的距离是大数减小数,得A点表示的数是1﹣π,故答案为:1﹣π.22.当x=﹣1时,代数式ax2+2bx+1的值为0,则﹣2a+4b﹣3=﹣1.【解答】解:把x=﹣1代入得:a﹣2b+1=0,即a﹣2b=﹣1,则原式=﹣2(a﹣2b)﹣3=2﹣3=﹣1,故答案为:﹣123.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原两位数大27,这样的两位数共有6个.【解答】解:设原两位数的个位数字为x,十位数字为y,依题意,得:10x+y=10y+x﹣27,解得:y﹣x=3.∵x,y均为一位正整数,∴y=4,5,6,7,8,9.故答案为:6.24.已知整数a1,a2,a3,a4,…满足下列条件a1=0,a2=|a1﹣1|,a3=|a2﹣2|,a4=|a3﹣3|,……以此类推,则a2018的值为1009.【解答】解:由题意可得,a1=0,a2=1,a3=1,a4=2,a5=2,a6=3,a7=3,a8=4,a9=4,…,∵(2018﹣1)÷2=1008…1,∴a2018=1008+1=1009,故答案为:1009.25.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为12个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个12面体.【解答】解:①设出正二十面体的顶点为n个,则棱有条.由题意F=20,∴n+10﹣=2,解得n=12.②设顶点数V,棱数E,面数F,每个点属于三个面,每条边属于两个面由每个面都是五边形,则就有E=,V=由欧拉公式:F+V﹣E=2,代入:F+﹣=2化简整理:F=12所以:E=30,V=20即多面体是12面体.棱数是30,面数是12,故答案为12,12.二、解答题(共30分)26.(1)若多项式2x3﹣8x2y+x+1与多项式﹣3x3﹣2mx2y+6x﹣9的差的值与字母y的取值无关,求m的值.(2)已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|b+c|+|a+c|.【解答】解:(1)(2x3﹣8x2y+x+1)+(﹣3x3﹣2mx2y+6x﹣9)=2x3﹣8x2y+x+1﹣3x3+2mx2y+6x﹣9=﹣x3﹣8x2y+2mx2y+7x﹣8=(﹣8+2m)x2y﹣x3+7x﹣8,∵﹣8+2m=0,解得m=4.(2)由数轴可得,a<b<0<c,|a|>|c|>|b|,∴|a+b|﹣|b+c|+|a+c|=﹣a﹣b﹣b﹣c﹣a﹣c=﹣2a﹣2b﹣2c.27.用火柴按下图中的方式搭图形:(1)按图示规律补全表格:(2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;(3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用187根火柴搭图形,图中会产生多少个正方形?【解答】解:(1)图①中火柴棒的根数7=2+5×1,图②中火柴棒的根数12=2+5×2,图③中火柴棒的根数2+5×3=17,图④中火柴棒的根数2+5×4=22,图⑤中火柴棒的根数2+5×5=27,补全图形如下:(2)搭第n个图形需要的火柴根数为2+5n;(3)根据题意,得:2+5n=187,解得:n=37,∵图n中正方形的个数为2+3(n﹣1)=3n﹣1,∴第37个图形中,正方形的个数为3×37﹣1=110.28.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.【解答】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C表示的数为x,由题意得|x﹣(﹣2)|=3|x﹣6|∴|x+2|=3|x﹣6|∴x+2=3x﹣18或x+2=18﹣3x∴x=10或x=4答:点C表示的数为4或10.(3)∵点C位于A,B两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=或t=,其中<3不符合题意舍去答:t的值为和。

2017-2018学年实验中学七年级上学期期中试卷(带参考答案)

2017-2018学年实验中学七年级上学期期中试卷(带参考答案)

实验中学2017学年第一学期期中测试卷七年级数学(完卷时间90分钟,满分100分)一、选择题(本大题共6小题,每小题2分,满分12分)1. 下列各式中不是代数式的为( )A.12x -x 3+;B.8;C.y1 D.121-x = 2. 在代数式21-,5,32,32,0,b 1a 3a -1325c a n y x ++,中,下列结论正确的是( ) A.有2个多项式,1个单项式 B.有2个多项式,2个单项式 C.有2个多项式,3个单项式 D.有7个多项式3. 下列各式从左到右的变形,属于因式分解的是( )A.-x x )1-x (x 2=B.b 6a b 6a 22•=C.y -)2y x (2x y -4xy 2x 2+=+D.)3-x )(3x (9-x 2+=4.已知m-2n=2,则8-2m+4n 的值为( )A.4B.8C.12D.105. 已知a+b=0,n 为正整数,则下列等式中一定成立的是( )A.0b a n n =+B.0b a 2n 2n =+C.0b a 12n 12n =+++D.0b a 1n 1n =+++6.若1-x x 42=,1y y 327+=则x-y 等于( )A.-5B.-21C.21D.23 二、填空(本大题共12小题,每题2分,满分24分)7、已知圆的周长为50,用含π的代数式表示圆的半径,应是 。

8、多项式67a -5a -2a 2+中一次项是 。

9、如果2m b 4a 与a b 21n 是同类项,那么m+n= 。

10、将多项式1-y x 4-xy y -x 23322+按字母x 降幂排列 。

11、如果x-y=4,xy=25,那么x ²+y ²= 。

12、计算:)n 4m )(2n -8m (+= 。

13、计算:)(2c b -a +²= 。

14、分解因式:3318ab -b 2a = 。

15、因式分解:=+36y)-60(x -y)-25(x 2 。

2017-2018学年高新区联考七年级上期末试题及答案

2017-2018学年高新区联考七年级上期末试题及答案

高新区2018—2018学年度第一学期期末测试七年级数学(满分:100分,考试时间:100分钟)一、填空题(本大题共10小题,每小题2分,共20分,把答案填在题中横线上)1.12的相反数是___________. 2.方程1152x -=的解为x=___________.3.不等式2x+3≤0的解集为_________________. 4.单项式-2x 2y 的次数是______________.5.在数轴上,与表示-3的点相距5个单位长度的点所表示的数是_____________. 6.化简:(3a 2-b 2)-3(a 2-2b 2)=______________. 7.已知7x m y 3和212nx y -是同类项,则(-n) m =___________. 8.如图,直线AB 、CD 、EF 相交于点O ,则∠1+∠2+∠3的度数是___________度.9.用边长为2cm 的正方形做了一套七巧扳,拼成如图所示的一座侨,用桥中阴影部分的面积为_______________cm 2.10.已知有理数a 、b 、c 在数轴上的位置如图所示,且1a =,2b =,4c =,则a -b+c=______________.二、选择题(本大题其6小题,每小题2分,共12分,在每小题给出的四个选项中,只有一项是符合题目要求的,将每题的选项填入下表相应空格中)11.人类的遗传物质是DNA ,人类的DNA 是很大的链,最短的22号染色体也长达30000000 个核苷酸,30000000用科学记数法表示为A .3×108B .3×107C .3×106D .0.3×10812.已知某些多面体的平面展开图如图所示,其中是三棱柱的有A .1个B .2个C .3个D .4个 13.如果一个角的补角是150°,那么这个角的余角是A .60°B .50°C .40°D .30°14.把在各个面上写有同样顺序的数字1~6的五个正方体木块排成一排(如图所示),那么与数字6相对的面上写的数字是A .2B .3C .5D .以上都不对 15.已知代数式x 2+x+1的值是8,那么代数式4x 2+4x+9的值是A .32B .25C . 37D .0 16.将正整数1,2,3,4……按以下方式排列1 4 → 5 8 → 9 12 → …… ↓ ↑ ↓ ↑ ↓ ↑ 2 →3 6 → 7 10 → 11 根据排例规律,从2018到2018的箭头依次为A .↓ →B .→ ↓C .↑ →D . → ↑三、解答题(本大题共12小题,共68分,解答应写出必要的计算过程、推演步骤或文字说明)17.(本题满分8分,每小题4分)计算:(1)3571491236⎛⎫--+÷ ⎪⎝⎭; (2)2342293⎛⎫-+÷- ⎪⎝⎭.18.(本题满分4分)已知a=-2,b=-1,求代数式()222225434ab a b a b ab a b ⎡⎤-+--⎣⎦的值.19.(本题满分8分,每小题4分)解方程(或不等式):(1)14223x x +=-; (2)232126x x +--≥,并把解集在数轴上表示出来.20.(本题满分4分)如图是由六个同样大小的小正方体搭成的几何体,请你分别画出它的左视图和俯视图.21.(本题满分4分)若12m +=,且m >-3,求2010122009m m ⎛⎫-+ ⎪⎝⎭的值.22.(本题满分4分)一个点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位;……写出:(1)第一次移动后这个点在数轴上表示的数为_____________; (2)第二次移动后这个点在数轴上表示的数为_____________; (3)第五次移动后这个点在数轴上表示的数为_____________; (4)第n 次移动后这个点在数轴上表示的数为_____________.23.(本题满分5分)若不等式10(x+4)+x <62的正整数解是方程2(a+x)-3x=a+l 的解,求221a a -的值.24.(本题满分4分)我们定义一种新运算:a*b=2a -b+ab(等号右边为通常意义的运算): (1)计算:2*(-3)的值; (2)解方程:13**2x x =.25.(本题满分6分)A 、B 两家旅行社推出家庭旅游优惠活动,两家旅行社的票价均为每人90元,但优惠的办法不同.A 旅行社的优惠办法是:全家有一人购全票,其余的人半价优惠;B 旅行社的优惠办法是:全家每人均按23票价优惠.设某一家庭共有x 人: (1)请分别列出表示选择A 、B 两家旅行社所需费用的代数式;(2)若小红家共有5人一起去旅游,请通过计算说明小红家选择哪家旅行社费用较低: (3)请根据不同家庭的人数情况,说明选择哪家旅行社费用较低.26.(本题满分5分)如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点. (1)若AC=8cm ,CB=6cm ,求线段MN 的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为____________.27.(本题满分7分)某商场计划从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若甲、乙、丙三种型号的电视机的数量比为3:2:5,则该商场共需投资多少元?(2)若该商场同时购进两种不同型号的电视机共50台,恰好用去9万元,请你设计一下商场的进货方案.28.(本题满分9分)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起:(1)若∠DCE=35°,则∠ACB的度数为___________;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.(4)三角尺ACD不动,将三角尺BCE的CE边与CA边重合,然后绕点C按顺时针或逆时针.方向任意转动一个角度,当∠ACE(0°<∠AC E<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠ACE角度所有可能的值,不用说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年成都市高新区七年级(上)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每题3分,共30分)1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元3.﹣32的值为()A.9 B.﹣9 C.﹣6 D.64.下面图形截面都是圆的是()A.B.C.D.5.下面说法正确的有()(1)正整数和负整数统称整数;(2)0既不是正数,又不是负数;(3)有绝对值最小的有理数;(4)正数和负数统称有理数.A.4个B.3个C.2个D.1个6.数轴上到2的距离是5的点表示的数是()A.3 B.7 C.﹣3 D.﹣3或77.若m、n满足|m+1|+(n﹣2)2=0,则m n的值等于()A.﹣1 B.1 C.﹣2 D.8.用语言叙述代数式a2﹣b2,正确的是()A.a,b两数的平方差B.a与b差的平方C.a与b的平方的差D.b,a两数的平方差9.如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.610.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A.8 B.9 C.10 D.11二、填空题(每空4分,共16分)11.一次考试中,老师采取一种记分制:得120分记为+20分,那么96分应记为,李明的成绩记为﹣12分,那么他的实际得分为.12.单项式﹣的系数是,次数是.13.若3a m b5与4a2b n+1是同类项,则m+n=.14.若|x﹣1|=2,则x=.三、解答题(共54分)15.(12分)计算:(1)2×(﹣5)+22﹣3÷(2)﹣(﹣3)2﹣[3+0.4×(﹣2)]÷(﹣2).16.(6分)在数轴上表示下列各数,并用“<”号连接起来.﹣(﹣2),﹣|2|,﹣1,0.5,﹣(﹣3),﹣|﹣4|,3.5.17.(8分)先化简,再求值5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a=﹣1,b=.18.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于2,p是数轴上原点表示的数,那么p ﹣cd++m的值是多少?19.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第100个图形有多少黑色棋子?(3)第n个图形有多少黑色棋子?(4)第几个图形有2013颗黑色棋子?请说明理由.20.(10分)某单位在十月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示)(2)假如这个单位现组织共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.(3)如果计划在十月份外出旅游七天,设最中间一天的日期为x,则这七天的日期之和为.(用含x的代数式表示.)(4)假如这七天的日期之和为63的倍数,则他们可能于十月几号出发?(写出所有符合条件的可能性)B卷(50分)一、填空题.(每题4分,共20分)21.已知a、b为有理数,且a>0,b<0,a+b<0,将四个数a、b、﹣a、﹣b按由小到大的顺序排列是.22.若|x|=5,|y|=3,且|x﹣y|=﹣x+y,则x+y=.23.已知当x=﹣3时,代数式ax3+bx+1的值为8,那么当x=3时,代数式ax3+bx+1的值为.24.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|=.25.小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是;(3)从中取出除0以外的4张卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可).二、解答题(共30分)26.(8分)由7个相同棱长为1的小立方块搭成的几何体如图所示,(1)请画出它的三视图.(2)在一次数学活动课上,甲同学用小立方体搭成现在的几何体,然后请乙同学用其他同样的小正方体在旁边再搭一个几何体,使得乙同学所搭几何体恰好可以和甲同学所搭几何体拼成一个无缝隙的大长方体(不改变甲同学所搭几何体的形状),那么乙同学至少还需要多少个小立方体,乙同学所搭几何体的表面积是多少?27.(10分)已知:关于x、y的多项式x2+ax﹣y+b与多项式bx2﹣3x+6y﹣3的和的值与字母x的取值无关,求代数式3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.28.(12分)数轴上A点对应的数为﹣5,B点在A点右边,电子蚂蚁甲、乙在B分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动.(1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B点表示的数;(3)在(2)的条件下,设它们同时出发的时间为t秒,是否存在t的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t值;若不存在,说明理由.参考答案与试题解析1.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.【解答】解:将150.5亿元用科学记数法表示1.505×1010元.故选:B.3.【解答】解:原式=﹣9.故选:B.4.【解答】解:将一个平面从任意角度去截球,都会得到一个圆.故选:C.5.【解答】解:(1)正整数、零和负整数统称整数,故说法错误;(2)0既不是正数,又不是负数,故说法正确;(3)有绝对值最小的有理数,是0,故说法正确;(4)正有理数、零和负有理数统称有理数,故说法错误.故选:C.6.【解答】解:如图,数轴上到2的距离是5的点表示的数是:2﹣5=﹣3,2+5=7;所以数轴上到2的距离是5的点表示的数是﹣3或7.故选:D.7.【解答】解:∵|m+1|+(n﹣2)2=0,∴,解得,∴m n=(﹣1)2=1.故选:B.8.【解答】解:a2﹣b2用语言叙述为a,b两数的平方差.故选:A.9.【解答】解:由题意得:n﹣2=3,解得:n=5.故选:C.10.【解答】解:易得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少共有9个碗.故选:B.11.【解答】解:得120分记为+20分,那么96分应记为﹣4分,李明的成绩记为﹣12分,那么他的实际得分为 88分,故答案为:﹣4分,88分.12.【解答】解:根据单项式定义得:单项式﹣的系数是﹣,次数是3.13.【解答】解:∵3a m b5与4a2b n+1是同类项,∴m=2,n+1=5,解得:m=2,n=4∴m+n=6.故答案为6.14.【解答】解:由题意得,绝对值是2的数有±2,所以x﹣1=2或x﹣1=﹣2,解得:x=﹣1或3.15.【解答】解:(1)原式=﹣10+4﹣6=﹣12(2)原式===﹣8.16.【解答】解:如图,.17.【解答】解:原式=5a2+3b2+2a2﹣2b2﹣5a2+3b2=2a2+4b2,当时,原式==3.18.【解答】解:由题意得:a+b=0,cd=1,m=±2,p=0,①当m=2时,原式=0﹣1+0+2=1;②当m=﹣2时,原式=0﹣1+0+(﹣2)=﹣3.19.【解答】解:第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.(1)当n=5时,3×(5+1)=18;(2)当n=100时,3×(100+1)=303;(3)第n个图需棋子3(n+1)枚.(4)设第n个图形有2013颗黑色棋子,根据(1)得3(n+1)=2013解得n=670,所以第670个图形有2013颗黑色棋子,20.【解答】解:(1)甲旅行社的费用为1500a,乙旅行社的费用为1600a﹣1600;故答案为1500a,1600a﹣1600(2)当a=20时甲:1500×20=30000(元)乙:1600×20﹣1600=30400(元)因为30000<30400,所以选择甲旅行社更优惠.(3)设最中间一天的日期为x,则这七天的日期分别为x﹣3,x﹣2,x﹣1,x,x+1,x+2,x+3,这七天的日期之和为7x,故答案为7x.(4)设最中间一天日期为x,则其出发日记为x﹣3,则这七天的日期之和为7x①当7x=63×1时,则x=9,故9﹣3=6,他们6号出发;②当7x=63×2时,则x=18,故18﹣3=15,他们15号出发;③当7x=63×3时,则x=27,故27﹣3=24,他们24号出发;④当7x=63×4时,则x=36;因为十月最多有31天可知,不合实际;则他们可能是6号或15号或24号出发.21.【解答】解:∵a>0,b<0,a+b<0,∴﹣b>a>0,b<﹣a<0∴b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b.22.【解答】解:∵|x|=5,|y|=3,∴x=±5,y=±3,∵|x﹣y|=﹣(x﹣y),∴x﹣y≤0,∴x=﹣5,y=±3,当x=﹣5、y=﹣3时,x+y=﹣5﹣3=﹣8;当x=﹣5、y=3时,x+y=﹣5+3=﹣2;故答案为:﹣8或﹣223.【解答】解:∵当x=﹣3时,代数式ax3+bx+1的值为8,∴﹣27a﹣3b+1=8,∴27a+3b=﹣7,∴当x=3时,ax3+bx+1=27a+3b+1=﹣7+1=﹣6.故答案为:﹣6.24.【解答】解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣1.25.【解答】解:(1)(﹣5)×(﹣5)=25;(2)(﹣5)÷1=﹣5;(3)(﹣5)×(﹣5)﹣15=25﹣1=24.故答案为:(1)25;(2)﹣5;(3)(﹣5)×(﹣5)﹣1526.【解答】解:(1)如图所示:(2)搭建的长方体长、宽、高分别为3、2、2(每层要6个小立方体)第一层还需要1个,第二层还需要4个,则乙同学还需要4+1=5,其表面积等于5×6﹣2﹣2﹣2﹣2=22.27.【解答】解:由题意可知:x2+ax﹣y+b+bx2﹣3x+6y﹣3=(b+1)x2+(a﹣3)x+5y+b﹣3该多项式的值与x无关,所以b+1=0,a﹣3=0所以b=﹣1,a=3原式=3a2﹣6ab+3b2﹣(3a2﹣2ab+3b2)=3a2﹣6ab+3b2﹣3a2+2ab﹣3b2=﹣4ab=1228.【解答】解:(1)由题知:C:﹣5+3×5=10 即C点表示的数为10;(2)设B表示的数为x,则B到A的距离为|x+5|,点B在点A的右边,故|x+5|=x+5,由题得:﹣=1,即x=15;(3)①在电子蚂蚁丙与甲相遇前,2(20﹣3t﹣2t)=20﹣3t﹣t,此时t=(s);②在电子蚂蚁丙与甲相遇后,2×(3t+2t﹣20)=20﹣3t﹣t,此时t=(s);综上所述,当t=s或t=s时,使丙到乙的距离是丙到甲的距离的2倍。

相关文档
最新文档