成都市郫都区七年级(上)期中数学试卷
四川省成都 七年级(上)期中数学试卷-(含答案)

七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.-的相反数是()A. B. C. D. 22.10月24日成都第十五届西博会新疆代表团签约175亿元合作项目,175亿元用科学记数法表示为()A. 元B. 元C. 元D. 元3.若单项式-2x m-1y mn与7x3y2是同类项,则代数式m-n的值是()A. B. 2 C. D.4.用平面截一个几何体,如果截面的形状是长方形(或正方形),那么该几何体不可能是()A. 圆柱B. 棱柱C. 圆锥D. 正方体5.数轴上到-4的距离等于5个单位长度的点表示的数是()A. 5或B. 1C.D. 1或6.若m、n满足|2m+3|+(n-2)4=0,则m n的值等于()A. B. C. D. 07.下列(1)=3a-2、(2)r+3>0、(3)3s+4=s、(4)x+7y=36,是一元一次方程的有()个.A. 1B. 2C. 3D. 48.下列各组数据中,结果相等的是()A. 与B. 与C. 与D. 与9.下面是小丽同学做的合并同类项的题,其中正确的是()A. B. C. D.10.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是()A. B. C. D.二、填空题(本大题共8小题,共30.0分)11.比较大小:-3 ______ 2;-______ -;-π ______ -3.14.12.多项式是______ 次______ 项式.13.如图是一个正方体盒子的展开图,在其中三个正方形A、B、C内分别添入适当的数,使他们折成正方体后相对的面上的两个数互为相反数,则添入正方形A、B、C内的三个数中最小的是______ 面.14.若方程3x+2a=12和方程2x-4=12的解相同,则a的值为______.15.当x=1时,代数式ax2+bx-1的值为3,则代数式-2a-b-2的值为______ .16.若3x|n|-(n-4)x-3是关于x的四次三项式,则n的值为______ .17.有理数a,b,c在数轴上的位置如图所示,则化简:|a-b|-|c-a|-|b+c|= ______ .18.如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为______ .三、计算题(本大题共3小题,共14.0分)19.(1)-4-28-(-29)+(-24)(2)2×(-3)2-×(-22)+6(3)-(-+)÷(-2)(4)-14+(1-0.5)××[2-(-3)2].20.(1)2ax2-3ax2-7ax2(2)-(-2x2y)-(+3xy2)-2(-5x2y+2xy2)21.先化简,后求值:-3(-x2+xy)+2y2-2(2y2-xy),其中x=,y=-1.四、解答题(本大题共6小题,共36.0分)22.如图所示的几何体是由7个相同的小正方体搭成的,请画出它的左视图和俯视图.23.小明在对代数式2x2+ax-y+6-2bx2+3x-5y+1化简后,没有含x的项,请求出代数式(a-b)2的值.24.2014年国庆十一黄金周期间,据统计,来成都古镇旅游的人数变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)()若月日古镇的游客人数为万人,则月日的游客人数为万人;七天内游客人数最大的是10月______ 日;(2)若9月30日游客人数为0.3万人,而2013年黄金周7天游客总数为2.4万人,那么2014年“十一”黄金周比2013年同期游客总数增长的百分率是多少?25.把正整数1,2,3,4,…,2014排列成如图所示的一个表(1)用一正方形在表中随意框住16个数,把其中没有被阴影覆盖的最小的数记为x,另外没有被覆盖的数用含x的式子表示出来,从小到大依次是______ 、______ 、______ .(2)没有被阴影覆盖的这四个数之和能等于96吗?若能,请求出x的值;若不能,请说明理由.(3)那这四个数之和又能否等于3282呢?如果能,请求出x的值;如果不能,请说明理由.26.(1)如果小华只买15张,则购买贺卡共花去多少元钱?(2)如果小华购买x张,请用含x的代数式表示小华所花的费用;(3)如果小华此次购买共花去360元,请问购买贺卡可能多少张?27.请观察下列算式,找出规律并填空.如图所示数表,从1开始的连续自然数组成,观察规律并完成下列各题:(1)请问第六排从左到右的第二个数是______ ;(2)设第n排右边最后一个数字为y,请用含n的代数式表示y.答案和解析1.【答案】C【解析】解:由相反数的意义得:-的相反数是.故选:C.根据相反数的意义解答即可.本题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.【答案】B【解析】解:175亿=175********=1.75×1010,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:由题意,得m-1=3,mn=2,解得m=4,n=,m-n=4-=,故选:C.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查了同类项,利用相同且相同字母的指数也相同得出m-1=3,mn=2是解题关键.4.【答案】C【解析】解:A、圆柱的轴截面是长方形,不符合题意;B、棱柱的轴截面是长方形,不符合题意;C、圆锥的截面为与圆有关的或与三角形有关的形状,符合题意;D、正方体的轴截面是正方形,不符合题意;故选C.用一个平面截一个几何体得到的面叫做几何体的截面.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,从中学会分析和归纳的思想方法.5.【答案】D【解析】解:设该点表示的数为x,由题意可得|x-(-4)|=5,∴x+4=5或x+4=-5,解得x=1或x=-9,即该点表示的数是1或-9,故选D.设该点表示的数为x,由距离的定义可得到关于x的方程,可求得答案.本题主要考查数轴上两点间的距离,掌握数轴上两点间的距离公式是解题的关键.6.【答案】A【解析】解:由题意得,2m+3=0,n-2=0,解得m=-,n=2,所以,m n=(-)2=.故选A.根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.【答案】B【解析】解:(1)=3a-2、(3)3s+4=s是一元一次方程,故选:B.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.8.【答案】D【解析】解:A、(-1)4=1,-14=-1,1≠-1,故错误;B、-|-3|=-3,-(-3)=3,-3≠3,故错误;C、,,,故错误;D、,,相等,正确.故选:D.根据有理数的乘方,逐一计算,即可解答.本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.9.【答案】B【解析】解:A、2a与3b不是同类项,不能合并.错误;B、ab-ba=0.正确;C、5a3-4a3=a3.错误;D、-a-a=-2a.错误.故选B.本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.10.【答案】D【解析】解:所得几何体的主视图的面积是2×3×3=18cm2.故选D.易得此几何体为圆柱,主视图为长方形,面积=底面直径×高.本题考查了圆柱的计算,解决本题的难点是得到所得几何体的主视图的形状.11.【答案】<;>;<【解析】解:-3<2,∵|-|=,|-|=,∴->-,-π<-3.14,故答案为:<,>,<.根据正数都大于负数,两个负数比较大小,其绝对值大的反而小比较即可.本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键,正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.12.【答案】三;三【解析】解:多项式是三次三项式,故答案为:三,三.根据多项式的定义,即可解答.本题考查了多项式,解决本题的关键是熟记多项式的次数、项数的定义.13.【答案】B【解析】解:由图可知A对应-1,B对应2,C对应0.∵-1的相反数为1,2的相反数为-2,0的相反数为0,∴A=1,B=-2,C=0,∴添入正方形A、B、C内的三个数中最小的是B面.故答案为:B.本题可根据图形的折叠性,对图形进行分析,可知A对应-1,B对应2,C对应0.两数互为相反数,和为0,据此可解此题.本题考查的是专题:正方体相对两个面上的文字,相反数的概念,两数互为相反数,和为0,本题如果学生想象不出来图形,可用手边的纸剪出上述图形,再根据纸片折出正方体,然后判断A、B、C所对应的数.14.【答案】-6【解析】解:解方程2x-4=12,得:x=8,把x=8代入3x+2a=12,得:3×8+2a=12,解得:a=-6.故答案为:-6.本题中有2个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.本题考查同解方程的知识,比较简单,解决本题的关键是理解方程解的定义,注意细心运算.15.【答案】-10【解析】解:将x=1代入得:a+-1=3,∴a+=4.等式两边同时乘以-2得:-2a-b=-8.∴-2a-b-2=-8-2=-10.故答案为:-10.将x=1代入可求得a+=4,然后等式两边同时乘以-2得:-2a-b=-8,最后代入计算即可.本题主要考查的是求代数式的值,利用等式的性质对等式进行适当变形是解题的关键.16.【答案】-4【解析】解:∵3x|n|-(n-4)x-3是关于x的四次三项式,∴|n|=4且n≠4,∴n=-4,故答案为-4.根据题意得|n|=4且n≠4,得出n的值即可.本题考查了多项式,掌握多项式的定义是解题的关键.17.【答案】-2c【解析】解:由数轴得a<-1<b<0<1<c,∴|a-b|-|c-a|-|b+c|=b-a-c+a-b-c=-2c,故答案为-2c.根据数轴得出a-b,c-a,b+c的符号,再去绝对值即可.本题考查了整式的加减,掌握数轴、绝对值以及合并同类项的法则是解题的关键.18.【答案】69【解析】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为9,10,11,12,13,14,或8,9,10,11,12,13,且每个相对面上的两个数之和相等,13+10=23,12+11=23,9+14=23,故只可能为9,10,11,12,13,14,其和为69.故答案为:69.由平面图形的折叠及立体图形的表面展开图的特点解题,根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为9,10,11,12,13,14或8,9,10,11,12,13,然后分析符合题意的一组数即可.本题主要考查整数问题的综合运用和几何体的展开图的知识点,解答本题的关键是对几何图形的观察能力和空间想象能力,此题难度不大.19.【答案】解:(1)-4-28-(-29)+(-24)=-32+29-24=-3-24=-27(2)2×(-3)2-×(-22)+6=2×9-×(-4)+6=18+1+6=25(3)-(-+)÷(-2)=-(-)÷(-2)=-=0(4)-14+(1-0.5)××[2-(-3)2]=-1+××[2-9]=-1+×(-7)=-1-=-2【解析】(1)首先计算除法,然后从左向右依次计算即可.(2)首先计算乘方和乘法,然后从左向右依次计算即可.(3)首先计算小括号里面的加法,然后计算除法和减法即可.(4)首先计算乘方和括号里面的运算,然后计算乘法和加法即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.【答案】解:(1)原式=(2-3-7)ax2=-8ax2;(2)原式=2x2y-3xy2+10x2y-4xy2=12x2y-7xy2.【解析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.21.【答案】解:原式=x2-2xy+2y2-4y2+2xy=x2-2y2,当x=,y=-1时,原式=-2=-1.【解析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.【答案】解:如图所示:【解析】左视图有3列,每列小正方数形数目分别为3,2,1,俯视图有3列,每列小正方形数目分别为1,1,2.再根据小正方形的位置可画出图形.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.【答案】解:原式=(2-2b)x2+(a+3)x-6y+5,由代数式的值与字母x的取值无关,得到2-2b=0,a+3=0,解得:a=-3,b=1,则(a-b)2=16.【解析】代数式合并后,根据其值与x取值无关,确定出a与b的值,即可求出所求式子的值.本题考查了多项式的知识,解答本题的关键是理解题目中字母x的取值无关的意思.24.【答案】a+0.6;3【解析】解:(1)由题意可得,10月1日游客为:a+0.6,10月2日游客为:a+0.6+0.8=a+1.4,10月3日游客为:a+1.4+0.4=a+1.8,10月4日游客为:a+1.8-0.4=a+1.4,10月5日游客为:a+1.4-0.8=a+0.6,10月6日游客为:a+0.6+0.2=a+0.8,10月7日游客为:a+0.8-0.8=a,故答案为:(a+0.6),3;(2)∵9月30日游客人数0.3万人,∴2014年黄金周7天游客总数为0.3+1.4+0.3+0.6+0.3+1.8+0.3+1.4+0.3+0.6+0.3+0.8+0.3=8.7万人,∴2014年“十一”黄金周比2013年同期游客总数增长的百分率是.(1)根据表格中的数据可以解答本题;(2)根据(1)中的答案和表格中的数据可以解答本题.本题考查列代数式、正数和负数,解题的关键是明确题意,列出相应的代数式,明确正数和负数在题目中的实际意义.25.【答案】x+3;x+24;x+27【解析】解:(1)观察数列可知:每行有8个数,同行相邻两列数差为1,同列相邻两行的差为8.∵最小的数记为x,∴另外三个数分别为:x+3,x+24,x+27.故答案为:x+3;x+24;x+27.(2)没有被阴影覆盖的这四个数之和不能等于96,理由如下:四个数之和为x+x+3+x+24+x+27=4x+54,∴4x+54=96,解得:x=10.5,∵x为正整数,∴没有被阴影覆盖的这四个数之和不能等于96.(3)根据题意得:4x+54=3282,解得:x=807.答:这四个数之和能等于3282,此时x的值为807.(1)观察数列的排列方式即可得出:每行有8个数,同行相邻两列数差为1,同列相邻两行的差为8.根据最小的数为x结合正方形的性质即可得出其它三个数;(2)根据(1)将此四个数相加,令其等于96即可得出关于x的一元一次方程,解之即可求出x的值,由x不是正整数即可得出这四个数之和不能等于96;(3)根据(1)将此四个数相加,令其等于3282即可得出关于x的一元一次方程,解之即可求出x的值,由x为正整数即可得出结论.本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数列的排列用含x的代数式表示其它三个数;(2)根据四个数之和为96列出关于x 的一元一次方程;(3)根据四个数之和为3282列出关于x的一元一次方程.26.【答案】解:(1)20×15=300(元).答:如果小华只买15张,则购买贺卡共花去300元钱.(2)设小华所花的费用为y元,根据题意可知:当0<x≤20时,y=20x;当x>20时,y=0.75×20x=15x.∴小华所花的费用y=.(3)∵20×20=400(元),21×15=315(元),315<360<400,∴若购买贺卡花去360元,则小华此次购买贺卡张数可能多于21也可能少于20,∴当y=360时,有20x=360或15x=360,解得:x=18或x=24.答:如果小华此次购买共花去360元,请问购买贺卡可能为18或24张.【解析】(1)根据总价=单价×数量,列式计算即可;(2)设小华所花的费用为y元,分0<x≤20和x>20两种情况找出y关于x的代数式,此题得解;(3)先求出购买20和21张贺卡的总钱数,将其与360元进行比较即可得出小华此次购买贺卡张数可能多于21也可能少于20,将y=360代入(2)的关系式中即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据总价=单价×数量列式计算;(2)分0<x≤20和x>20两种情况找出y关于x的代数式;(3)将y=360代入(2)的结果中找出关于x的一元一次方程.27.【答案】(1)17;(2)设第n排右边最后一个数字为y,偶数行y=n(n+1),奇数行y=n(n-1)+1.由数表可知:每一行的数字个数与所在的行数相等,偶数行第一个数可表示n(n-1)+1,奇数行第一个数可表示n(n+1),即(),为偶数(),为奇数.【解析】解:(1)第五排的第一个数字为×5×(5+1)=15,所以第六排从左到右的第二个数是17;(2)设第n排右边最后一个数字为y,偶数行y=n(n+1),奇数行y=n(n-1)+1.由数表可知:每一行的数字个数与所在的行数相等,偶数行最后一个数可表示n(n+1),奇数行第一个数可表示n(n+1),由此规律分析得出答案即可.此题考查数字的变化规律,找出数字之间的运算规律与符号规律,利用规律解决问题.。
四川省成都市七年级(上)期中数学试卷(附答案解析)

四川省成都市七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是()A. 3a2−a2=3B. a2⋅a3=a6 C. (a2)3=a6 D. a6÷a2=a32.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A. 5.6×10−1B. 5.6×10−2C. 5.6×10−3D. 0.56×10−13.化简5a⋅(2a2−ab),结果正确的是()A. −10a3−5abB. 10a3−5a2bC. −10a2+5a2bD. −10a3+5a2b4.下列各式中能用平方差公式计算的是()A. (a+3b)(3a−b)B. (3a−b)(3a−b)C. (3a−b)(−3a+b)D. (3a−b)(3a+b)5.下列各组线段中,能组成三角形的是()A. 4,6,10B. 3,6,7C. 5,6,12D. 2,3,66.已知a+b=3,ab=32,则(a+b)2的值等于()A. 6B. 7C. 8D. 97.下列乘法公式的运用,不正确的是()A. (2a+b)(2a−b)=4a2−b2B. (−2a+3)(3+2a)=9−4a2C. (3−2x)2=4x2+9−12xD. (−1−3x)2=9x2−6x+18.如图,直线l与直线a、b相交,且a//b,∠1=50°,则∠2的度数是()A. 130°B. 50°C. 100°D. 120°9.如图,点E在AD延长线上,下列条件中不能判定BC//AD的是()A. ∠1=∠2B. ∠C=∠CDEC. ∠3=∠4D. ∠C+∠ADC=180°10.如图,直线a//b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为()A. 45°B. 35°C. 30°D. 25°二、填空题(本大题共9小题,共32.0分)11.若a m=2,a n=4,则a m+n=______.12.已知m+2n=2,m−2n=2,则m2−4n2=______.13.x2−4x+k是完全平方式,则k=______.14.如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别在M、N的位置上,EM与BC的交点为G,若∠EFG=65°,则∠2=______.15.已知:3m=2,9n=5,则33m−2n=______.16.若a−b=2,则a2−b2−4b=______.17.已知a2−2(k−1)ab+9b2是一个完全平方式,那么k=______ .18.设a,b,c为△ABC的三边,化简|a−b+c|−|a+b−c|−|a−b−c|=______.19.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论是______ .三、计算题(本大题共1小题,共10.0分)20.计算:(1)(−12)0+|3−π|+(13)−2.(2)(x+3)(x−3)−(x−2)2.四、解答题(本大题共8小题,共74.0分)21.计算:(1)(a+3)2−(a+2)(a−1);(2)(15x2y−10xy2)÷5xy.22.如图,直线AB//CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.23.如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG//AB.请把证明的过程填写完整.证明:∵AD⊥BC,EF⊥BC(______),∴∠EFB=∠ADB=90°(垂直的定义)∴EF//______(______)∴∠1=______(______)又∵∠1=∠2(已知)∴______(______)∴DG//AB(______)24.如图,在△ABC中,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=3.5cm,BD=4.5cm.(1)说明△AED≌△ACD的理由;(2)求线段BC的长.25.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.26.乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是______(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是______,长是______,面积是______(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:______(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n−p)(2m−n+p)27.已知:AB//CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.28.如图,在△ABC中,AB=AC,∠B=30°,点D从点B出发,沿B→C方向运动到C(D不与B、C重合),连接AD,作∠ADE=30°,DE交线段AC于E.(1)在点D的运动过程中,若∠BDA=100°,求∠DEC的大小;(2)在点D的运动过程中,若AB=DC,请证明△ABD≌△DCE;(3)若BC=6cm,点D的运动速度是1cm/s,运动时间为t(s).在点D的运动过程中,是否存在这样的t,使得△ADE的形状是直角三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A、3a2−a2=2a2,故此选项错误;B、a2⋅a3=a5,故此选项错误;C、(a2)3=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.2.【答案】B【解析】解:将0.056用科学记数法表示为5.6×10−2,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:5a⋅(2a2−ab)=10a3−5a2b.故选B.4.【答案】D【解析】解:A、不符合两个数的和与这两个数的差相乘,不能用平方差公式,故本选项错误;B、原式=(3a−b)2,故本选项错误;C、原式=−(3a−b)2,故本选项错误;D、符合平方差公式,故本选项正确.故选D.根据平方差公式对各选项进行逐一计算即可.本题考查的是平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解答此题的关键.5.【答案】B【解析】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选:B.三角形的任意两边之和都大于第三边,根据以上定理逐个判断即可.本题考查了对三角形三边关系定理的应用,能熟记三角形三边关系定理的内容是解此题的关键.6.【答案】D【解析】解:∵a+b=3,∴(a+b)2=32=9.故选:D.利用整体代入的方法计算.本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2= a2±2ab+b2.7.【答案】D【解析】解:A选项运用平方差公式(2a+b)(2a−b)=(2a)2−b2=4a2−b2;B选项运用平方差公式(−2a+3)(3+2a)=32−(2a)2=9−4a2;C选项是运用了完全平方公式计算正确;D选项运用完全平方公式计算(−1−3x)2=(1+3x)2=1+6x+9x2,所以D选项错误.故选:D.A选项运用了平方差公式,计算正确;B选项运用了平方差公式,计算正确;C选项运用了完全平方公式,计算正确;D选项运用了完全平方公式(−1−3x)2=(1+3x)2=1+6x+9x2,所以原题计算错误.本题主要考查了平方差公式和完全平方公式,解决此类问题要熟知两个公式的形式:平方差是两数的和与两数的差的乘积等于两数的平方差,完全平方公式是两数的和或差的平方等于两数的平方和加上或减去这两数的乘积的2倍(首平方,尾平方,2倍在中央,符号看前方).8.【答案】B【解析】解:如图,∠3=∠1=50°,∵a//b,∴∠2=∠3=50°.故选:B.根据对顶角相等求出∠3,再根据两直线平行,同位角相等求解即可.本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.9.【答案】A【解析】【分析】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.分别利用同旁内角互补两直线平行,内错角相等两直线平行进行判断,即可得出答案.【解答】解:A、∵∠1=∠2,∴AB//CD,本选项符合题意;B、∵∠C=∠CDE,∴BC//AD,本选项不符合题意;C、∵∠3=∠4,∴BC//AD,本选项不符合题意;D、∵∠C+∠ADC=180°,∴AD//BC,本选项不符合题意.故选:A.10.【答案】C【解析】解:∵a//b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.11.【答案】8【解析】解:a m+n=a m⋅a n=2×4=8,故答案为:8.因为a m和a n是同底数的幂,所以根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加解答即可.此题主要考查了同底数幂的乘法,此题逆用了同底数幂的乘法法则,是考试中经常出现的题目类型.12.【答案】4【解析】解:∵m+2n=2,m−2n=2,∴m2−4n2=(m+2n)(m−2n)=2×2=4.故答案为:4.原式利用平方差公式分解,把各自的值代入计算即可求出值.本题考查平方差公式,掌握平方差公式的结构特征是正确应用的前提.13.【答案】4【解析】解:∵x2−4x+k是完全平方式,∴k=22=4,故答案为:4利用完全平方公式的结构特征判断即可求出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.【答案】130°【解析】【分析】本题考查了两直线平行,内错角相等,同旁内角互补的性质,以及翻折变换的性质,熟记各性质是解题的关键.据两直线平行,内错角相等求出∠3,再根据翻折的性质以及平角等于180°,求出∠1,然后根据两直线平行,同旁内角互补,列式计算即可得解.【解答】解:长方形纸片ABCD的边AD//BC,∴∠3=∠EFG=65°,根据翻折的性质,可得∠1=180°−2∠3=180°−2×65°=50°,又∵AD//BC,∴∠2=180°−∠1=180°−50°=130°.故答案为:130°.15.【答案】85【解析】解:∵3m=2,9n=32n=5,∴33m−2n=(3m)3÷32n=23÷5=85.故答案为:85.直接利用同底数幂的除法运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的除法运算以及幂的乘方运算,正确将原式变形是解题关键.16.【答案】4 【解析】解:∵a−b=2∴原式=(a+b)(a−b)−4b=2(a+b)−4b=2a−2b=2(a−b)=4故答案为:4先将多项式因式分解,然后再代入求值.本题考查因式分解,涉及平方差公式,代入求值等知识.17.【答案】4或−2【解析】解:∵a2−2(k−1)ab+9b2=a2±6ab+(3b)2,∴−2(k−1)=±6,解得k=4或−2,故答案为:4或−2.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.【答案】a−3b+c【解析】解:∵a,b,c为△ABC的三边,∴a−b+c>0,a+b−c>0,a−b−c<0,∴|a−b+c|−|a+b−c|−|a−b−c|=a−b+c−(a+b−c)+(a−b−c)=a−b+c−a−b+c+a−b−c=a−3b+c.故答案为:a−3b+c.直接利用三角形三边关系进而化简得出答案.此题主要考查了三角形三边关系以及绝对值的性质,正确化简绝对值是解题关键.19.【答案】①②③④【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF//AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△BDF中,{∠C=∠CBFCD=BD∠EDC=∠FDB,∴△CDE≌△BDF(ASA),∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确;故答案为①②③④.20.【答案】解:(1)原式=1+π−3+9=7+π.(2)原式=x2−9−(x2−4x+4)=x2−9−x2+4x−4=4x−13.【解析】(1)利用零指数幂、负整数指数幂法则,绝对值的意义计算即可得到结果;(2)根据平方差公式和完全平方公式计算即可得到结果.本题考查了实数和整式的运算,平方差公式和完全平方公式,解答本题的关键是明确它们各自的计算方法.21.【答案】解:(1)(a+3)2−(a+2)(a−1)=(a2+6a+9)−(a2−a+2a−2)=a2+6a+9−a2+a−2a+2=5a+11;(2)(15x2y−10xy2)÷5xy=3x−2y.【解析】(1)先根据完全平方公式和多项式乘以多项式法则算乘法,再合并同类项即可;(2)根据多项式除以单项式法则求出即可.本题考查了完全平方公式,多项式乘以多项式法则,多项式除以单项式法则,整式的混合运算等知识点,能正确根据知识点进行化简是解此题的关键.22.【答案】解:∵AB//CD,∠1=68°,∴∠1=∠QPA=68°.∵PM⊥EF,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【解析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.23.【答案】已知AD同位角相等,两直线平行∠3两直线平行,同位角相等∠2=∠3等量代换内错角相等,两直线平行【解析】解:证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义)∴EF//AD(同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴DG//AB(内错角相等,两直线平行)故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;根据三角形内角和定理以及平行线的性质即可求出答案.本题考查三角形的综合问题,解题的关键是熟练运用三角形内角和定理以及平行线的性质与判定,本题属于基础题型.24.【答案】(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD;在△ADE和△ADC中,{AE=AC∠EAD=∠CAD AD=AD,∴△ADE≌△ADC(SAS);(2)解:由(1)知,△ADE≌△ADC,∴DE=DC(全等三角形的对应边相等),∴BC=BD+DC=BD+DE=4.5+3.5=8(cm).【解析】(1)根据角平分线的意义知∠BAD=∠CAD,又因为AE=AC,AD=AD,所以根据三角形的判定定理SAS易证得△AED≌△ACD;(2)利用(1)的结果,根据全等三角形的性质:对应边相等,知CD=DE,而BC=BD+DC,可求BC的长.本题考查全等三角形的判定与性质.解答此题时,充分利用了角平分线的意义.25.【答案】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB−∠DCB,∠BCE=∠DCE−∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,{AC=BC∠ACD=∠BCE CD=CE∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,AD=BE,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.【解析】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB−∠DCB,∠BCE=∠DCE−∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS);(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,AD=BE,可得BE=BF,从而可求出∠BEF的度数.26.【答案】(1)a2−b2;(2)a−b;a+b;(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)(2m+n−p)(2m−n+p)=(2m)2−(n−p)2=4m2−(n2−2np+p2)=4m2−n2+2np−p2【解析】解:(1)由图可得,阴影部分的面积=a2−b2;故答案为:a2−b2;(2)由图可得,矩形的宽是a−b,长是a+b,面积是(a+b)(a−b);故答案为:a−b,a+b,(a+b)(a−b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a−b)=a2−b2;故答案为:(a+b)(a−b)=a2−b2;(4)(2m+n−p)(2m−n+p)=(2m)2−(n−p)2=4m2−(n2−2np+p2)=4m2−n2+2np−p2.(1)由图形的面积关系即可得出结论;(2)由图形即可得到长方形的长,宽以及面积;(3)依据两图的阴影部分面积相等,可以得到乘法公式;(4)依据平方差公式以及完全平方公式,即可得到计算结果.本题考查了平方差公式的几何背景,此类题目,关键在于表示出阴影部分的面积,然后根据阴影部分面积相等求解.27.【答案】解:(1)①∵AB//CD,∴∠1=∠3,∵∠1=∠2,∠3=∠4,∴∠2=∠4=36°;②位置关系是:EM//FN.理由:由①知,∠1=∠3=∠2=∠4,∴∠MEF=∠EFN=180°−2∠1,∴∠MEF=∠EFN∴EM//FN(内错角相等,两直线平行)(2)关系是:∠EFD=2∠GEH.理由:∵EG平分∠MEF,∴∠MEG=∠GEH+∠HEF①∵EH平分∠AEM,∴∠MEG+∠GEH=∠AEF+∠HEF②由①②可得:∴∠AEF=2∠GEH,∵AB//CD,∴∠AEF=∠EFD,∴∠EFD=2∠GEH.【解析】(1)根据平行线的性质和判定解答即可;(2)利用角平分线的定义和平行线的性质解答即可.此题考查平行线的性质,关键是根据平行线的性质和判定解答.28.【答案】解:(1)∵AB=AC,∠B=30°,∴∠C=∠B=30°,∵∠BDA=100°,∠ADE=30°,∴∠EDC=180°−100°−30°=50°,∴∠DEC=180°−50°−30°=100°;(2)∵∠C=30°,∴∠CED+∠CDE=150°,∵∠ADE=30°,∴∠ADB+∠CDE=150°,∴∠CED=∠ADB,在△ABD和△DCE中,{∠ADB=∠DEC∠B=∠CAB=DC,∴△ABD≌△DCE(AAS);(3)存在,∵AB=AC,∠B=30°,∴∠BAC=120°,∵BC=6cm,点D的运动速度是1cm/s,运动时间为t(s),∴BD=t,CD=6−t,①如图1,当∠DAE=90,则∠BAD=30°,∴∠BAD=∠B=30°,∴AD=BD=t,∵∠C=30°,∴CD=2AD,即6−t=2t,∴t=2;②如图2,当∠AED=90°时,则∠DAE=60°,∴AD平分∠BAC,∴BD=CD,即t=6−t,∴t=3,综上所述,当t=2或3时,△ADE的形状是直角三角形.【解析】(1)根据等腰三角形的性质得到∠C=∠B=30°,根据已知条件得到∠EDC=180°−100°−30°=50°,于是得到∠DEC=180°−50°−30°=100°;(2)根据三角形的内角和和平角的定义得到∠CED=∠ADB根据全等三角形的判定定理即可得到结论;(3)根据三角形的内角和得到∠BAC=120°,求得BD=t,CD=6−t,①如图1,当∠DAE=90,则∠BAD=30°,根据直角三角形的性质列方程求得t的值;②如图2,当∠AED=90°时,则∠DAE=60°,根据等腰三角形的性质列方程求得t的值.本题考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,三角形的内角和,正确的作出图形是解题的关键.。
成都市七年级上学期期中数学试卷

成都市七年级上学期期中数学试卷(试卷分A 、B 卷,满分150分,答卷时间为120分钟)A 卷(100分)一、选择题:(每题4分,共60分)1.下列说法中,不正确的是( )A 、0既不是正数,也不是负数;B 、1是绝对值最小的数;C 、0的相反数是0;D 、0的绝对值是0.2.|–2|的相反数是( )A 、21 B 、–2 C 、21 D 、2 3.已知一个多面体有12条棱,6个顶点,那么这个多面体是( )A .五面体 B.六面体 C.八面体 D.十二面体4. 已知数轴上C 、D 两点的位置如图所示,那么下列说法错 误的是( )A. D 点表示的数是正数B. C 点表示的数是负数C. D 点表示的数比0小D. C 点表示的数比D 点表示的数小5. 下列各组代数式中互为相反数的有( )(1)a -b 与-a -b ; (2)a +b 与-a -b ; (3)a +1与1-a ;(4)-a +b 与a -b 。
(A )(1)(2)(4) (B )(2)与(4)(C )(1)(3)(4) (D )(3)与(4)6.下面的说法正确的是( )A.–2不是单项式;B.–a 表示负数 ;C.3ab 5 的系数是3;D.x+ a x+1不是多项式 7.多项式x 5y 2+2x 4y 3-3x 2y 2-4xy 是( )A 、按x 的升幂排列;B 、按x 的降幂排列;C 、按y 的升幂排列;D 、按y 的降幂排列8.表示a 除以b 乘c 的商的代数式是 ( ) A.b ac B.a ÷bc C.bca D.ac ÷b 9. 右图是一数值转换机,若输入的x 为-5,则输出的结果为( )A. 11B. -9C. -17D. 2110.用一个平面去截一个正方体,截出的图形(截面)不可能是( )A.三角形B.五边形C.六边形D.七边形11. 下列各式中运算错误的是( )A. x x x 325=-B. 055=-ba abC. y x xy y x 22254-=- D. 222523x x x =+ 12.某种细菌在培养过程中,每半小时分裂一次(由一个分裂为两个).若这种细菌由1个分裂为64个,那么这个过程要经过( )A .1小时B .2小时C .3小时D .4小时13.表面展开的平面图形如图所示的几何体是( )A . 圆柱B .圆台 C.圆锥 D.球14.如果x 是负有理数,那么下列计算正确的是( )A 、︱x-2︱=x+2;B 、︱x-2︱=x-2;C 、︱x-2︱=-(x+2);D 、︱x-2︱=2-x15.有一个人从甲地出发以a 千米/时的速度到达乙地,又立即以b 千米/时的速度返回甲地,则此人在往返过程中的平均速度为( )千米/时。
【6套打包】成都市七年级上册数学期中考试单元测试题(解析版)

七年级上册数学期中考试题(含答案)一.选择题(共12小题,满分48分)1.3的相反数是()A.﹣3 B.3 C.D.﹣2.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×323.绝对值大于3而不大于6的整数有()A.3个B.4个C.6个D.多于6个5.计算:(﹣3)4=()A.﹣12 B.12 C.﹣81 D.816.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能7.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)2D.﹣|﹣2|8.如果|x﹣2|+(y+3)2=0,那么y x的值为()A.9 B.﹣9 C.6 D.﹣69.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×10810.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(﹣3)的值为()A.B.C.D.﹣11.绝对值小于3的所有整数的和与积分别是()A.0,﹣2 B.0,0 C.3,2 D.0,212.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元B.130元C.150 元D.160元二.填空题(共6小题,满分24分,每小题4分)13.数学竞赛85分以上的为优秀,以85分为基准简记,例如89分记作+4分,83分记作﹣2分,老师将某班6名同学的成绩记作(单位:分):+9,﹣5,0,+6,﹣4,﹣1,则这6名同学的实际成绩从高到底依次是:.14.比较大小:.(填“>”、“<”或“=”)15.近似数0.0730的有效数字有个.16.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是.17.有一运算程序如下:若输出的值是25,则输入的值可以是.18.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.三.解答题(共6小题,满分54分)19.(8分)12﹣(﹣18)+(﹣7)﹣15.20.(8分)计算:(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣2)3÷4.21.(8分)把下列各数填入相应集合的括号内:+8.5,﹣3,0.3,0,﹣3.4,12,﹣9,4,﹣1.2,﹣2.(1)正数集合:{ …};(2)整数集合:{ …};(3)自然数集合:{ …};(4)负分数集合:{ …}.22.(12分)已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012的值.23.(6分)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA =|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA =|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA =|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=,如果AB=2,则x的值为.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为.24.(12分)某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存300吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨6元,那么这3天要付多少装卸费?四.解答题(共2小题,满分24分,每小题12分)25.(12分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.26.(12分)如图已知数轴上点A、B分别表示a、b,且|b+6|与(a﹣9)2互为相反数,O 为原点.(1)a=,b=;(2)若将数轴折叠点A与表示﹣10的点重合,则与点B重合的点所表示的数为;(3)若点M、N分别从点A、B同时出发,点M以每秒1个单位长度的速度沿数轴向左匀速运动,点N以每秒2个单位长度的速度沿数轴向右匀速运动,N到点A后立刻原速返回,设运动时间为t(t>0)秒.①点M表示的数是(用含t的代数式表示);②求t为何值时,2MO=MA;③求t为何值时,点M与N相距3个单位长度.参考答案一.选择题1.解:3的相反数是﹣3.故选:A.2.解:A、34=81,43=64,数值不相等;B、﹣42=﹣16,(﹣4)2=16,数值不相等;C、﹣23=(﹣2)3=﹣8,数值相等;D、(﹣2×3)2=36,﹣22×32=﹣36,数轴不相等,故选:C.3.解:绝对值大于3而不大于6的整数有4,5,6,﹣4,﹣5,﹣6共6个.故选:C.4.解:﹣3的相反数是3.故选:C.5.解:(﹣3)4=(﹣3)×(﹣3)×(﹣3)×(﹣3)=81.故选:D.6.解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.7.解:A、﹣(﹣2)=2,是正数,错误;B、|﹣2|=2是正数,错误;C、(﹣2)2=4是正数,错误;D、﹣|﹣2|=﹣2是负数,正确;故选:D.8.解:∵|x﹣2|+(y+3)2=0,∴x=2,y=﹣3.∴原式=(﹣3)2=9.故选:A.9.解:5 300万=5 300×103万美元=5.3×107美元.故选C.10.解:根据题中的新定义得:7⊕(﹣3)==.故选:B.11.解:设这个数为x,则:|x|<3,∴x为0,±1,±2,∴它们的和为0+1﹣1+2﹣2=0;它们的积为0×1×(﹣1)×2×(﹣2)=0.故选:B.12.解:设一件甲商品x元,乙y元,丙z元,根据题意得:①+②得:4x+4y+4z=600,∴x+y+z=150,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:∵以85分为基准简记,∴6名同学的实际成绩为:94,80,85,91,81,84,则这6名同学的实际成绩从高到低依次是:94,91,85,84,81,80.14.解:∵=,∴﹣=.∵(9﹣4)×(9+4)=81﹣80=1>0,9+4>0,∴9﹣4>0,∴﹣>0,即>.故答案为:>.15.解:近似数0.0730的有效数字为7、3、0这3个,故答案为:3.16.解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6,故答案为:2或﹣617.解:根据题意可得:(x+1)2=25,x+1=±5,解得x1=4,x2=﹣6.故答案为4或﹣6.18.解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.三.解答题(共6小题,满分54分)19.解:原式=12+18﹣7﹣15=30﹣22=8.20.解:(1)3×(﹣4)+18÷(﹣6)=﹣12+(﹣3)=﹣15;(2)(﹣2)2×5+(﹣2)3÷4=4×5+(﹣8)÷4=20+(﹣2)=18.21.解:(1)正数集合:{+8.5、0.3、12、4,};(2)整数集合:{0、12、﹣9、﹣2,};(3)自然数集合:{ 0、12,};(4)负分数集合:{﹣3、﹣3.4、﹣1.2,}.故答案为:(1)+8.5、0.3、12、4,;(2)0、12、﹣9、﹣2,;(3)0、12;(4)﹣3、﹣3.4、﹣1.2,22.解:由已知可得,a+b=0,cd=1,x=±2;当x=2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=22﹣(0+1)×2+02011+(﹣1)2012=4﹣2+0+1=3当x=﹣2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=(﹣2)2﹣(0+1)×(﹣2)+02011+(﹣1)2012=4+2+0+1=723.解:(1)综上所述,数轴上A、B两点之间的距离AB=|a﹣b|;(2)数轴上表示2和﹣4的两点A和B之间的距离AB=2﹣(﹣4)=2+4=6;(3)数轴上表示x和﹣2的两点A和B之间的距离AB=|x+2|,如果AB=2,则x的值为0或﹣4;(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为5.故答案为:(1)|a﹣b|;(2)6;(3)|x+2|;0或﹣4;(4)524.解:(1)26+(﹣32)+(﹣15)+34+(﹣38)+(﹣20)=﹣45(吨),答:库里的粮食是减少了45吨;(2)300+45=345(吨),答:3天前库里有粮345吨;(3)(26+|﹣32|+|﹣15|+34+|﹣38|+|﹣20|)×6=165×6=990(元),答:这3天要付990元装卸费.四.解答题(共2小题,满分24分,每小题12分)25.解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.26.解:(1)依题意有|b+6|+(a﹣9)2=0,b+6=0,a﹣9=0,解得a=9,b=﹣6;(2)(9﹣10)÷2=﹣0.5,﹣0.5+6=5.5,﹣0.5+5.5=5.故与点B重合的点所表示的数为5;(3)①点M表示的数是9﹣t;②M在原点右边时,依题意有2(9﹣t)=t,解得t=6;M在原点左边边时,依题意有﹣2(9﹣t)=t,解得t=18.故t为6或18秒时,2MO=MA;③点M与N第一次相遇前,依题意有3t=15﹣3,解得t=4;点M与N第一次相遇后,依题意有3t=15+3,解得t=6;(6+9)÷2=7.5(秒),点M与N第二次相遇前,2(t﹣7.5)﹣(t﹣7.5)=7.5﹣3,解得t=12;点M与N第二次相遇后,2(t﹣7.5)﹣(t﹣7.5)=7.5+3,解得t=18.故t为4或6或12或18秒时,点M与N相距3个单位长度.故答案为:9,﹣6;5.七年级上册数学期中考试题(含答案)一.选择题(共12小题,满分48分)1.3的相反数是()A.﹣3 B.3 C.D.﹣2.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×323.绝对值大于3而不大于6的整数有()A.3个B.4个C.6个D.多于6个5.计算:(﹣3)4=()A.﹣12 B.12 C.﹣81 D.816.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能7.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)2D.﹣|﹣2|8.如果|x﹣2|+(y+3)2=0,那么y x的值为()A.9 B.﹣9 C.6 D.﹣69.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×10810.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(﹣3)的值为()A.B.C.D.﹣11.绝对值小于3的所有整数的和与积分别是()A.0,﹣2 B.0,0 C.3,2 D.0,212.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元B.130元C.150 元D.160元二.填空题(共6小题,满分24分,每小题4分)13.数学竞赛85分以上的为优秀,以85分为基准简记,例如89分记作+4分,83分记作﹣2分,老师将某班6名同学的成绩记作(单位:分):+9,﹣5,0,+6,﹣4,﹣1,则这6名同学的实际成绩从高到底依次是:.14.比较大小:.(填“>”、“<”或“=”)15.近似数0.0730的有效数字有个.16.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是.17.有一运算程序如下:若输出的值是25,则输入的值可以是.18.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.三.解答题(共6小题,满分54分)19.(8分)12﹣(﹣18)+(﹣7)﹣15.20.(8分)计算:(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣2)3÷4.21.(8分)把下列各数填入相应集合的括号内:+8.5,﹣3,0.3,0,﹣3.4,12,﹣9,4,﹣1.2,﹣2.(1)正数集合:{ …};(2)整数集合:{ …};(3)自然数集合:{ …};(4)负分数集合:{ …}.22.(12分)已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012的值.23.(6分)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B 两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA =|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA =|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA =|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=,如果AB=2,则x的值为.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为.24.(12分)某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存300吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨6元,那么这3天要付多少装卸费?四.解答题(共2小题,满分24分,每小题12分)25.(12分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.26.(12分)如图已知数轴上点A、B分别表示a、b,且|b+6|与(a﹣9)2互为相反数,O 为原点.(1)a=,b=;(2)若将数轴折叠点A与表示﹣10的点重合,则与点B重合的点所表示的数为;(3)若点M、N分别从点A、B同时出发,点M以每秒1个单位长度的速度沿数轴向左匀速运动,点N以每秒2个单位长度的速度沿数轴向右匀速运动,N到点A后立刻原速返回,设运动时间为t(t>0)秒.①点M表示的数是(用含t的代数式表示);②求t为何值时,2MO=MA;③求t为何值时,点M与N相距3个单位长度.参考答案一.选择题1.解:3的相反数是﹣3.故选:A.2.解:A、34=81,43=64,数值不相等;B、﹣42=﹣16,(﹣4)2=16,数值不相等;C、﹣23=(﹣2)3=﹣8,数值相等;D、(﹣2×3)2=36,﹣22×32=﹣36,数轴不相等,故选:C.3.解:绝对值大于3而不大于6的整数有4,5,6,﹣4,﹣5,﹣6共6个.故选:C.4.解:﹣3的相反数是3.故选:C.5.解:(﹣3)4=(﹣3)×(﹣3)×(﹣3)×(﹣3)=81.故选:D.6.解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.7.解:A、﹣(﹣2)=2,是正数,错误;B、|﹣2|=2是正数,错误;C、(﹣2)2=4是正数,错误;D、﹣|﹣2|=﹣2是负数,正确;故选:D.8.解:∵|x﹣2|+(y+3)2=0,∴x=2,y=﹣3.∴原式=(﹣3)2=9.故选:A.9.解:5 300万=5 300×103万美元=5.3×107美元.故选C.10.解:根据题中的新定义得:7⊕(﹣3)==.故选:B.11.解:设这个数为x,则:|x|<3,∴x为0,±1,±2,∴它们的和为0+1﹣1+2﹣2=0;它们的积为0×1×(﹣1)×2×(﹣2)=0.故选:B.12.解:设一件甲商品x元,乙y元,丙z元,根据题意得:①+②得:4x+4y+4z=600,∴x+y+z=150,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:∵以85分为基准简记,∴6名同学的实际成绩为:94,80,85,91,81,84,则这6名同学的实际成绩从高到低依次是:94,91,85,84,81,80.14.解:∵=,∴﹣=.∵(9﹣4)×(9+4)=81﹣80=1>0,9+4>0,∴9﹣4>0,∴﹣>0,即>.故答案为:>.15.解:近似数0.0730的有效数字为7、3、0这3个,故答案为:3.16.解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6,故答案为:2或﹣617.解:根据题意可得:(x+1)2=25,x+1=±5,解得x1=4,x2=﹣6.故答案为4或﹣6.18.解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.三.解答题(共6小题,满分54分)19.解:原式=12+18﹣7﹣15=30﹣22=8.20.解:(1)3×(﹣4)+18÷(﹣6)=﹣12+(﹣3)=﹣15;(2)(﹣2)2×5+(﹣2)3÷4=4×5+(﹣8)÷4=20+(﹣2)=18.21.解:(1)正数集合:{+8.5、0.3、12、4,};(2)整数集合:{0、12、﹣9、﹣2,};(3)自然数集合:{ 0、12,};(4)负分数集合:{﹣3、﹣3.4、﹣1.2,}.故答案为:(1)+8.5、0.3、12、4,;(2)0、12、﹣9、﹣2,;(3)0、12;(4)﹣3、﹣3.4、﹣1.2,22.解:由已知可得,a+b=0,cd=1,x=±2;当x=2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=22﹣(0+1)×2+02011+(﹣1)2012=4﹣2+0+1=3当x=﹣2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=(﹣2)2﹣(0+1)×(﹣2)+02011+(﹣1)2012=4+2+0+1=723.解:(1)综上所述,数轴上A、B两点之间的距离AB=|a﹣b|;(2)数轴上表示2和﹣4的两点A和B之间的距离AB=2﹣(﹣4)=2+4=6;(3)数轴上表示x和﹣2的两点A和B之间的距离AB=|x+2|,如果AB=2,则x的值为0或﹣4;(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为5.故答案为:(1)|a﹣b|;(2)6;(3)|x+2|;0或﹣4;(4)524.解:(1)26+(﹣32)+(﹣15)+34+(﹣38)+(﹣20)=﹣45(吨),答:库里的粮食是减少了45吨;(2)300+45=345(吨),答:3天前库里有粮345吨;(3)(26+|﹣32|+|﹣15|+34+|﹣38|+|﹣20|)×6=165×6=990(元),答:这3天要付990元装卸费.四.解答题(共2小题,满分24分,每小题12分)25.解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.26.解:(1)依题意有|b+6|+(a﹣9)2=0,b+6=0,a﹣9=0,解得a=9,b=﹣6;(2)(9﹣10)÷2=﹣0.5,﹣0.5+6=5.5,﹣0.5+5.5=5.故与点B重合的点所表示的数为5;(3)①点M表示的数是9﹣t;②M在原点右边时,依题意有2(9﹣t)=t,解得t=6;M在原点左边边时,依题意有﹣2(9﹣t)=t,解得t=18.故t为6或18秒时,2MO=MA;③点M与N第一次相遇前,依题意有3t=15﹣3,解得t=4;点M与N第一次相遇后,依题意有3t=15+3,解得t=6;(6+9)÷2=7.5(秒),点M与N第二次相遇前,2(t﹣7.5)﹣(t﹣7.5)=7.5﹣3,解得t=12;点M与N第二次相遇后,2(t﹣7.5)﹣(t﹣7.5)=7.5+3,解得t=18.故t为4或6或12或18秒时,点M与N相距3个单位长度.故答案为:9,﹣6;5.人教版七年级(上)期中模拟数学试卷(含答案)一、选择题(每小题3分,共30分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.0.65×104 3.如图是用五个相同的立方块搭成的几何体,其主视图是()A.B.C.D.4.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=05.下列不是三棱柱展开图的是()A.B.C.D.6.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()米.A.B.C.D.7.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()A.①②B.①③C.①②③D.②③④8.已知x﹣2y=﹣3,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A.﹣6B.48C.﹣36D.189.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R10.用不同的方法将长方体截去一个角,在剩下的各种几何体中,顶点最多的个数以及棱数最少的条数分别为()A.9个,12条B.9个,13条C.10个,12条D.10个,13条二、填空题(每小题3分,共30分)11.比较大小:﹣3﹣1(填“>”“<”或“=”).12.﹣的系数是,次数是.13.A地海拔高度是﹣30米,B地海拔高度是10米,C地海拔高度是﹣10米,A,B,C三地中地势最高的与地势最低的相差米.14.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是.16.若|m﹣2|+(n+1)2=0,则2m+n=.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1,则+(b+c)m﹣m2的值为.18.已知a是两位数,b是一位数,把a直接写在b的前面,就成为一个三位数.这个三位数可表示成.19.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为.20.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有(请填写编号).三、解答题(共40分)21.(16分)计算:(1)16﹣(﹣23)+(﹣49)(2)[﹣+(﹣1)﹣(﹣)]×24(3)26×(﹣3)2+175÷(﹣5)(4)﹣42﹣6×+2×(﹣1)3÷(﹣)22.(7分)(1)合并同类项:﹣3(2m2﹣mn)+4(m2+mn﹣1)(2)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.23.(4分)若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.24.(5分)某天市交警大队的一辆警车在东西街上巡视,警车从钟楼A处出发,规定向东方向为正,向西方向为负,钟楼处为0千米,当天行驶纪录如下:(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最后警车是否回到钟楼A处?若没有,在钟楼A处何方,距钟楼A多远?(2)警车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油才刚好够用?25.(8分)已知数轴上两点A,B对应的数分别为﹣4,8.(1)如图1,如果点P和点Q分别从点A,B同时出发,沿数轴负方向运动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位.①A,B两点之间的距离为.②当P,Q两点相遇时,点P在数轴上对应的数是.③求点P出发多少秒后,与点Q之间相距4个单位长度?(3)如图2,如果点P从点A出发沿数轴的正方向以每秒2个单位的速度运动,点Q从点B出发沿数轴的负方向以每秒6个单位的速度运动,点M从数轴原点O出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP=MQ?参考答案一、选择题1.﹣3的倒数是()A.3B.C.﹣D.﹣3【分析】利用倒数的定义,直接得出结果.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.0.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是用五个相同的立方块搭成的几何体,其主视图是()A.B.C.D.【分析】根据三视图的知识求解.解:从正面看:上边一层最右边有1个正方形,下边一层有3个正方形.故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=0【分析】根据合并同类项法则判断即可.解:A、5x﹣x=4x,错误;B、2x2与2x3不是同类项,不能合并,错误;C、﹣n2﹣n2=﹣2n2,正确;D、a2b与ab2不是同类项,不能合并,错误;故选:C.【点评】此题主要考查了合并同类项知识,正确掌握相关运算法则是解题关键.5.(3分)下列不是三棱柱展开图的是()A.B.C.D.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.解:A、B、D中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.C围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故C不能围成三棱柱.故选:C.【点评】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.6.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()米.A.B.C.D.【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为米,那么依此类推得到第六次后剩下的绳子的长度为米.解:∵1﹣=,∴第2次后剩下的绳子的长度为米;依此类推第六次后剩下的绳子的长度为米.故选:C.【点评】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.7.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()A.①②B.①③C.①②③D.②③④【分析】根据相反数和绝对值的概念进行判断.解:①正确;②若﹣a>a,则2a<0,即a是负数,故②正确;③数轴上原点两侧,且到原点距离相等的数互为相反数;故③错误;④两个负数相互比较,绝对值大的反而小;故④错误;所以正确的结论是①②.故选:A.【点评】理解相反数和绝对值的概念是解答此题的关键.相反数:符号不同,绝对值相等的两个数互为相反数;绝对值:数轴上,一个数到原点的距离叫做这个数的绝对值.8.已知x﹣2y=﹣3,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A.﹣6B.48C.﹣36D.18【分析】把已知等式代入原式计算即可求出值.解:∵x﹣2y=﹣3,∴原式=27+15+6=48,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R【分析】根据数轴判断出a、b两个数之间的距离小于3,然后根据绝对值的性质解答即可.解:∵MN=NP=PR=1,∴a、b两个数之间的距离小于3,∵|a|+|b|=3,∴原点不在a、b两个数之间,即原点不在N或P,∴原点是M或R.故选:A.【点评】本题考查了实数与数轴,准确识图,判断出a、b两个数之间的距离小于3是解题的关键.10.用不同的方法将长方体截去一个角,在剩下的各种几何体中,顶点最多的个数以及棱数最少的条数分别为()A.9个,12条B.9个,13条C.10个,12条D.10个,13条【分析】可考虑三个面切一个小角的情况.解:依题意,剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:因此顶点最多的个数是10,棱数最少的条数是12,故选:C.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.二、填空题(每小题3分,共30分)11.比较大小:﹣3<﹣1(填“>”“<”或“=”).【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:|﹣3|=3,|﹣1|=1,∵3>1,∴﹣3<﹣1.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.﹣的系数是,次数是3.【分析】单项式的系数是指单项式中的数字因数,次数是指所有字母的指数和.解:根据单项式系数和次数的定义可知,﹣的系数是,次数是3.【点评】解答此题的关键是理解单项式的概念,比较简单.注意π属于数字因数.13.A地海拔高度是﹣30米,B地海拔高度是10米,C地海拔高度是﹣10米,A,B,C三地中地势最高的与地势最低的相差40米.【分析】地势最高的与地势最低的相差,即地势最高的海拔高度﹣地势最低的海拔高度.解:10﹣(﹣30)=10+30=40米.答:三地中地势最高的与地势最低的相差40米.【点评】注意A,B,C三地要通过比较,找到地势最高的B地与地势最低A.比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.14.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=6.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.解:根据题意得:n=5,m+1=2,解得:m=1,则m+n=5+1=6.故答案是:6.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是18cm2.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解:正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体为半径为3圆柱体,该圆柱体的左视图为矩形;矩形的两边长分别为3cm和6cm,故矩形的面积为18cm2.故答案为:18cm2.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,考查了学生细心观察能力和计算能力,属于基础题.16.若|m﹣2|+(n+1)2=0,则2m+n=3.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.解:根据题意得,m﹣2=0,n+1=0,解得m=2,n=﹣1,所以,2m+n=3.故答案为:3.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1,则+(b+c)m﹣m2的值为0或﹣2.【分析】a,b互为倒数,即ab=1;c,d互为相反数即c+d=0,m的绝对值为1,m为1或﹣1两种情况,把这些数据整体代入求得结果.解:当m=1时,原式=1+0﹣1=0;当m=﹣1时,原式=﹣1+0﹣1=﹣2.故答案为:0或﹣2.【点评】此题重在考查倒数、相反数、绝对值的意义以及有理数的混合运算等知识点.18.已知a是两位数,b是一位数,把a直接写在b的前面,就成为一个三位数.这个三位数可表示成10a+b.【分析】根据a表示两位数,b表示一位数,把a放在b的左边,相当于把a扩大10倍,从而列出代数式.解:∵a表示两位数,b表示一位数,∴把a放在b的左边组成一个三位数,那么这个三位数可表示为10a+b;故答案为:10a+b.【点评】本题考查了列代数式,正确理解把a放在b的左边组成一个三位数,其中a的变化情况是关键.19.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【分析】该题实际上是求a2≤1且a是整数时,a的值.解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.20.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有②③⑤(请填写编号).【分析】有数轴判断abc的符号和它们绝对值的大小,再判断所给出的式子的符号,写出正确的答案.解:由数轴知b<0<a<c,|a|<|b|<|c|,①b+a+(﹣c)<0,故原式错误;②(﹣a)﹣b+c>0,故正确;③,故正确;④bc﹣a<0,故原式错误;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b,故正确;其中正确的有②③⑤.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,。
2019-2020学年四川省成都市七年级(上)期中数学试卷(附解析)

2019-2020学年四川省成都市七年级(上)期中数学试卷一、选择题(本大题共11小题,共33.0分)1.下列命题中,真命题的个数是(). ①等角对等边; ②两直线平行,内错角相等; ③有两边及一角对应相等的两个三角形全等; ④两条直线被第三条直线所截,同旁内角互补.A. 1个B. 2个C. 3个D. 4个2.下列计算正确的是()A. 3a2−a2=3B. a2⋅a3=a6 C. (a2)3=a6 D. a6÷a2=a33.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A. 5.6×10−1B. 5.6×10−2C. 5.6×10−3D. 0.56×10−14.化简5a⋅(2a2−ab),结果正确的是()A. −10a3−5abB. 10a3−5a2bC. −10a2+5a2bD. −10a3+5a2b5.下列各式中能用平方差公式计算的是()A. (a+3b)(3a−b)B. (3a−b)(3a−b)C. (3a−b)(−3a+b)D. (3a−b)(3a+b)6.下列各组线段中,能组成三角形的是()A. 4,6,10B. 3,6,7C. 5,6,12D. 2,3,67.已知a+b=3,ab=3,则(a+b)2的值等于()2A. 6B. 7C. 8D. 98.下列乘法公式的运用,不正确的是()A. (2a+b)(2a−b)=4a2−b2B. (−2a+3)(3+2a)=9−4a2C. (3−2x)2=4x2+9−12xD. (−1−3x)2=9x2−6x+19.如图,直线l与直线a、b相交,且a//b,∠1=50°,则∠2的度数是()A. 130°B. 50°C. 100°D. 120°10.如图,点E在AD延长线上,下列条件中不能判定BC//AD的是()A. ∠1=∠2B. ∠C=∠CDEC. ∠3=∠4D. ∠C+∠ADC=180°11.如图,直线a//b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为()A. 45°B. 35°C. 30°D. 25°二、填空题(本大题共9小题,共32.0分)12.若a m=2,a n=4,则a m+n=______.13.已知m+2n=2,m−2n=2,则m2−4n2=______.14.x2−4x+k是完全平方式,则k=______.15.如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别在M、N的位置上,EM与BC的交点为G,若∠EFG=65°,则∠2=______.16.已知:3m=2,9n=5,则33m−2n=______.17.若a−b=2,则a2−b2−4b=______.18.已知a2−2(k−1)ab+9b2是一个完全平方式,那么k=______ .19.设a,b,c为△ABC的三边,化简|a−b+c|−|a+b−c|−|a−b−c|=______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论是______ .三、计算题(本大题共1小题,共10.0分)21.计算:(1)(−12)0+|3−π|+(13)−2.(2)(x+3)(x−3)−(x−2)2.四、解答题(本大题共8小题,共74.0分)22.计算:(1)(a+3)2−(a+2)(a−1);(2)(15x2y−10xy2)÷5xy.23.如图,直线AB//CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.24.如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG//AB.请把证明的过程填写完整.证明:∵AD⊥BC,EF⊥BC(______),∴∠EFB=∠ADB=90°(垂直的定义)∴EF//______(______)∴∠1=______(______)又∵∠1=∠2(已知)∴______(______)∴DG//AB(______)25.如图,在△ABC中,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=3.5cm,BD=4.5cm.(1)说明△AED≌△ACD的理由;(2)求线段BC的长.26.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.27.乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是______(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是______,长是______,面积是______(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:______(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n−p)(2m−n+p)28.已知:AB//CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.29.如图,在△ABC中,AB=AC,∠B=30°,点D从点B出发,沿B→C方向运动到C(D不与B、C重合),连接AD,作∠ADE=30°,DE交线段AC于E.(1)在点D的运动过程中,若∠BDA=100°,求∠DEC的大小;(2)在点D的运动过程中,若AB=DC,请证明△ABD≌△DCE;(3)若BC=6cm,点D的运动速度是1cm/s,运动时间为t(s).在点D的运动过程中,是否存在这样的t,使得△ADE的形状是直角三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】本题考查命题与定义,掌握平行线的性质、平行公理及推论,全等三角形判定等知识点是解答此题的关键.【解答】解:解:①等角对等边,是真命题;②两直线平行,内错角相等,是真命题;③不符合全等三角形判定定理,是假命题;④两条平行直线被第三条直线所截,同旁内角互补,所以④是假命题.所以真命题有2个.故选B.2.【答案】C【解析】解:A、3a2−a2=2a2,故此选项错误;B、a2⋅a3=a5,故此选项错误;C、(a2)3=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.3.【答案】B【解析】解:将0.056用科学记数法表示为5.6×10−2,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:5a⋅(2a2−ab)=10a3−5a2b.故选B.5.【答案】D【解析】解:A、不符合两个数的和与这两个数的差相乘,不能用平方差公式,故本选项错误;B、原式=(3a−b)2,故本选项错误;C、原式=−(3a−b)2,故本选项错误;D、符合平方差公式,故本选项正确.故选D.根据平方差公式对各选项进行逐一计算即可.本题考查的是平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解答此题的关键.6.【答案】B【解析】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选:B.三角形的任意两边之和都大于第三边,根据以上定理逐个判断即可.本题考查了对三角形三边关系定理的应用,能熟记三角形三边关系定理的内容是解此题的关键.7.【答案】D【解析】解:∵a+b=3,∴(a+b)2=32=9.故选:D.利用整体代入的方法计算.本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2=a2±2ab+b2.8.【答案】D【解析】解:A选项运用平方差公式(2a+b)(2a−b)=(2a)2−b2=4a2−b2;B选项运用平方差公式(−2a+3)(3+2a)=32−(2a)2=9−4a2;C选项是运用了完全平方公式计算正确;D选项运用完全平方公式计算(−1−3x)2=(1+3x)2=1+6x+9x2,所以D选项错误.故选:D.A选项运用了平方差公式,计算正确;B选项运用了平方差公式,计算正确;C选项运用了完全平方公式,计算正确;D选项运用了完全平方公式(−1−3x)2=(1+3x)2=1+6x+9x2,所以原题计算错误.本题主要考查了平方差公式和完全平方公式,解决此类问题要熟知两个公式的形式:平方差是两数的和与两数的差的乘积等于两数的平方差,完全平方公式是两数的和或差的平方等于两数的平方和加上或减去这两数的乘积的2倍(首平方,尾平方,2倍在中央,符号看前方).9.【答案】B【解析】解:如图,∠3=∠1=50°,∵a//b,∴∠2=∠3=50°.故选:B.根据对顶角相等求出∠3,再根据两直线平行,同位角相等求解即可.本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.10.【答案】A【解析】【分析】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.分别利用同旁内角互补两直线平行,内错角相等两直线平行进行判断,即可得出答案.【解答】解:A、∵∠1=∠2,∴AB//CD,本选项符合题意;B、∵∠C=∠CDE,∴BC//AD,本选项不符合题意;C、∵∠3=∠4,∴BC//AD,本选项不符合题意;D、∵∠C+∠ADC=180°,∴AD//BC,本选项不符合题意.故选:A.11.【答案】C【解析】解:∵a//b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.12.【答案】8【解析】解:a m+n=a m⋅a n=2×4=8,故答案为:8.因为a m和a n是同底数的幂,所以根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加解答即可.此题主要考查了同底数幂的乘法,此题逆用了同底数幂的乘法法则,是考试中经常出现的题目类型.13.【答案】4【解析】解:∵m+2n=2,m−2n=2,∴m2−4n2=(m+2n)(m−2n)=2×2=4.故答案为:4.原式利用平方差公式分解,把各自的值代入计算即可求出值.本题考查平方差公式,掌握平方差公式的结构特征是正确应用的前提.14.【答案】4【解析】解:∵x2−4x+k是完全平方式,∴k=22=4,故答案为:4利用完全平方公式的结构特征判断即可求出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.【答案】130°【解析】【分析】本题考查了两直线平行,内错角相等,同旁内角互补的性质,以及翻折变换的性质,熟记各性质是解题的关键.据两直线平行,内错角相等求出∠3,再根据翻折的性质以及平角等于180°,求出∠1,然后根据两直线平行,同旁内角互补,列式计算即可得解.【解答】解:长方形纸片ABCD的边AD//BC,∴∠3=∠EFG=65°,根据翻折的性质,可得∠1=180°−2∠3=180°−2×65°=50°,又∵AD//BC,∴∠2=180°−∠1=180°−50°=130°.故答案为:130°.16.【答案】85【解析】解:∵3m=2,9n=32n=5,∴33m−2n=(3m)3÷32n=23÷5=8.5故答案为:8.5直接利用同底数幂的除法运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的除法运算以及幂的乘方运算,正确将原式变形是解题关键.17.【答案】4【解析】解:∵a−b=2∴原式=(a+b)(a−b)−4b=2(a+b)−4b=2a−2b=2(a−b)=4故答案为:4先将多项式因式分解,然后再代入求值.本题考查因式分解,涉及平方差公式,代入求值等知识.18.【答案】4或−2【解析】解:∵a2−2(k−1)ab+9b2=a2±6ab+(3b)2,∴−2(k−1)=±6,解得k=4或−2,故答案为:4或−2.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.19.【答案】a−3b+c【解析】解:∵a,b,c为△ABC的三边,∴a−b+c>0,a+b−c>0,a−b−c<0,∴|a−b+c|−|a+b−c|−|a−b−c|=a−b+c−(a+b−c)+(a−b−c)=a−b+c−a−b+c+a−b−c=a−3b+c.故答案为:a−3b+c.直接利用三角形三边关系进而化简得出答案.此题主要考查了三角形三边关系以及绝对值的性质,正确化简绝对值是解题关键.20.【答案】①②③④【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF//AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△BDF中,{∠C=∠CBFCD=BD∠EDC=∠FDB,∴△CDE≌△BDF(ASA),∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确;故答案为①②③④.21.【答案】解:(1)原式=1+π−3+9=7+π.(2)原式=x2−9−(x2−4x+4)=x2−9−x2+4x−4=4x−13.【解析】(1)利用零指数幂、负整数指数幂法则,绝对值的意义计算即可得到结果;(2)根据平方差公式和完全平方公式计算即可得到结果.本题考查了实数和整式的运算,平方差公式和完全平方公式,解答本题的关键是明确它们各自的计算方法.22.【答案】解:(1)(a+3)2−(a+2)(a−1)=(a2+6a+9)−(a2−a+2a−2)=a2+6a+9−a2+a−2a+2=5a+11;(2)(15x2y−10xy2)÷5xy=3x−2y.【解析】(1)先根据完全平方公式和多项式乘以多项式法则算乘法,再合并同类项即可;(2)根据多项式除以单项式法则求出即可.本题考查了完全平方公式,多项式乘以多项式法则,多项式除以单项式法则,整式的混合运算等知识点,能正确根据知识点进行化简是解此题的关键.23.【答案】解:∵AB//CD,∠1=68°,∴∠1=∠QPA=68°.∵PM⊥EF,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【解析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.24.【答案】已知AD同位角相等,两直线平行∠3两直线平行,同位角相等∠2=∠3等量代换内错角相等,两直线平行【解析】解:证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义)∴EF//AD(同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴DG//AB(内错角相等,两直线平行)故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;根据三角形内角和定理以及平行线的性质即可求出答案.本题考查三角形的综合问题,解题的关键是熟练运用三角形内角和定理以及平行线的性质与判定,本题属于基础题型.25.【答案】(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD;在△ADE和△ADC中,{AE=AC∠EAD=∠CAD AD=AD,∴△ADE≌△ADC(SAS);(2)解:由(1)知,△ADE≌△ADC,∴DE=DC(全等三角形的对应边相等),∴BC=BD+DC=BD+DE=4.5+3.5=8(cm).【解析】(1)根据角平分线的意义知∠BAD=∠CAD,又因为AE=AC,AD=AD,所以根据三角形的判定定理SAS易证得△AED≌△ACD;(2)利用(1)的结果,根据全等三角形的性质:对应边相等,知CD=DE,而BC=BD+DC,可求BC的长.本题考查全等三角形的判定与性质.解答此题时,充分利用了角平分线的意义.26.【答案】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB−∠DCB,∠BCE=∠DCE−∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,{AC=BC∠ACD=∠BCE CD=CE∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,AD=BE,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.【解析】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB−∠DCB,∠BCE=∠DCE−∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS);(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,AD=BE,可得BE=BF,从而可求出∠BEF的度数.27.【答案】(1)a2−b2;(2)a−b;a+b;(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)(2m+n−p)(2m−n+p)=(2m)2−(n−p)2=4m2−(n2−2np+p2)=4m2−n2+2np−p2【解析】解:(1)由图可得,阴影部分的面积=a2−b2;故答案为:a2−b2;(2)由图可得,矩形的宽是a−b,长是a+b,面积是(a+b)(a−b);故答案为:a−b,a+b,(a+b)(a−b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a−b)=a2−b2;故答案为:(a+b)(a−b)=a2−b2;(4)(2m+n−p)(2m−n+p)=(2m)2−(n−p)2=4m2−(n2−2np+p2)=4m2−n2+2np−p2.(1)由图形的面积关系即可得出结论;(2)由图形即可得到长方形的长,宽以及面积;(3)依据两图的阴影部分面积相等,可以得到乘法公式;(4)依据平方差公式以及完全平方公式,即可得到计算结果.本题考查了平方差公式的几何背景,此类题目,关键在于表示出阴影部分的面积,然后根据阴影部分面积相等求解.28.【答案】解:(1)①∵AB//CD,∴∠1=∠3,∵∠1=∠2,∠3=∠4,∴∠2=∠4=36°;②位置关系是:EM//FN.理由:由①知,∠1=∠3=∠2=∠4,∴∠MEF=∠EFN=180°−2∠1,∴∠MEF=∠EFN∴EM//FN(内错角相等,两直线平行)(2)关系是:∠EFD=2∠GEH.理由:∵EG平分∠MEF,∴∠MEG=∠GEH+∠HEF①∵EH平分∠AEM,∴∠MEG+∠GEH=∠AEF+∠HEF②由①②可得:∴∠AEF=2∠GEH,∵AB//CD,∴∠AEF=∠EFD,∴∠EFD=2∠GEH.【解析】(1)根据平行线的性质和判定解答即可;(2)利用角平分线的定义和平行线的性质解答即可.此题考查平行线的性质,关键是根据平行线的性质和判定解答.29.【答案】解:(1)∵AB=AC,∠B=30°,∴∠C=∠B=30°,∵∠BDA=100°,∠ADE=30°,∴∠EDC=180°−100°−30°=50°,∴∠DEC=180°−50°−30°=100°;(2)∵∠C=30°,∴∠CED+∠CDE=150°,∵∠ADE=30°,∴∠ADB+∠CDE=150°,∴∠CED=∠ADB,在△ABD和△DCE中,{∠ADB=∠DEC ∠B=∠CAB=DC,∴△ABD≌△DCE(AAS);(3)存在,∵AB=AC,∠B=30°,∴∠BAC=120°,∵BC=6cm,点D的运动速度是1cm/s,运动时间为t(s),∴BD=t,CD=6−t,①如图1,当∠DAE=90,则∠BAD=30°,∴∠BAD=∠B=30°,∴AD=BD=t,∵∠C=30°,∴CD=2AD,即6−t=2t,∴t=2;②如图2,当∠AED=90°时,则∠DAE=60°,∴AD平分∠BAC,∴BD=CD,即t=6−t,∴t=3,综上所述,当t=2或3时,△ADE的形状是直角三角形.【解析】(1)根据等腰三角形的性质得到∠C=∠B=30°,根据已知条件得到∠EDC= 180°−100°−30°=50°,于是得到∠DEC=180°−50°−30°=100°;(2)根据三角形的内角和和平角的定义得到∠CED=∠ADB根据全等三角形的判定定理即可得到结论;(3)根据三角形的内角和得到∠BAC=120°,求得BD=t,CD=6−t,①如图1,当∠DAE=90,则∠BAD=30°,根据直角三角形的性质列方程求得t的值;②如图2,当∠AED=90°时,则∠DAE=60°,根据等腰三角形的性质列方程求得t的值.本题考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,三角形的内角和,正确的作出图形是解题的关键.。
2022-2023学年四川省成都市七年级上学期数学期中测试卷含答案

2022-2023学年七年级(上)数学期中测试题(考试时间120分钟,满分150分)A 卷(100分)一.选择题:(每小题4分,共32分)1.﹣2的相反数是( )A .2B .﹣2C .D .﹣2.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿立方米,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为A .275×102B .2.75×104C .2.75×1012D .27.5×10113.如图所示的物体,从左面看得到的图是( )A .B .C .D .4.下列各式,运算正确的是( )A .5a ﹣3a =2B .2a +3b =5abC .7a +a =7a 2D .10ab 2﹣5b 2a =5ab 2 5.下列各对数中,数值相等的是( )A .23和32B .(﹣2)2和﹣22C .(23)2和223D .﹣(﹣2)和|﹣2|6.代数式 a 5,0,1a ,2ab +6,4a 2a ,﹣m 中,整式共有( )A .3个B .4个C .5个D .6个 7.下列说法中,正确的是( )A .−3aa 24的系数是−34B .﹣42,5,7是多项式﹣42+5﹣7的项C .单项式3223的系数是3,次数是5D .3−2aa 5是二次二项式8.如图五个正方形中各有四个数,各正方形中的四个数之间都有相同的规律,根据此规律,可推测出m 的值为( )A .0B .1C .4D .8二.填空题:(每小题4分,共20分)9.把下列各数分别填入相应的集合:0,﹣3,2.6⋅,﹣0.010010001,﹣814,227,15,300%. 整数集合{ …}; 分数集合{ …};非负整数集合{ …}; 负数集合{ …}.10.若单项式213n a b - 与237m a b -的差是单项式,则()n m -= 。
四川省成都市七年级上学期数学期中考试试卷

四川省成都市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2017七上·东台月考) 已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A . a+b>0B . a>bC . ab<0D . b﹣a>02. (1分)(2019·江北模拟) 截止2019年3月8日,中国科幻电影《流浪地球》的票房约为45.6亿元,成为中国科幻电影的里程碑.其中45.6亿用科学记数法表示为()A . 4.56x108B . 45.6x108C . 4.56x109D . 0.456x10103. (1分) (2017七上·宁波期中) 单项式的()A . 系数是,次数是2次B . 系数是,次数是3次C . 系数是—,次数是2次D . 系数是—,次数是3次4. (1分) (2019七上·翁牛特旗期中) 下列说法错误的是()A . 0是单项式B . xy的次数是二次C . 单项式–a系数是1D . a2b+2是三次二项式5. (1分) (2019七上·翁牛特旗期中) 下列各式说法正确的是A . 3xy与是同类项B . 5xy与6yx是同类项C . 2x与是同类项D . 与是同类项6. (1分) a、b在数轴上的位置如图所示,则下列式子正确的是()A . a+b>0B . a+b>a﹣bC . |a|>|b|D . ab<07. (1分)下列各组数中,互为相反数的是A . 与B . 与C . 与D . 与8. (1分) (2017七上·官渡期末) 下列计算正确的是()A . 3x2+2x3=5x5B . 2x+3y=5xyC . 6x2﹣2x2=4D . 2x2y+3yx2=5x2y9. (1分) (2019七上·东莞期中) 下列计算正确的是()A . -2(a+b)=-2a+bB . -2(a+b)=-2a-bC . -2(a+b)=-2a-2bD . -2(a+b)=-2a-210. (1分) (2017七上·江门月考) 已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测32017的个位数字是()A . 1B . 3C . 7D . 9二、填空题 (共5题;共5分)11. (1分)某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是________克~390克.12. (1分) (2017七上·濮阳期中) 单项式的系数是________,次数是________,13. (1分) (2016七上·仙游期末) 若单项式2 与-是同类项,则m= ________.14. (1分)数轴上A点表示原点左边距离原点3个单位长度、B点在原点右边距离原点2个单位长度,A÷B =________.15. (1分)(2017·双桥模拟) 如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y= x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y= x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是________.三、解答题 (共8题;共18分)16. (2分) (2019七上·禅城期末) 计算:(﹣1)4﹣|﹣3|×[2﹣(﹣3)2]17. (1分) 3(x2-2xy)-[3x2-2y+2(xy+y)],当x= ,y=-3.18. (1分) (2019七上·施秉月考) 下列各数填入相应的大括号里:,,,,,,,,,…①正数集合:{…};②整数集合:{…};③负数集合:{…};④分数集合:{…}.19. (2分) (2017七上·泉州期末) 在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?20. (3分) (2015七下·石城期中) 已知点A(a,0)、B(b,0),且(a+4)2+|b﹣2|=0.(1)求a、b的值.(2)在y轴的正半轴上找一点C,使得三角形ABC的面积是15,求出点C的坐标.(3)过(2)中的点C作直线MN∥x轴,在直线MN上是否存在点D,使得三角形ACD的面积是三角形ABC面积的?若存在,求出点D的坐标;若不存在,请说明理由.21. (3分) (2018七上·吴中月考) 第66路公交车沿东西方向行驶,如果把车站的起点记为0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程如下表(单位:km):序号1234567路程+5-3+10-8-6+12-10(1)该车最后是否回到了车站?(2)该辆车离开出发点最远是多少千米?(3)这辆车在上述过程中一共行驶了多少路程?22. (3分) (2016七上·江苏期末) 如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度L1=________;第二个图案的长度L2=________;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系;(3)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数.23. (3分)如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0。
【6套打包】成都市七年级上册数学期中考试检测试题(含答案解析)

七年级上学期期中考试数学试题(答案)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108 4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣16.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2 7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为.10.比较大小:﹣(﹣3.14)﹣|﹣π|.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).16.(6分)计算:(﹣+﹣)×(﹣24).17.(6分)计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有个★,第六个图形共有个★;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2020个★?23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为;到乙商场购买所需的费用为;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?2018-2019学年吉林省长春市长春新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=9,不符合题意;B、原式=﹣3,不符合题意;C、原式=6x+4,不符合题意;D、原式=a,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.【点评】本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.【分析】根据多项式的次数和项数,同类项,单项式及单项式的系数的定义作答.【解答】解:A、1﹣a﹣ab是二次三项式,正确;B、符合同类项的定义,故是同类项,正确;C、不符合单项式的定义,错误;D、,正确.故选:C.【点评】单项式的系数应包含完整的数字因数,多项式里次数最高项的次数叫做这个多项式的次数,单项式中,所有字母的指数和叫做这个单项式的次数.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.6.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2【分析】根据题意列出代数式解答即可.【解答】解:能射进阳光部分的面积是2ab﹣b2,故选:D.【点评】此题考查了列代数式,弄清题意是解本题的关键.7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)【分析】三个连续的奇数中,最大的一个是2n+3,由于奇数是不能被2除尽的整数,即连续奇数的相邻两项之间相差2,所以中间的那个奇数为2n+3﹣2=2n+1,那么最小的一个是2n+1﹣2=2n﹣1.【解答】解:由题意得:三个连续奇数中最小的一个为:2n+3﹣2﹣2=2n﹣1,故选:A.【点评】本题主要考查了代数式的求值,关键在于熟练掌握奇数的含义,明确相邻两个奇数之间的差为2,属于中考中的常考考点.8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=4﹣1=3;当m=﹣2时,原式=4﹣1=3,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为 3.0.【分析】精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:将这个结果精确到十分位,即对百分位的数字进行四舍五入,是3.0.故答案为3.0.【点评】本题考查了近似数和有效数字,精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的7入了后,百分位的是9,满了10后要进1.10.比较大小:﹣(﹣3.14)>﹣|﹣π|.【分析】根据相反数的性质,绝对值的性质把两个数化简,根据正数大于负数比较即可.【解答】解:﹣(﹣3.14)=3.14,﹣|﹣π|=﹣π.3.14>﹣π,则﹣(﹣3.14)>﹣|﹣π|,故答案为:>.【点评】本题考查的是相反数的概念,实数的大小比较,掌握正数大于负数是解题的关键.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是c ﹣a.【分析】由数轴知c<a<0<b且|a|<|b|,据此得a﹣b>0、c+b<0,再根据绝对值性质去绝对值符号、合并即可得.【解答】解:由数轴知c<a<0<b,且|a|<|b|,则a﹣b>0、c﹣b<0,∴|a﹣b|﹣|c﹣b|=b﹣a+c﹣b=c﹣a,故答案为:c﹣a.【点评】此题考查了数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为1.【分析】根据题意确定出x2+2x的值,原式变形后代入计算即可求出值.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1,则2x2+4x﹣1=2(x2+2x)﹣1=2×1﹣1=2﹣1=1,故答案为:1.【点评】此题考查了代数式求值,解题的关键是熟练掌握整体代入思想的运用.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于﹣3.【分析】先求出各个整数,再相加即可.【解答】解:数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)为﹣3,﹣2,﹣1,0,1,2,和为﹣3﹣2﹣1+0+1+2=﹣3,故答案为:﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能求出符合的所有整数是解此题的关键.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=3.【分析】根据规定运算法则,分别把a、b换成1、(﹣2),然后进行计算即可求解.【解答】解:根据题意,1★(﹣2)=12﹣1×(﹣2)=1+2=3.故答案为:3.【点评】本题考查了有理数的混合运算问题,根据规定新运算代入进行计算即可,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).【分析】先凑成整数,再相加即可求解.【解答】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点评】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.(6分)计算:(﹣+﹣)×(﹣24).【分析】原式利用乘法分配律计算即可求出值.【解答】解:原式=4﹣18+2=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)计算.【分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【解答】解:原式=9﹣60÷4×+2=9﹣60××+2=9﹣1.5+2=9.5.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)【分析】根据绝对值、相反数的意义得到﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,再利用数轴表示出6个数,然后利用数轴上右边的数总比左边的数大确定它们的大小关系.【解答】解:﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,用数轴表示为:用“>”把这些数连接起来:2>+1>﹣1.5>﹣|﹣2.5|>﹣3>﹣(+6).【点评】本题考查了有理数的大小比较:比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.【分析】先去括号,再合并,最后再把x的值代入计算即可.【解答】解:原式=5x2﹣3x+2(2x﹣3)﹣7x2=5x2﹣3x+4x﹣6﹣7x2=﹣2x2+x﹣6,当时,原式===﹣6.【点评】本题考查了整式的化简求值,解题的关键是去括号、合并同类项.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.【分析】首先利用绝对值以及相反数的定义得出x,y的值,再去括号,利用整式加减运算法则合并同类项,将x,y的值代入求出答案.【解答】解:∵x,y互为相反数,且|y﹣3|=0,∴y=3,x=﹣3,2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+3y﹣x+3y2﹣2x3=﹣y2﹣2x+3y,当x=﹣3,y=3时,原式=﹣32﹣2×(﹣3)+3×3=6.【点评】此题主要考查了绝对值的性质以及整式加减运算法则,正确求出x,y 的值是解题关键.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.【分析】(1)a的5倍表示为5a,b的平方表示为b2,然后把它们相减即可;(2)m与n平方的和表示为m2+n2;(3)x、y两数的平方和表示为x2+y2,它们积的2倍表示为2xy,然后把两者相减即可;(4)百位数乘100,十位数乘10,个位数乘1,相加即可得.【解答】解:(1)a的5倍与b的平方的差可表示为5a﹣b2;(2)m的平方与n的平方的和可表示为m2+n2;(3)x、y两数的平方和减去它们积的2倍可表示为x2+y2﹣2xy;(4)此三位数为100a+10b+c.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有13个★,第六个图形共有19个★;(2)第n个图形中有★3n+1个;(3)根据(2)中的结论,第几个图形中有2020个★?【分析】(1)根据题目中的图形,可以得到第四个图形和第六个图形中★的个数;(2)根据题目中的图形,可以得到第n个图形中有★的个数;(3)根据(2)中的结论,可以解答本题.【解答】解:(1)由图可知,第一个图形中有★:1+3×1=4,第二个图形中有★:1+3×2=7,第三个图形中有★:1+3×3=10,故第四个图形中有★:1+3×4=13,第六个图形中有★:1+3×6=19,故答案为:13,19;(2)第一个图形中有★:1+3×1=4,第二个图形中有★:1+3×2=7,第三个图形中有★:1+3×3=10,故第n个图形中有★:1+3×n=3n+1,故答案为:3n+1;(3)设第x个图形中有2020个★,3x+1=2020,解得,x=673,答:第673个图形中有2020个★.【点评】本题考查图形的变化类,解答本题的关键是明确图形中★的个数的变化规律,利用数形结合的思想解答.23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?【分析】(1)根据有理数的加法,可得答案;(2)根据绝对值的意义和有理数的加法可得一共的站数,再乘以1.3可得答案.【解答】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是繁荣路站;(2)(5+2+6+8+3+4+9+8)×1.3=45×1.3=58.5(千米).答:这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【点评】本题考查了正数和负数,根据题意列出算式是解题的关键.24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为(1560+70x)元;到乙商场购买所需的费用为(1920+56x)元;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?【分析】(1)根据题意表示出甲乙两商场的费用即可;(2)计算出甲乙两个商场的费用,比较即可.【解答】解:(1)则到甲商场购买所需的费用为:12×200+70(x﹣12)=(1560+70x)元;到乙商场购买所需的费用为:(12×200+70x)×0.8=(1920+56x)元;故答案为:(1560+70x)元;(1920+56x)元;(2)到甲商场购买所需的费用为:15×200+70×(30﹣15)=4050(元),到乙商场购买所需的费用为:(15×200+70×30)×80%=4080(元),4050元<4080元答:到甲商场购买划算.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.七年级上学期期中考试数学试题(答案)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108 4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣16.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b27.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为.10.比较大小:﹣(﹣3.14)﹣|﹣π|.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).16.(6分)计算:(﹣+﹣)×(﹣24).17.(6分)计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有个★,第六个图形共有个★;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2020个★?23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为;到乙商场购买所需的费用为;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?2018-2019学年吉林省长春市长春新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=9,不符合题意;B、原式=﹣3,不符合题意;C、原式=6x+4,不符合题意;D、原式=a,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.【点评】本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.【分析】根据多项式的次数和项数,同类项,单项式及单项式的系数的定义作答.【解答】解:A、1﹣a﹣ab是二次三项式,正确;B、符合同类项的定义,故是同类项,正确;C、不符合单项式的定义,错误;D、,正确.故选:C.【点评】单项式的系数应包含完整的数字因数,多项式里次数最高项的次数叫做这个多项式的次数,单项式中,所有字母的指数和叫做这个单项式的次数.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.6.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2【分析】根据题意列出代数式解答即可.【解答】解:能射进阳光部分的面积是2ab﹣b2,故选:D.【点评】此题考查了列代数式,弄清题意是解本题的关键.7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)【分析】三个连续的奇数中,最大的一个是2n+3,由于奇数是不能被2除尽的整数,即连续奇数的相邻两项之间相差2,所以中间的那个奇数为2n+3﹣2=2n+1,那么最小的一个是2n+1﹣2=2n﹣1.【解答】解:由题意得:三个连续奇数中最小的一个为:2n+3﹣2﹣2=2n﹣1,故选:A.【点评】本题主要考查了代数式的求值,关键在于熟练掌握奇数的含义,明确相邻两个奇数之间的差为2,属于中考中的常考考点.8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=4﹣1=3;当m=﹣2时,原式=4﹣1=3,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为 3.0.【分析】精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:将这个结果精确到十分位,即对百分位的数字进行四舍五入,是3.0.故答案为3.0.【点评】本题考查了近似数和有效数字,精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的7入了后,百分位的是9,满了10后要进1.10.比较大小:﹣(﹣3.14)>﹣|﹣π|.【分析】根据相反数的性质,绝对值的性质把两个数化简,根据正数大于负数比较即可.【解答】解:﹣(﹣3.14)=3.14,﹣|﹣π|=﹣π.3.14>﹣π,则﹣(﹣3.14)>﹣|﹣π|,故答案为:>.【点评】本题考查的是相反数的概念,实数的大小比较,掌握正数大于负数是解题的关键.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是c ﹣a.【分析】由数轴知c<a<0<b且|a|<|b|,据此得a﹣b>0、c+b<0,再根据绝对值性质去绝对值符号、合并即可得.【解答】解:由数轴知c<a<0<b,且|a|<|b|,则a﹣b>0、c﹣b<0,∴|a﹣b|﹣|c﹣b|=b﹣a+c﹣b=c﹣a,故答案为:c﹣a.【点评】此题考查了数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为1.【分析】根据题意确定出x2+2x的值,原式变形后代入计算即可求出值.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1,则2x2+4x﹣1=2(x2+2x)﹣1=2×1﹣1=2﹣1=1,故答案为:1.【点评】此题考查了代数式求值,解题的关键是熟练掌握整体代入思想的运用.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于﹣3.【分析】先求出各个整数,再相加即可.【解答】解:数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)为﹣3,﹣2,﹣1,0,1,2,和为﹣3﹣2﹣1+0+1+2=﹣3,故答案为:﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能求出符合的所有整数是解此题的关键.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=3.【分析】根据规定运算法则,分别把a、b换成1、(﹣2),然后进行计算即可求解.【解答】解:根据题意,1★(﹣2)=12﹣1×(﹣2)=1+2=3.故答案为:3.【点评】本题考查了有理数的混合运算问题,根据规定新运算代入进行计算即可,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).【分析】先凑成整数,再相加即可求解.【解答】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点评】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.(6分)计算:(﹣+﹣)×(﹣24).【分析】原式利用乘法分配律计算即可求出值.【解答】解:原式=4﹣18+2=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)计算.【分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【解答】解:原式=9﹣60÷4×+2=9﹣60××+2=9﹣1.5+2=9.5.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)【分析】根据绝对值、相反数的意义得到﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,再利用数轴表示出6个数,然后利用数轴上右边的数总比左边的数大确定它们的大小关系.【解答】解:﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,用数轴表示为:用“>”把这些数连接起来:2>+1>﹣1.5>﹣|﹣2.5|>﹣3>﹣(+6).【点评】本题考查了有理数的大小比较:比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.【分析】先去括号,再合并,最后再把x的值代入计算即可.【解答】解:原式=5x2﹣3x+2(2x﹣3)﹣7x2=5x2﹣3x+4x﹣6﹣7x2=﹣2x2+x﹣6,当时,原式===﹣6.【点评】本题考查了整式的化简求值,解题的关键是去括号、合并同类项.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.【分析】首先利用绝对值以及相反数的定义得出x,y的值,再去括号,利用整式加减运算法则合并同类项,将x,y的值代入求出答案.【解答】解:∵x,y互为相反数,且|y﹣3|=0,∴y=3,x=﹣3,2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+3y﹣x+3y2﹣2x3=﹣y2﹣2x+3y,当x=﹣3,y=3时,原式=﹣32﹣2×(﹣3)+3×3=6.【点评】此题主要考查了绝对值的性质以及整式加减运算法则,正确求出x,y 的值是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郫都区七年级(上)期中数学试卷
一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)
1.(3分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()
A.B.C.D.
2.(3分)﹣的倒数是()
A.﹣B.1C.﹣D.
3.(3分)如图,数轴上的点A表示的数为a,则a的相反数等于()
A.﹣2B.2C.D.
4.(3分)单项式﹣23ab2的系数和次数分别为()
A.﹣2,5B.﹣8,3C.﹣8,2D.﹣2,6
5.(3分)比较大小,下列四个式子错误的是()
A.﹣2>﹣3B.|﹣2|<|﹣3|
C.(﹣2)2>(﹣3)2D.|﹣32|=|(﹣3)2|
6.(3分)用一个平面去截正方体,截面图形不可能是()
A.B.
C.D.
7.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()
A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×104
8.(3分)有理数a,b,c在数轴上的位置如图所示,则下列结论正确的是()
A.a+c=0B.a+b>0C.b﹣a>0D.bc<0
9.(3分)下列变形正确的是()
A.﹣(a﹣b)=﹣a﹣b B.﹣a﹣b=﹣(a+b)
C.﹣a+b=﹣(a+b)D.﹣3(a﹣b)=3a+3b
10.(3分)如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()
A.4B.6C.12D.8
二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)
11.(4分)比较大小:|a|0(从“>”、“<”、“=”、“≤”、“≥”中任选一个).12.(4分)数轴上,与表示﹣1的点距离10个单位的数是.
13.(4分)若单项式A的系数为﹣,且与单项式﹣a4y3是同类项,则单项式A为.14.(4分)如图是一个数值转换机,若输入的a值为﹣3,则输出的结果应为.
三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)
15.(12分)计算:
(1)(﹣2)﹣(﹣1)﹣(﹣2)+|﹣5| (2)﹣42+|(﹣3)3﹣3|÷[﹣1×(﹣5)]
16.(6分)化简:2(﹣6a2b+5ab)﹣5(2ab﹣3a2b).
17.(8分)如图,是由10个大小相同的小立方体块搭建的几何体,其中每个小正方体的边长为1厘米.
(1)直接写出这个几何体的表面积:;
(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.(8分)请参照方框中例1、例2的做法,用运算律简便计算.
计算:(1)﹣99×30;(2)×﹣×﹣.
19.(10分)某牛奶厂在一条东西走向的大街上设有O、A、B、C四家特约的经销店,A店位于O店的西面3千米处,B店位于O店的东面1千米处,C店在O店的东面2千米处.(1)请以O为原点,向东的方向为正方向,1个单位长度表示1千米,画一条数轴.在数轴上分别表示出O、A、B、C的位置.
(2)牛奶厂的进货车从O店出发,要把一车牛奶分别送到A、B、C三家经销店,最后回到O店,那么走的最短路程是多少米?
20.(10分)如图,用三种大小不同的五个正方形和一个缺角的长方形拼成长方形ABCD,其中,NH=NG=1cm,设BF=acm.
(1)用含a的代数式表示CE=cm,DE=cm;
(2)求长方形ABCD的周长.(用含a的代数式表示)
B卷
一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)
21.(4分)三个数a=266,b=344,c=622
中,最小的一个是.
22.(4分)如果|m+n+2|+(m﹣3)2=0,那么mn+n m =.
23.(4分)由一些完全相同的小正方体搭成的几何体,分别从它正面和左面看到的几何体的形状图如图所示,组成这个几何体的小正方体的个数最少是.
24.(4分)有理数a,b,c在数轴上对应的三点如图所示:
化简:|c﹣b|﹣|c﹣a﹣1|+|a﹣b+1|=.
25.(4分)已知a1=(1+)(1﹣),a2=(1+)(1﹣),a3=(1+)(1﹣),…,
a n=(1+)(1﹣),S n=a1•a2•a3•…a n,则2S2018=.
二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)
26.(8分)“十一”黄金周期间,某风景区在7天中来旅游的人数变化如下表:(正数表示比前一天多的人数,负数表示比前一天少的人数,单位:万人)
日期1日2日3日4日5日6日7日
人数
变化
+1.6+0.8+0.4﹣0.4﹣0.8+0.22﹣1.
(1)若9月30日来旅游人数记为a,请用a的代数式表示10月5日来旅游的人数;
(2)如果最多一天有来旅游人数5万人,问9月30日来旅游的人数有多少?
27.(10分)如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A,B,C,D把原正方形分割成一些三角形(互相不重叠).
(1)填写下表:
正方形ABCD内点的个数1234…n
分割成的三角形的个数46…
(2)如果原正方形被分割成2018个三角形,此时正方形ABCD内部有多少个点?
(3)上述条件下,正方形又能否被分割成2019个三角形?若能,此时正方形ABCD内部有多少个点?若不能,请说明理由.
(4)综上所述,你有什么发现?(写出一条即可)
28.(12分)认真观察,寻找规律
第1个算式:=;第2个算式:=;第3个算式:=;第4个算式:=;
用你发现的规律解答问题:
(1)第n个算式为:;
(2)计算:;
(3)若+…+=,求n的值.。