桩基高应变完整性检测
高应变低应变桩基检测

高应变低应变桩基检测一、定义根据建筑基桩检测技术规范JGJ106-2003第2.1.6条,低应变:采用低能量瞬态或稳态激励方式在桩顶激励,实测桩顶速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判断的检测方法。
第2.1.7条,高应变:用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。
高大钊版的《土力学与地基基础》关于大小应变的定义大应变:指激励能量足以使桩土之间发生相对位移,使桩产生永久贯入度的动测法小应变:指在激励能量较小,只能激发桩土体系(甚至只有局部)的某种弹性变形,而不能使桩土之间产生相对位移的动测法。
桩达到极限承载力时,即为桩周土达到塑性破坏。
唯有大应变才能使桩产生一定的塑性沉降(贯入度),所测的土阻力才是土的极限阻力;小应变只能测得桩土体系的某些弹性特征值,而土的弹性变形与其强度之间并没有确定的关系。
因此从理论上讲,小应变不能提供确切的单桩极限承载力,只能用于检验桩身质量。
二、何种桩需要检测建筑基桩检测技术规范JGJ106-2003第3.3.3条,单桩承载力和桩身完整性验收抽样检测的受检桩选择宜符合下列规定:1 施工质量有疑问的桩;2 设计方认为重要的桩;3 局部地质条件出现异常的桩;4 施工工艺不同的桩;5 承载力验收检测时适量选择完整性检测中判定的Ⅲ类桩;6 除上述规定外,同类型桩宜均匀随机分布。
解释:对于基桩的检测包括单桩承载力及桩身完整性两个部分,这两个部分要求检测的数量不同。
三、低应变与高应变适用范围低应变:适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
低应变法的理论基础以一维线弹性杆件模型为依据。
因此受检桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比均宜大于5,设计桩身截面宜基本规则。
另外,一维理论要求应力波在桩身中传播时平截面假设成立,所以,对薄壁钢管桩和类似于H型钢桩的异型桩,本方法不适用。
桩基低应变高应变简介

桩基低应变及高应变检测一、定义根据建筑基桩检测技术规范JGJ106-2003第2.1.6条,低应变:采用低能量瞬态或稳态激励方式在桩顶激励,实测桩顶速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判断的检测方法。
第2.1.7条,高应变:用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。
二、何种桩需要检测建筑基桩检测技术规范JGJ106-2003第3.3.3条,单桩承载力和桩身完整性验收抽样检测的受检桩选择宜符合下列规定:1 施工质量有疑问的桩;2 设计方认为重要的桩;3 局部地质条件出现异常的桩;4 施工工艺不同的桩;5 承载力验收检测时适量选择完整性检测中判定的Ⅲ类桩;6 除上述规定外,同类型桩宜均匀随机分布。
解释:对于基桩的检测包括单桩承载力及桩身完整性两个部分,这两个部分要求检测的数量不同。
三、低应变与高应变适用范围低应变:适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
低应变法的理论基础以一维线弹性杆件模型为依据。
因此受检桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比均宜大于5,设计桩身截面宜基本规则。
另外,一维理论要求应力波在桩身中传播时平截面假设成立,所以,对薄壁钢管桩和类似于H型钢桩的异型桩,本方法不适用。
本方法对桩身缺陷程度只做定性判定,尽管利用实测曲线拟合法分析能给出定量的结果,但由于桩的尺寸效应、测试系统的幅频相频响应、高频波的弥散、滤波等造成的实测波形畸变,以及桩侧土阻尼、土阻力和桩身阻尼的耦合影响,曲线拟合法还不能达到精确定量的程度。
对于桩身不同类型的缺陷,低应变测试信号中主要反映出桩身阻抗减小的信息,缺陷性质往往较难区分。
例如,混凝土灌注桩出现的缩颈与局部松散、夹泥、空洞等,只凭测试信号就很难区分。
因此,对缺陷类型进行判定,应结合地质、施工情况综合分析,或采取钻芯、声波透射等其他方法。
桩基检测考核评定标准

附件1:桩基检测考核评定标准桩基检测考核采取检测模拟考核基地现场测试的方式。
基地原型桩考核分为单桩竖向极限承载力检测(高应变法)与桩身完整性检测(低应变法、声波透射法)。
(一)对于单桩极限承载力检测(高应变法)的考核,在给定土层类别前提下达到下列标准的,评定为考核合格。
检测得出的单桩竖向极限承载力误差值<±20%以内的桩数占70%以上,其余桩的最大误差值不超过±30%(极限承载力以静载荷试验为对比标准)。
(二)对于桩身完整性(低应变法、声波透射法)的检测,在给定场地土层类别和桩身混凝土实际强度的前提下,达到下列标准的,评定为考核合格。
1、对于桩身横截面断裂或夹低阻抗异物的面积≥60%、全断面离析和完整桩的判别正确率及桩身完整性类别判别正确率不低于80%,且所测缺陷的位置和完整桩的桩长误差值≤±1m;2、对具有2个缺陷的断面的桩,能判定出最上面的缺陷断面位置,其位置误差值≤±1m;3、对以下三种情况能正确检测其中一种:(1)桩身缩颈或扩颈的桩数判定正确率和位置正确判定率(误差值≤±1m)达到50%以上;(2)对于扩底桩的桩数判定正确率达到50%以上;(3)对于第二缺陷的桩数判定正确率达到30%以上。
基地原型桩考核完毕后,应在当天内提供检测方案、现场检测原始记录、检测报告,检测报告中应有每根桩的实测曲线(未经人为修正),用箭头标注桩身缺陷或异常波形位置,用文字分析说明理由。
(三)对于单桩竖向极限承载力的静载荷检测和单桩钻芯法检测的考核,通过工程桩现场检测进行考核,达到以下标准可评定为考核合格。
1、合理适当的检测方案;2、相应的仪器设备配置;3、现场操作熟练,符合规范要求;4、检测完毕后,应在3天内提交检测方案、现场检测原始记录、检测报告。
桩基检测全部项目经考核全部合格,评定为工程桩检测机构考核合格,颁发考核合格证书。
考核不合格的检测机构应在1周内向市质监站报送书面分析整改报告,经审核通过后,限期2个月进行整改,期间不得承接桩基检测业务,整改完毕后重新申请考核。
高应变桩基检测原理.doc

高应变桩基检测原理
高应变桩基检测原理?以下带来关于高应变桩基检测原理,相关内容供以参考。
高应变桩基检测原理就是往桩顶滞轴向施加一个冲击力,使桩产生足够的贯入度,实测由此产生的桩身质点应力和加速度的响应,通过波动理论分析,判定单桩竖向抗承载力及桩身完整性的检测方法。
用重锤冲击桩顶,使桩~土之间产生足够的相对位移,以充分激发桩周土阻力和桩端支承力.从桩身运动方向来说,有产生向下运动和向上运动之分。
习惯把桩身受压(无论是内力、应力还是应变)看作正的,把桩身受拉看作是负的;把向下运动(不论是位移、速度还是加速度)看作正的,而把向上的运动看作负的。
由于应力波在其沿着桩身的传播过程中将产生十分复杂的透射和反射,因此,有必要把桩身内运动的各种应力波划分为上行波和下行波。
由于下行波的行进方向和规定的正向运动方向一致,在下行波的作用下正的作用力(即压力)将产生正向的运动,而负的作用力(拉力)则产生负向的运动。
上行波则正好相反,上行的压力波(其力的符号为正)将使桩产生负向的运动,而上行波的拉力(力的符号为负)则产生正向的运动。
由于锤击所产生的压力波向下传播,在有桩侧摩阻力或桩截面突然增大处会产生一个压力同波,这一压力回到桩顶时,将使桩顶处的力增加,速度减少。
同
时,下行的压力波在桩截面突然减小处或有负摩阻力处,将产生一个拉力回波。
拉力波返回桩顶时,将使桩顶处的力值减小,速度增加。
掌握这一基本概念就可以在实测的力波曲线和速度曲线中根据两者变化关系来判断桩身的各种情况。
以上是下面为建筑人士收集整理的关于“高应变桩基检测原理”等建筑相关的知识可以登入建设通进行查询。
建筑工程基桩高应变法检测报告

建筑工程基桩高应变法检测报告1.引言基桩是建筑工程中的重要组成部分,其质量状况对整个工程的安全和稳定性起着至关重要的作用。
高应变法是一种常用的基桩检测方法,通过测量基桩顶部的应变变化来评估基桩的质量状况。
本报告旨在对工程中的基桩进行高应变法检测,并对检测结果进行分析和评估。
2.检测方法和仪器本次检测采用了高应变法,并使用了专业的高应变仪器。
具体的检测步骤包括:确定检测点位,安装应变片,连接传感器,进行数据采集。
检测仪器精度高、操作简便,能够实时显示应变变化曲线,并能够自动生成数据报告。
3.检测点位选择根据实际情况,在工程现场选择了10个具有代表性的基桩作为检测点位。
选择的基桩包括不同类型、直径和深度的基桩,能够全面反映工程中的基桩质量状况。
4.检测结果分析对于每个检测点位,我们进行了多次的高应变法检测,并将采集到的数据进行分析和评估。
通过分析,可以得出以下结论:4.1基桩1及基桩2应变变化较小,质量较好。
基桩深度达到设计要求,应变曲线稳定。
4.2基桩3的应变变化较大,可能存在质量问题。
进一步检测发现,该基桩的直径大于设计要求,可能导致基桩质量不稳定。
4.3基桩4的应变曲线存在剧烈波动,可能是由于施工过程中的震动等外部因素导致。
建议进行进一步的检测和评估。
4.4基桩5和基桩6的应变变化较小,质量较好。
但进一步检测发现基桩5的直径略有超过设计要求,需要进一步评估。
4.5基桩7的应变变化较大,可能存在质量问题。
进一步检测发现该基桩在施工过程中出现了偏移,需要进行修复或更换。
4.6基桩8的应变曲线比较平缓,但存在一个突然的应变峰值。
经过检查,该峰值是由于传感器故障导致的,建议更换传感器并重新进行检测。
4.7基桩9和基桩10的应变变化较小,质量良好,符合设计要求。
5.结论综上所述,通过高应变法检测,我们对工程中的基桩质量进行了评估。
其中,基桩1、基桩2、基桩5、基桩6、基桩9和基桩10质量良好,符合设计要求。
基桩高应变检测.

高应变法动力试桩的主要功能 (1)判定单桩竖向抗压承载力(简称单桩承载力)。单桩承载力是指单桩所 具有的承受荷载的能力,其最大的承载能力称为单桩极限承载力。 高应变法判定单桩承载力是桩身结构强度满足轴向荷载的前提下判定地基 土对桩的支承能力。 (2)判定桩身完整性。高应变作用在桩顶的能量大,检测桩的有效深度大。 对预制方桩和预应力管桩接头是否焊缝开裂等缺陷判断优于低应变法;对 等截面桩可以由截面完整系数β定量判定缺陷程度,从而判定缺陷是否影 响桩身结构的承载力。 (3)打入式预制桩的打桩应力监控;桩锤效率、锤击能量的传递检测,为沉 桩工艺、选择锤击设备提供依据。 (4)对桩身侧阻力和端阻力进行估算。
桩侧阻力的反射波: 桩顶受锤击作用,应力波沿桩身传播,遇桩侧土摩 阻力R时将产生上行的压力波和下行的拉力波 。
打桩土阻力的大小显然与桩的竖向承载力高低 有关,桩承载力愈高、打桩土阻力愈强。尽管土 阻力是直接测量的,但土阻力中所包含的静阻力 的具体量值是未知的。因此,通过实测力与实测 速度曲线之差反映的土阻力大小只是桩的竖向承 载力高低的定性表达。
由于x是完全任意的,可以得出如下结论:在桩顶力和速 度时程曲线的2x/c(x<L)时刻,力曲线与速度曲线之间 的差值代表了应力波从桩顶下行至x深度的过程中所受到 的所有土阻力之和,即:
上行为R/2的压力波,经2L/c 时刻到达测点。它对 测点波形影响是,使力值增加,速度值减小,也就是 力和速度波形分开,分开距离在数值上正好是桩侧摩 阻力值。 数值-R/2的下行拉力波将和下行的锤击波F(t)叠加, 传播至桩底后产生反射。
尽管低应变反射波法和高应变法均采用一维应力波理论 分析计算桩—土系统响应,但前者由于桩—土体系变形很小, 一般不考虑土弹簧和土阻尼的非线性问题;而后者除与低应 变反射波法的计算原理、方法一致外,还要着重考虑上弹簧、 甚至是土阻尼的非线性。 因此,利用波动理论计算桩土互作用的土阻力问题显得很 重要。
桩基高应变完整性检测

桩基高应变完整性检测引言基础工程是建筑工程的主要组成部分,地基质量直接关系到整个建筑物的机构安全,直接关系到人民生命财产安全。
桩基础是主要的基础形式之一,随着高层建筑的层高增加,结构体型复杂、层数相差悬殊的建筑以及地下空间的开发利用越来越广泛,桩基础是许多高层建筑的首选或必选基础形式。
而桩基础单桩承载力的测试是保证桩基隐蔽工程的重要保证之一。
而高应变检测结合了低应变检测和静载荷实验的功能,既能检测桩基的完整性,又能检测桩基的承载力,高应变检测方法填充了静载荷实验的缺点。
技术原理高应变检测的目的是检测工程桩的竖向抗压承载力和桩身结构完整性,并对桩基的质量进行评价。
其基本原理是:用重锤冲击桩顶,使桩—土产生足够的相对位移,以充分激发桩周土阻力和桩端承载力,通过安装在桩顶以下转身两侧的力和加速度传感器接收桩的应力波信号,应用应力波理论分析处理力和速度时程曲线,从而判断桩的承载力和评价桩身质量完整性。
由于应力波在其沿着桩身的传播过程中将产生十分复杂的透射和反射,因此,将桩身内运动的各种应力波划分为上行波和下行波。
由于下行波的行进方向和规定的正向运动方向一致,在下行波的作用下,正的作用力(压力)将产生正向的运动,而负的作用力(拉力)将产生负向的运动。
上行波则正好相反,上行的压力波将使桩产生负向的运动,而上行波的拉力则产生正向的运动。
由于锤击所产生的压力波向下传播,在有桩侧摩阻力或桩截面突然增大处会产生一个压力回波,这一压力回波回到桩顶,将使桩顶处的力增加,速度减少。
同时,下行的压力波在桩截面突然减少处或有负摩阻力处,将产生一个拉力回波,将使桩顶处的力减小,速度增加。
通过这一基本概念就可在实测的力波曲线和速度曲线中根据二者变化关系来判断桩身的各种情况。
布置方案图1 高应变动力测桩示意图检测的工作面要求:(1)为确保试验时吹激力的正常传递和提高工作效率,应先凿掉桩顶部的破碎层和软弱混凝土,对灌注桩、桩头严重破损的混凝土预制桩和桩头已出现屈服变形的钢桩,试验前应对桩头进行修复或加固处理。
《基桩高应变法检测》课件

基桩高应变法检测的重要性
提高工程质量
通过基桩高应变法检测,可以及时发现基桩的缺陷和问题,采取相应措施进行加固或修复 ,提高工程质量。
保障安全
基桩是各类工程的基础结构,其承载力和完整性直接关系到整个工程的安全性。通过基桩 高应变法检测,可以确保基桩的安全性和稳定性,防止因基桩问题导致的工程事故。
节约成本
常用的信号处理技术包括快速傅 里叶变换(FFT)、小波变换、 时频分析等,这些技术能够提供 对信号更深入的理解和分析。
Part
03
基桩高应变法检测设备与操作
基桩高应变法检测的设备介绍
基桩高应变法检测设备包括传 感器、数据采集系统、锤击设 备等。
传感器用于采集桩身的应变和 加速度信号,数据采集系统负 责信号的放大、滤波和模数转 换。
基桩高应变法检测的物理原理基于波动理论和动力学理论,通过建立数学模型来描 述基桩的振动响应。
基桩高应变法检测的数学模型
基桩高应变法检测的数学模型基 于波动方程和动力学方程,通过 求解这些方程来预测基桩的振动
响应。
波动方程描述了波动在基桩中的 传播和衰减,而动力学方程描述 了基桩在冲击荷载下的动态响应
THANKS
感谢您的观看
基桩高应变法检测的未来展望
广泛应用
随着基础设施建设的不断发展和 人们对工程质量要求的提高,基 桩高应变法检测将得到更广泛的
应用。
技术创新
未来将不断涌现新的技术创新,推 动基桩高应变法检测技术的持续发 展和进步。
国际化发展
随着国际交流和合作的加强,基桩 高应变法检测技术将得到更广泛的 认可和应用,推动其国际化发展。
智能化技术应用
随着人工智能和机器学习的发展,基 桩高应变法检测将更加智能化,能够 自动识别和判断桩基的完整性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桩基高应变完整性检测
引言
基础工程是建筑工程的主要组成部分,地基质量直接关系到整个建筑物的机构安全,直接关系到人民生命财产安全。
桩基础是主要的基础形式之一,随着高层建筑的层高增加,结构体型复杂、层数相差悬殊的建筑以及地下空间的开发利用越来越广泛,桩基础是许多高层建筑的首选或必选基础形式。
而桩基础单桩承载力的测试是保证桩基隐蔽工程的重要保证之一。
而高应变检测结合了低应变检测和静载荷实验的功能,既能检测桩基的完整性,又能检测桩基的承载力,高应变检测方法填充了静载荷实验的缺点。
技术原理
高应变检测的目的是检测工程桩的竖向抗压承载力和桩身结构完整性,并对桩基的质量进行评价。
其基本原理是:用重锤冲击桩顶,使桩—土产生足够的相对位移,以充分激发桩周土阻力和桩端承载力,通过安装在桩顶以下转身两侧的力和加速度传感器接收桩的应力波信号,应用应力波理论分析处理力和速度时程曲线,从而判断桩的承载力和评价桩身质量完
整性。
由于应力波在其沿着桩身的传播过程中将产生十分复杂的透射和反射,因此,将桩身内运动的各种应力波划分为上行波和下行波。
由于下行波的行进方向和规定的正向运动方向一致,在下行波的作用下,正的作用力(压力)将产生正向的运动,而负的作用力(拉力)将产生负向的运动。
上行波则正好相反,上行的压力波将使桩产生负向的运动,而上行波的拉力则产生正向的运动。
由于锤击所产生的压力波向下传播,在有桩侧摩阻力或桩截面突然增大处会产生一个压力回波,这一压力回波回到桩顶,将使桩顶处的力增加,速度减少。
同时,下行的压力波在桩截面突然减少处或有负摩阻力处,将产生一个拉力回波,将使桩顶处的力减小,速度增加。
通过这一基本概念就可在实测的力波曲线和速度曲线中根据二者变化关系来判断桩身的各种情况。
布置方案
图1 高应变动力测桩示意图
检测的工作面要求:
(1)为确保试验时吹激力的正常传递和提高工作效率,应先凿掉桩顶部的破碎层和软
弱混凝土,对灌注桩、桩头严重破损的混凝土预制桩和桩头已出现屈服变形的钢桩,试验前应对桩头进行修复或加固处理。
(2)桩头顶面应水平、平整,桩头中轴线与桩身轴线应重合,桩头截面积应与原桩身截面积相同,桩头主筋应全部直通至桩顶混凝土保护层下,各主筋应在同一高度上。
(3)桩头应高出桩周土2-3倍桩径,桩周1.2m以内应平整夯实。
(4)传感器必须对称安装在桩顶以下桩身两侧,对测试信号平均时方可消除锤击偏心的影响。
安装的传感器与桩顶的距离一般不小于2D,对大直径桩不得小于1D,以避开桩顶附近复杂应力关系影响。
(5)力传感器中心与加速度器中心应位于同一水平线上,两者间的距离不应大于80mm。
安装好的传感器中心轴应与桩中心轴保持平行。
工程案例
勘察内容:某建筑场地的桩基检测
装置说明:高应变检测设备
勘查结果:打桩时,应力波沿桩身传播,遇桩身有缺陷时,反射为拉力波。
上行拉力波到了测点,使速度波上升,力波下降。
图2中(a)波形表明桩身无缺陷;(b)、(c)波形的2L/c以前速度波位于力波的上面,表明桩身有严重缺陷,该缺陷可能是桩身产生裂缝。
而且,裂缝随锤击数的增加而加大。
图2 桩打入过程实测波形图
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。