【师说】2017届人教版高考数学(文)二轮专题复习练习:课时巩固过关练(十四).doc

合集下载

《师说》2017届高考数学(文)二轮复习高考大题标准练(二)Word版含解析

《师说》2017届高考数学(文)二轮复习高考大题标准练(二)Word版含解析

高考大题标准练(二)满分75分,实战模拟,60分钟拿下高考客观题满分! 姓名:________ 班级:________1.函数f (x )=3sin ( 2x⎭⎫+π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值. 解:(1)f (x )的最小正周期为π.x 0=7π6,y 0=3. (2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0. 于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0; 当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3. 2.(2016·天津卷)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63. (1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.解:(1)设数列{a n }的公比为q .由已知,有1a 1-1a 1q =2a 1q 2, 解得q =2或q =-1.又由S 6=a 1·1-q 61-q=63,知q ≠-1, 所以a 1·1-261-2=63,得a 1=1. 所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1) =12(log 22n -1+log 22n )=n -12, 即{b n }是首项为12,公差为1的等差数列. 设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n=2n (b 1+b 2n )2=2n 2. 3.(2015·北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1 000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2. (2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3. (3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2, 顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6, 顾客同时购买甲和丁的概率可以估计为1001 000=0.1, 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.4.(2016·四川卷如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD . (1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由;(2)证明:平面P AB ⊥平面PBD .(1)解:取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点.理由如下:连接CM ,因为AD ∥BC ,BC =12AD , 所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,所以CM ∥AB .又AB ⊂平面P AB ,CM ⊄平面P AB ,所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,P A ⊥AB ,P A ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交, 所以P A ⊥平面ABCD ,所以P A ⊥BD .因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM , 所以BC ∥MD ,且BC =MD ,所以四边形BCDM 是平行四边形,所以BM =CD =12AD ,所以BD ⊥AB . 又AB ∩AP =A ,所以BD ⊥平面P AB .又BD ⊂平面PBD ,所以平面P AB ⊥平面PBD .5.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为y =-13x +83. 又|OM |=|OP |=22,O 到l 的距离为4105,|PM |=4105,所以△POM 的面积为165. 6.(2015·四川卷)已知函数f (x )=-2x ln x +x 2-2ax +a 2,其中a >0.(1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.(1)解:由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x -1-ln x -a ),所以g ′(x )=2-2x =2(x -1)x. 当x ∈(0,1)时,g ′(x )<0,g (x )单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )单调递增.(2)证明:由f ′(x )=2(x -1-ln x -a )=0,解得a =x -1-ln x .令φ(x )=-2x ln x +x 2-2x (x -1-ln x )+(x -1-ln x )2=(1+ln x )2-2x ln x ,则φ(1)=1>0,φ(e)=2(2-e)<0.于是,存在x 0∈(1,e),使得φ(x 0)=0.令a 0=x 0-1-ln x 0=u (x 0),其中u (x )=x -1-ln x (x ≥1).由u ′(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增. 故0=u (1)<a 0=u (x 0)<u (e)=e -2<1.即a 0∈(0,1).当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0.再由(1)知,f ′(x )在区间(1,+∞)上单调递增,当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0;又当x ∈(0,1]时,f (x )=(x -a 0)2-2x ln x >0.故x ∈(0,+∞)时,f (x )≥0.综上所述,存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.。

【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(三)

【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(三)

过平面区域⎩⎪⎨⎪⎧x -y +2≥0,y +a ≥0,x +y +2≤0,若z,y 满足约束条件⎩⎪⎨⎪⎧y -x ≤1,x +y ≤3,y ≥m ,)答案:C7.(2016·广东惠州二调)已知变量x,y满足⎩⎪⎨⎪⎧x-2y+4≥0,x≤2,x+y-2≥0,则x+y+3x+2的取值范围是()A.⎣⎡⎦⎤2,52 B.⎣⎡⎦⎤54,52C.⎣⎡⎦⎤45,52 D.⎣⎡⎦⎤54,2解析:作出⎩⎪⎨⎪⎧x-2y+4≥0,x≤2,x+y-2≥0所对应的区域(如图阴影),变形目标函数可得x+y+3x+2=x+2+y+1x+2=1+y+1x+2,表示可行域内的点与A(-2,-1)连线的斜率与1的和,由图象可知当直线经过点B(2,0)时,目标函数取最小值为1+0+12+2=54;当直线经过点C(0,2)时,目标函数取最大值为1+2+10+2=52,故答案为⎣⎡⎦⎤54,52答案:B8.(2016·云南师大附中月考)设实数x,y满足⎩⎪⎨⎪⎧x-y-2≤0,x+2y-5≥0,y-2≤0,,则z=yx+xy的取值范围是()A.⎣⎡⎦⎤13,103 B.⎣⎡⎦⎤13,52C.⎣⎡⎦⎤2,52 D.⎣⎡⎦⎤2,103解析:设k=yx,则z=yx+xy=k+1k,作出不等式组对应的平面区域如图.k的几何意义为过原点的直线的斜率.由图象知OA的斜率最大,OC的斜率最小,由⎩⎪⎨⎪⎧x-y-2=0,x+2y-5=0,得若实数x ,y 满足1x 2+1y2=1,则.最小值3+2 2 .最小值62+2y 2)·⎝⎛⎭⎫1x 2+1y 2=1+2+x 2y 2相切时,切点恰为(0,0),故此时=e 5-a ,故a =e 5+1;结合图象可知,M (x ,y )是不等式组⎨⎧0≤x ≤y ≤3,,b 都是正实数,且满足a +b =ab ,即1a +9b =当且仅当a =1+3,b =(如图所示).显然,∴25-2a=b,∴a220(0<a<5),利用二次函数求最值,5)2=4,即a2+b2定义在R上的函数f(x)满足f(4)=若两个正数a,b满足f(2a+b)<1)导函数f′(x)>0,原函数单调递增,<2,画出可行域如图.(2,0)时,k最小,最小值为12.所以所求目标函数的最小值为11.已知x>0,y>0,z>0,x-y+2z=0,则xz+4xz+4z2=1x+4z+4≤18,当且仅当xz=ON的最大值为11.浙江温州十校联合体初考)若直线ax+by=4与不等式组+b的取值范围是__________.由已知不等式组可画出其所表示的平面区域如下图中阴影部分所示,,N(2,1).令直线t=a+b,即;当直线t=a+b过点N时,t有最大值为3,3).,y满足2x+y-3=0,则4y-xy。

【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(十)

【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(十)
课时巩固过关练(十)等差数列 等比数列
一、选择题
1.(2016·河北邯郸月考)等差数列{an}的前n项和记为Sn,三个不同的点A,B,C在直线l上,点O在直线l外,且满足 =a2 +(a7+a12) ,那么S13的值为()
A. B.
C. D.
解析:由三个不同的点A,B,C在直线l上,点O在直线l外,且满足 =a2 +(a7+a12) ,得a2+a7+a12=1.因为{an}为等差数列,所以由等差中项,得3a7=1,a7= ,∴S13=13a7= .故选D.
(2)设an=- ,由(1)令- =- n-2,
∴ 4= n-2.由指数函数的单调性知4=n-2,即n=6.∴- 是数列{an}的第六项,即a6=- .
11.已知数列{an}满足条件a1=t,an+1=2an+1(n∈N*).
(1)判断数列{an+1}(n∈N*)是否是等比数列;
(2)若t=1,令Cn= ,记Tn=C1+C2+C3+…+Cn(n∈N*).求证:①Cn= - ;②Tn<1.
答案:D
2.(2016·云南玉溪一中月考)已知函数f(x)= 把函数g(x)=f(x)-x+1的零点按从小到大的顺序排列成一个数列,该数列的前n项的和为Sn,则S10=()
A.45 B.55
C.210-1 D.29-1
解析:当x≤0时,g(x)=f(x)-x+1=x,故a1=0;当0<x≤1时,有-1<x-1≤0,则f(x)=f(x-1)+1=2(x-1)-1+1=2x-2,g(x)=f(x)-x+1=x-1,故a2=1;当1<x≤2时,有0<x-1≤1,则f(x)=f(x-1)+1=2(x-1)-2+1=2x-3,g(x)=f(x)-x+1=x-2,故a3=2;当2<x≤3时,有1<x-1≤2,则f(x)=f(x-1)+1=2(x-1)-3+1=2x-4,g(x)=f(x)-x+1=x-3,故a4=3;…,以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=2x-(n+2),故数列的前n项构成一个以0为首项,以1为公差的等差数列.故S10= =45,故选A.

【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(一)

【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(一)
C.綈p:对△ABC的任意两个内角α,β,cosα+coБайду номын сангаасβ≤0;真命题
D.綈p:△ABC中存在两个内角α,β,cosα+cosβ≤0;假命题
解析:∵p:对△ABC的任意两个内角α,β,都有cosα+cosβ>0,∴綈p:在△ABC中存在两个内角α,β,有cosα+cosβ≤0;假命题,理由是α+β<180°,α<180°-β,∴cosα>cos(180°-β),∴cosα+cosβ>0,故选D.
答案:D
3.(2016·浙江杭州严州中学一模)已知集合A={x|y=ln(1-2x)},B={x|x2≤x},则∁A∪B(A∩B)等于()
A.(-∞,0) B.
C.(-∞,0)∪ D.
解析:∵集合A={x|y=ln(1-2x)}={x|1-2x>0}= ,B={x|x2≤x}={x|0≤x≤1},∴A∪B={x|x≤1},A∩B= ,∴∁A∪B(A∩B)=(-∞,0)∪ ,故选C.
答案:D
2.(2016·山东泰安统考)已知集合P={y=x2+1},Q={y|y=x2+1},R={x|y=x2+1},M={(x,y)|y=x2+1},N={x|x≥1},则()
A.P=MB.Q=R
C.R=MD.Q=N
解析:集合P只含有一个元素,即函数y=x2+1.集合Q,R,N中的元素全是数,即这三个集合都是数集,集合Q={y|y=x2+1}={y|y≥1},集合R={x|x∈R},集合N={x|x≥1}.集合M的元素是函数y=x2+1图象上所有的点.故选D.
答案:C
4.(2016·河南实验中学期中)命题“若A⊆B,则A=B”与其逆命题、否命题、逆否命题这四个命题中,真命题有()
A.0个B.2个

【师说】2017届高考数学(文)二轮复习 课时巩固过关练(六) Word版含解析

【师说】2017届高考数学(文)二轮复习 课时巩固过关练(六) Word版含解析

课时巩固过关练(六) 导数的简单应用一、选择题1.(2016·广东六校联考)曲线y =ln x -2x 在点(1,-2)处的切线与坐标轴所围成的三角形的面积是( ) A.12 B.34 C .1 D .2解析:由题意得y ′=1x-2,则在点M (1,-2)处的切线斜率k =-1,故切线方程为y +2=-(x -1),即y =-x -1.令x =0,得y =-1;令y =0,得x =-1,∴切线与坐标轴围成三角形的面积S =12×1×1=12,故选A. 答案:A2.(2016·安徽安庆期中)已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=2x 3+x 2f ′(1)+ln x ,则f ′(2)的值等于( )A .-72 B.72C .-7D .7解析:由题意,f ′(x )=6x 2+2xf ′(1)+1x,则f ′(1)=6+2f ′(1)+1, ∴f ′(1)=-7,故f ′(2)=24+2×2×(-7)+12=-72,故选A. 答案:A3.(2016·河北期中)函数f (x )=2x log 2e -2ln x -ax +3的一个极值点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:因为f ′(x )=2x -2x-a ,若函数的一个极值点在区间(1,2)内,则f ′(1)f ′(2)<0,即(-a )(3-a )<0,解得0<a <3,所以选C.答案:C4.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增 ②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减 ③函数y =f (x )在区间(4,5)内单调递增④当x =2时,函数y =f (x )有极小值⑤当x =-12时,函数y =f (x )有极大值. 则上述判断中正确的是( )A .①②B .②③C .③④⑤D .③ 解析:当x ∈(-3,-2)时,f ′(x )<0,f (x )单调递减,①错;当x ∈⎝⎛⎭⎫-12,2时,f ′(x )>0,f (x )单调递增,当x ∈(2,3)时,f ′(x )<0,f (x )单调递减,②错;当x =2时,函数y =f (x )有极大值,④错;当x =-12时,函数y =f (x )无极值,⑤错.故选D. 答案:D5.(2016·山东东营一中期中)设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =x ·f ′(x )的图象的一部分,则f (x )的极大值与极小值分别是( )A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2)解析:由y =x ·f ′(x )的图象知,x ∈(-∞,-2)时,f ′(x )>0;x ∈(-2,2)时,f ′(x )≤0;x ∈(2,+∞)时,f ′(x )>0,∴当x =-2时,f (x )有极大值f (-2);当x =2时,f (x )有极小值f (2),故选C.答案:C二、填空题6.(2015·湖北枣阳一中月考)函数y =1x在x =4处的导数是__________. 解析:∵y ′=-12x 3,∴y ′|x =4=-1243=-116,故答案为-116. 答案:-1167.(2016·四川眉山中学期中改编)设点P 是曲线y =x 3-3x +23上的任意一点,点P 处切线倾斜角为α,则角α的取值范围是__________.解析:∵y ′=3x 2-3≥-3,∴tan α≥- 3. 又0≤α<π,∴0≤α<π2或2π3≤α<π. 则角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π 8.设方程x 3-3x =k 有3个不等的实根,则实数k 的取值范围是__________.解析:设f (x )=x 3-3x ,对函数求导,f ′(x )=3x 2-3=0,x =-1或x =1.当x <-1时,f (x )单调递增;当-1<x <1时,f (x )单调递减;当x >1时,f (x )单调递增,f (-1)=2,f (1)=-2.方程x 3-2x -k 要有三个不等实根,则直线y =k 与f (x )的图象有三个交点,∴-2<k <2,故答案为(-2,2).答案:(-2,2)三、解答题9.(2016·北京海淀期中)已知函数f (x )=13x 3+x 2+ax +1. (1)若曲线y =f (x )在点(0,1)处切线的斜率为-3,求函数f (x )的单调区间;(2)若函数f (x )在区间[-2,a ]上单调递增,求a 的取值范围.解:(1)因为f (0)=1,所以曲线y =f (x )经过点(0,1),又f ′(x )=x 2+2x +a ,曲线y =f (x )在点(0,1)处切线的斜率为-3,所以f ′(0)=a =-3,所以f ′(x )=x 2+2x -3.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-3) -3 (-3,1) 1 (1,+∞) f ′(x ) + 0 - 0 +单调递减区间为(-3,1).(2)因为函数f (x )在区间[-2,a ]上单调递增,所以f ′(x )≥0对x ∈[-2,a ]成立,只要f ′(x )=x 2+2x +a 在[-2,a ]上的最小值大于等于0即可.因为函数f ′(x )=x 2+2x +a 的对称轴为直线x =-1,当-2≤a ≤-1时,f ′(x )在[-2,a ]上的最小值为f ′(a ),解f ′(a )=a 2+3a ≥0,得a ≥0或a ≤-3,所以此种情形不成立;当a >-1时,f ′(x )在[-2,a ]上的最小值为f ′(-1),解f ′(-1)=1-2+a ≥0,得a ≥1,所以a ≥1.综上,实数a 的取值范围是{a |a ≥1}.10.(2016·湖南株洲统测)设函数f (x )=a ln x +b (x 2-3x +2),其中a ,b ∈R .(1)若a =b ,讨论f (x )极值(用a 表示);(2)当a =1,b =-12,函数g (x )=2f (x )-(λ+3)x +2,若x 1,x 2(x 1≠x 2)满足g (x 1)=g (x 2)且x 1+x 2=2x 0,证明:g ′(x 0)≠0.解:(1)函数f (x )的定义域为(0,+∞),∵a =b ,∴f (x )=a ln x +a (x 2-3x +2),∴f ′(x )=a x +a (2x -3)=a (x -1)(2x -1)x. ①a =0时,f (x )=0,所以函数f (x )无极值;②当a >0时,f (x )在⎝⎛⎭⎫0,12和(1,+∞)上单调递增,在⎝⎛⎭⎫12,1上单调递减, ∴f (x )的极大值为f ⎝⎛⎭⎫12=-a ln2+34a ,f (x )的极小值为f (1)=0; ③当a <0时,f (x )在⎝⎛⎭⎫0,12和(1,+∞)上单调递减,在⎝⎛⎭⎫12,1上单调递增, ∴f (x )的极小值为f ⎝⎛⎭⎫12=-a ln2+34a ,f (x )的极大值为f (1)=0. 综上所述:当a =0时,函数f (x )无极值;当a >0时,函数f (x )的极大值为-a ln2+34a ,函数f (x )的极小值为0; 当a <0时,函数f (x )的极小值为-a ln 2+34a ,函数f (x )的极大值为0. (2)g (x )=2ln x -x 2-λx ,g ′(x )=2x -2x -λ.假设结论不成立,则有 ⎩⎪⎨⎪⎧ 2ln x 1-x 21-λx 1=2ln x 2-x 22-λx 2,①x 1+x 2=2x 0,②2x 0-2x 0-λ=0,③由①,得2ln x 1x 2-(x 21-x 22)-λ(x 1-x 2)=0,∴λ=2lnx 1x 2x 1-x 2-2x 0, 由③,得λ=2x 0-2x 0,∴ln x 1x 2x 1-x 2=1x 0,即ln x 1x 2x 1-x 2=2x 1+x 2,即ln x 1x 2=2x 1x 2-2x 1x 2+1④. 令t =x 1x 2,不妨设x 1<x 2,u (t )=ln t -2t -2t +1(0<t <1),则u ′(t )=(t -1)2t (t +1)2>0, ∴u (t )在0<t <1上是增函数,u (t )<u (1)=0,则ln x 1x 2<x 1x 2-2x 1x 2+1, ∴④式不成立,与假设矛盾.∴g ′(x 0)≠0.11.(2016·北京朝阳期末)已知函数f (x )=ax +ln x ,其中a ∈R .(1)若f (x )在区间[1,2]上为增函数,求a 的取值范围;(2)当a =-e 时.①证明:f (x )+2≤0;②试判断方程|f (x )|=ln x x +32是否有实数解,并说明理由. 解:函数f (x )的定义域为x ∈(0,+∞),f ′(x )=a +1x. (1)因为f (x )在区间[1,2]上为增函数,所以f ′(x )≥0在x ∈[1,2]上恒成立,即f ′(x )=a+1x ≥0,a ≥-1x 在x ∈[1,2]上恒成立,则a ≥-12.故a 的取值范围为⎣⎡⎭⎫-12,+∞. (2)当a =-e 时,f (x )=-e x +ln x ,f ′(x )=-e x +1x. ①令f ′(x )=0,得x =1e.令f ′(x )>0,得x ∈⎝⎛⎭⎫0,1e ,所以函数f (x )在⎝⎛⎭⎫0,1e 上单调递增; 令f ′(x )<0,得x ∈⎝⎛⎭⎫1e ,+∞,所以函数f (x )在⎝⎛⎭⎫1e ,+∞上单调递减. 所以f (x )max =f ⎝⎛⎭⎫1e =-e·1e +ln 1e=-2.所以f (x )+2≤0成立. ②由①知,f (x )max =-2,所以|f (x )|≥2.设g (x )=ln x x +32,x ∈(0,+∞),所以g ′(x )=1-ln x x 2. 令g ′(x )=0,得x =e.令g ′(x )>0,得x ∈(0,e),所以函数g (x )在(0,e)上单调递增;令g ′(x )<0,得x ∈(e ,+∞),所以函数g (x )在(e ,+∞)上单调递减.所以g (x )max =g (e)=lne e +32=1e +32<2,即g (x )<2. 所以|f (x )|>g (x ),即|f (x )|>ln x x +32. 所以方程|f (x )|=ln x x +32没有实数解.。

【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(八)

【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(八)

.向右平移π3个单位.向右平移π6个单位5πA .10B .8 C.87 D.47解析:函数y =sin(πx +φ)的周期T =2ππ=2,最大值为1,过点P 作PD ⊥x 轴于D ,则AD 是四分之一个周期,有AD =12,DB =32,DP =1,在Rt △APD 中,tan ∠APD =12;在Rt △BPD 中,tan ∠BPD =32,所以tan ∠APB =tan(∠APD +∠BPD )=12+321-12×32=8.答案:B5.(2016·江东高安段考)如图是函数f (x )=A sin(2x +φ)⎝⎛⎭⎫|φ|≤π2图象的一部分,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝⎛⎭⎫-5π12,π12上是减函数 B .f (x )在⎝⎛⎭⎫π3,5π6上是减函数C .f (x )在⎝⎛⎭⎫-5π12,π12上是增函数 D .f (x )在⎝⎛⎭⎫π3,5π6上是增函数解析:根据题意可知A =2,函数f (x )的周期为π,2a +φ+2b +φ=π,从而有a +b =π2-φ,结合题中条件,可知x 1+x 2=a +b =π2-φ,f (x 1+x 2)=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫π2-φ+φ=2sin(π-φ)=2sin φ=3,结合φ的范围,求得φ=π3,所以f (x )=2sin ⎝⎛⎭⎫2x +π3,结合函数的性质,可知C 是正确的,故选C.答案:C6.(2016·广东惠州二调)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫其中A >0,|φ|<π2的图象如图所示,为了得到g (x )=cos ⎝⎛⎭⎫2x -π2的图象,只需将f (x )的图象( )之间的图象上运动,当△MPN的面积最大时。

【师说】2017届高考数学(文)二轮复习 课时巩固过关练(七) Word版含解析

【师说】2017届高考数学(文)二轮复习 课时巩固过关练(七) Word版含解析

课时巩固过关练(七) 导数的综合应用一、选择题1.设函数f (x )=2x+ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:f ′(x )=-2x 2+1x =x -2x 2, 令f ′(x )=0,则x =2.当x <2时,f ′(x )=-2x 2+1x =x -2x 2<0; 当x >2时,f ′(x )=-2x 2+1x =x -2x 2>0. 即当x <2时,f (x )是单调递减的;当x >2时,f (x )是单调递增的.所以x =2是f (x )的极小值点,故选D.答案:D2.(2015·湖南卷)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数解析:函数f (x )=ln(1+x )-ln(1-x ),函数的定义域为(-1,1),函数f (-x )=ln(1-x )-ln(1+x )=-f (x ),所以函数是奇函数.f ′(x )=11+x +11-x =21-x 2,在(0,1)上f ′(x )>0,所以f (x )在(0,1)上单调递增,故选A.答案:A3.(2015·福建卷)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝⎛⎭⎫1k <1kB .f ⎝⎛⎭⎫1k >1k -1C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>k k -1解析:∵f ′(x )=li m x →0f (x )-f (0)x -0,f ′(x )>k >1,∴f (x )-f (0)x >k >1,即f (x )+1x >k >1, 当x =1k -1时,f ⎝ ⎛⎭⎪⎫1k -1+1>1k -1×k =k k -1,即f ⎝ ⎛⎭⎪⎫1k -1>k k -1-1=1k -1,则f ⎝ ⎛⎭⎪⎫1k -1>1k -1,所以f ⎝ ⎛⎭⎪⎫1k -1<1k -1一定错误.故选C. 答案:C4.(2016·吉林四模)设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R ,有f (-x )+f (x )=x 2,且x ∈(0,+∞)时,f ′(x )>x .若f (2-a )-f (a )≥2-2a ,则实数a 的取值范围为( )A .[1,+∞)B .(-∞,1]C .(-∞,2]D .[2,+∞)解析:∵f (-x )+f (x )=x 2,∴f (x )-12x 2+f (-x )-12x 2=0, 令g (x )=f (x )-12x 2,∵g (-x )+g (x )=f (-x )-12x 2+f (x )-12x 2=0, ∴函数g (x )为奇函数.∵x ∈(0,+∞)时,f ′(x )>x .∴x ∈(0,+∞)时,g ′(x )=f ′(x )-x >0,故函数g (x )在(0,+∞)上是增函数,故函数g (x )在(-∞,0)上也是增函数,由f (0)=0,可得g (x )在R 上是增函数.f (2-a )-f (a )≥2-2a ,等价于f (2-a )-(2-a )22≥f (a )-a 22, 即g (2-a )≥g (a ),∴2-a ≥a ,解得a ≤1,故选B.答案:B5.(2015·新课标全国卷Ⅰ)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1B.⎣⎡⎭⎫-32e ,34 C.⎣⎡⎭⎫32e ,34 D.⎣⎡⎭⎫32e ,1 解析:设g (x )=e x (2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方.因为g ′(x )=e x (2x +1),所以当x <-12时, g ′(x )<0,当x >-12时, g ′(x )>0,所以当x =-12时, (g (x ))min =-2e -12, 当x =0时,g (0)=-1,当x =1时,g (1)=e>0,直线y =ax -a 恒过(1,0),斜率为a ,故-a >g (0)=-1,且g (-1)=-3e -1≤-a -a ,解得32e≤a <1,故选D.答案:D二、填空题6.设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =__________.解析:(1)当a =1时,代入题中不等式显然不恒成立.(2)当a ≠1时,构造函数f (x )=(a -1)x -1,g (x )=x 2-ax -1,由它们都过定点P (0,-1),如图所示.设函数f (x )=(a -1)x -1与x 轴的交点M 坐标为(x 0,0),即0=(a -1)·x 0-1,x 0=1a -1, ∴M ⎝ ⎛⎭⎪⎫1a -1,0.易知a <1时不符合题意,∴a >1. ∵x >0时,f (x )·g (x )≥0,∴g (x )过点M ,即⎝ ⎛⎭⎪⎫1a -12-a a -1-1=0, 解得a =32或a =0(舍去). 答案:327.(2015·安徽卷)设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是__________.(写出所有正确条件的序号)①a =-3,b =-3 ②a =-3,b =2③a =-3,b >2 ④a =0,b =2⑤a =1,b =2.解析:令f (x )=x 3+ax +b ,求导得f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,所以f (x )单调递增,且至少存在一个数使f (x )<0,至少存在一个数使f (x )>0,所以f (x )=x 3+ax +b 必有一个零点,即方程x 3+ax +b =0仅有一根,故④⑤正确;当a <0时,若a =-3,则f ′(x )=3x 2-3=3(x +1)·(x -1),易知,f (x )在(-∞,-1),(1,+∞)上单调递增,在[-1,1]上单调递减,所以f (x )极大值=f (-1)=-1+3+b =b +2,f (x )极小值=f (1)=1-3+b =b -2,要使方程仅有一根,则f (x )极大值=f (-1)=-1+3+b =b +2<0或者f (x )极小值=f (1)=1-3+b =b -2>0,解得b <-2或b >2,故①③正确,所以使得三次方程仅有一个实根的是①③④⑤.答案:①③④⑤8.(2016·河南南阳期中)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x ·g (x )(a >0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52,若数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和大于62,则n 的最小值为__________.解析:∵f ′(x )g (x )>f (x )g ′(x ),∴f ′(x )g (x )-f (x )g ′(x )>0,∴⎝⎛⎭⎫f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0, 从而可得f (x )g (x )=a x 单调递增,从而可得a >1, ∵f (1)g (1)+f (-1)g (-1)=a +a -1=52, ∴a =2.故f (1)g (1)+f (2)g (2)+…+f (n )g (n )=a +a 2+…+a n =2+22+…+2n =2(1-2n )1-2=2n +1-2>62. ∴2n +1>64,即n +1>6,n >5,n ∈N *.∴n min =6.答案:6三、解答题9.已知函数f (x )=ln x +k e k (k 为常数,e =2.718 28……是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间;(3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数.证明:对任意x >0,g (x )<1+e -2.解:(1)由f (x )=ln x +k e x ,得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞), 由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0.又e x >0,所以当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调增区间为(0,1),单调减区间为(1,+∞).(3)因为g (x )=xf ′(x ),所以g (x )=1e x (1-x -x ln x ),x ∈(0,+∞). 由(2)中h (x )=1-x -x ln x ,求导得h ′(x )=-ln x -2=-(ln x -lne -2),所以当x ∈(0,e -2)时, h ′(x )>0,函数h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,函数h (x )单调递减.所以当x ∈(0,+∞)时,h (x )≤h (e -2)=1+e -2.又当x ∈(0,+∞)时,0<1e x <1, 所以当x ∈(0,+∞)时,1e x h (x )<1+e -2,即g (x )<1+e -2. 综上所述,结论成立.10.已知函数f (x )=e x -ax (a 为常数)的图象与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 解:解法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln2.当x <ln2时,f ′(x )<0,f (x )单调递减;当x >ln2时,f ′(x )>0,f (x )单调递增.所以当x =ln2时,f (x )有极小值,且极小值为f (ln2)=e ln2-2ln2=2-ln4,f (x )无极大值.(2)令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1),得g ′(x )=f (x )≥f (ln2)=2-ln4>0,即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)对任意给定的正数c ,取x 0=1c, 由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1cx ,即x <c e x . 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .解法二:(1)同解法一.(2)同解法一.(3)令k =1c(k >0),要使不等式x <c e x 成立,只要e x >kx 成立. 而要使e x >kx 成立,则只需x >ln(kx ),即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立.即对任意c ∈[1,+∞),取x 0=0,当x ∈(x 0,+∞)时,恒有x <c e x .②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x, 所以当x >1时,h ′(x )>0,h (x )在(1,+∞)内单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln2),易知k >ln k ,k >ln2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c, 当x ∈(x 0,+∞)时,恒有x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .解法三:(1)同解法一.(2)同解法一.(3)①若c ≥1,取x 0=0,由(2)的证明过程知e x >2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x ,即x <c e x .②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1,令h ′(x )=0,得x =ln 1c, 当x >ln 1c时,h ′(x )>0,h (x )单调递增. 取x 0=2ln 2c ,h (x 0)=c e2ln 2c -2ln 2c=2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增, 所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0,即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .11.(2016·山东淄博期中)设函数f (x )=12x 2-2ax +(2a -1)ln x ,其中a ∈R . (1)a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)讨论函数y =f (x )的单调性;(3)当a >12时,证明:对∀x ∈(0,2),都有f (x )<0. 解:(1)a =1时,f (x )=12x 2-2x +ln x ,f ′(x )=x -2+1x, ∴f ′(1)=0.又f (1)=-32, ∴曲线y =f (x )在点(1,f (1))处的切线方程为y +32=0. (2)f (x )的定义域为(0,+∞),f ′(x )=x -2a +2a -1x=x 2-2ax +2a -1x=(x -1)[x -(2a -1)]x, 令f ′(x )=0得x =1或x =2a -1,①当2a -1≤0,即a ≤12时,若x ∈(0,1),f ′(x )<0; 若x ∈(1,+∞),f ′(x )>0.②当0<2a -1<1,即12<a <1时,若x ∈(0,2a -1),f ′(x )>0; 若x ∈(2a -1,1),f ′(x )<0;若x ∈(1,+∞),f ′(x )>0.③当2a -1=1,即a =1时,f ′(x )=(x -1)2x≥0. ④当2a -1>1,即a >1时,若x ∈(0,1),f ′(x )>0;若x ∈(1,2a -1),f ′(x )<0;若x ∈(2a -1,+∞),f ′(x )>0.综上所述:当a ≤12时,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1); 当12<a <1时,f (x )的单调递增区间为(0,2a -1)和(1,+∞),单调递减区间为(2a -1,1); 当a =1时,f (x )的单调递增区间为(0,+∞),无单调递减区间;当a >1时,f (x )的单调递增区间为(0,1)和(2a -1,+∞),单调递减区间为(1,2a -1).(3)①当12<a <1时,由(2)知f (x )在(0,2a -1)上单调递增,在(2a -1,1)上单调递减,在(1,2)上单调递增,∴f (x )≤max{f (2a -1),f (2)}.而f (2)=2-4a +(2a -1)ln2=(2a -1)(ln2-2)<0,f (2a -1)=12(2a -1)2-2a (2a -1)+(2a -1)ln(2a -1)= (2a -1)·⎣⎡⎦⎤-a -12+ln (2a -1),记g (a )=-a -12+ln(2a -1), a ∈⎝⎛⎭⎫12,1,g ′(a )=-1+22a -1=-2⎝⎛⎭⎫a -322⎝⎛⎭⎫a -12, 又12<a <1,∴g ′(a )>0. ∴g (a )在a ∈⎝⎛⎭⎫12,1上单调递增.∴当a ∈⎝⎛⎭⎫12,1时,g (a )<g (1)=-32<0, 即-a -12+ln(2a -1)<0成立.又a >12, ∴2a -1>0.∴f (2a -1)<0.∴当12<a <1,x ∈(0,2)时,f (x )<0. ②当a =1时,f (x )在(0,2)上单调递增,∴f (x )<f (2)=ln2-2<0.③当a >1时,由(2)知,f (x )在(0,1)上单调递增,在(1,2a -1)上单调递减,在(2a -1,2)上单调递增.故f (x )在(0,2)上只有一个极大值f (1),∴当x ∈(0,2)时,f (x )≤max{f (1),f (2)}.而f (1)=12-2a =-2⎝⎛⎭⎫a -14<0,f (2)=2-4a +(2a -1)ln2=(2a -1)(ln2-2)<0,∴当a>1,x∈(0,2)时,f(x)<0.时,对∀x∈(0,2),都有f(x)<0. 综合①②③知:当a>12。

【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(十四)

【师说】2017届高考数学(人教版文科)二轮专项训练:课时巩固过关练(十四)

3y=x+b与曲线y=3--2,3]-22,3]:(x-2)2+(y-3)2=1,圆x轴上的动点,则|PM|+答案:A8.已知圆C 1:(x -2cos θ)2+(y -2sin θ)2=1与圆C 2:x 2+y 2=1,在下列说法中: ①对于任意的θ,圆C 1与圆C 2始终相切;②对于任意的θ,圆C 1与圆C 2始终有4条公切线;③直线l :2(m +3)x +3(m +2)y -(2m +5)=0(m ∈R )与圆C 2一定相交于两个不同的点; ④P ,Q 分别为圆C 1与圆C 2上的动点,则|PQ |的最大值为4. 其中正确命题为( ) A .①④ B .①③④ C .②③④ D .①②③④解析:对于①结论是正确的,由圆C 1:(x -2cos θ)2+(y -2sin θ)2=1与圆C 2:x 2+y 2=1可知两圆圆心分别为C 1(2cos θ,2sin θ)与C 2(0,0),半径分别为r 1=1,r 2=1,∴圆心距|C 1C 2|=(2cos θ)2+(2sin θ)2=2,|C 1C 2|=r 1+r 2,故对于任意的θ,圆C 1与圆C 2始终相切.对于②结论是不正确的,由①可知两圆外切,只有3条公切线.对于③结论是正确的,由直线l :2(m +3)x +3(m +2)y -(2m +5)=0可化为m (2x +3y -2)+6x +6y -5=0.解方程组⎩⎪⎨⎪⎧2x +3y -2=0,6x +6y -5=0,得交点M ⎝⎛⎭⎫12,13,则|MO |=⎝⎛⎭⎫122+⎝⎛⎭⎫132=136<1,故点M 在圆C 2内,所以直线l 与圆C 2一定相交于两个不同的点.对于④结论是正确的,如图所示,当P ,Q 两点与公切点共线时距离最大,为|PQ |=2(r 1+r 2)=4.综上,正确的结论是①③④.故选B.答案:B二、填空题 9.(2016·河北邯郸月考)在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为__________.解析:方程表示的是以(1,3)为圆心,10为半径的圆.点E 为圆内一点,因此过点E 的最长的弦是直径(长为210),最短的弦(弦长为25)是与过点E 的直径垂直的弦.所以四边形ABCD 的面积为S =12×210×25=10 2.答案:10 210.(2016·四川绵阳期末)圆C 1的方程是(x -3)2+y 2=425,圆C 2的方程是(x -3-cos θ)2+(y -sin θ)2=125(θ∈R ),过C 2上任意一点P 作圆C 1的两条切线PM ,PN ,切点分别为M ,N ,则∠MPN 的最小正切值是__________.解析:圆C 2:(x -3-cos θ)2+(y -sin θ)2=125(θ∈R ),圆心C 2(3+cos θ,sin θ),半径等于15., ·OM →+ME →·MF →.∵ME ,故正方形ABCD 的边长为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时巩固过关练(十四) 直线与圆一、选择题1.(2016·四川巴蜀中学月考)若直线ax +2y +1=0与直线x +y -2=0互相垂直,则a 的值等于( )A .1B .-13C .-23D .-2解析:由a ×1+2×1=0,得a =-2,故选D. 答案:D2.(2016·广东惠州二调)直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( )A .1B .2C .4D .4 6解析:圆心(1,2),圆心到直线的距离d =|1+4-5+5|5=1,半径r =5,所以截得弦长为2r 2-d 2=2 5 2-12=4.故选C.答案:C3.(2016·上海青浦一模)“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:对于直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0,当a =0时,分别化为x +1=0,-x +y -3=0,此时两条直线不垂直,舍去;当a =-1时,分别化为-3y +1=0,-2x -3=0,此时两条直线相互垂直,因此a =-1满足条件;当a ≠-1,0时,两条直线的斜率分别为-a +13a ,1-a a +1,由于两条直线垂直,可得-a +13a ×1-aa +1=-1,解得a =14或-1(舍去).综上可得:两条直线相互垂直的充要条件为a =14或-1.∴“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的充分而不必要条件.故选A.答案:A4.直线2x -my +1-3m =0,当m 变化时,所有直线都过定点( )A.⎝⎛⎭⎫-12,3B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 解析:直线方程可整理为2x +1-(y +3)m =0, ∴当m 变化时,直线过定点⎝⎛⎭⎫-12,-3.故选D. 答案:D5.(2016·安徽安庆期中)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是( )A.⎣⎡⎦⎤0,43B.⎝⎛⎭⎫0,43 C.⎣⎡⎭⎫0,43 D.⎝⎛⎦⎤0,43 解析:设直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆为圆M ,又圆C 的标准方程为(x -4)2+y 2=1,则圆心C 的坐标为(4,0),半径R =1,如图,若圆M 与圆C 有公共点,则圆M 与圆C 的临界点为圆M 与圆C 的外切点,即等价为圆心C 到直线y =kx -2的距离d ≤R +1=2,即圆心到直线kx -y -2=0的距离d =|4k -2|1+k2≤2,即|2k -1|≤1+k 2,平方得3k 2-4k ≤0,解得0≤k ≤43,故选A.答案:A6.(2016·四川绵阳期末)若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( )A .[1-22,1+22]B .[1-2,3]C .[-1,1+22]D .[1-22,3]解析:曲线方程可化简为(x -2)2+(y -3)2=4(1≤y ≤3),即表示圆心为(2,3),半径为2的半圆,如图,当直线y =x +b 与此半圆相切时须满足圆心(2,3)到直线y =x +b 的距离等于2,即|2-3+b |2=2,解得b =1+22或b =1-2 2.由图可知b =1+22舍去,故b =1-2 2.当直线过(0,3)时,解得b =3,故1-22≤b ≤3,故选D.答案:D7.(2016·湖北一联)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为() A.52-4 B.17-1C.6-2 2 D.17解析:如图,圆C1关于x轴的对称圆的圆心坐标A(2,-3),半径为1,圆C2的圆心坐标(3,4),半径为3.连接AC2,设直线AC2与x轴的交点为P,可知|AC2|=|PC2|+|PC1|.而|PM|+|PN|=|PC2|-3+|PC1|-1=|AC2|-4,即|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即 3-2 2+ 4+3 2-1-3=52-4.故选A.答案:A8.已知圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1,在下列说法中:①对于任意的θ,圆C1与圆C2始终相切;②对于任意的θ,圆C1与圆C2始终有4条公切线;③直线l:2(m+3)x+3(m+2)y-(2m+5)=0(m∈R)与圆C2一定相交于两个不同的点;④P,Q分别为圆C1与圆C2上的动点,则|PQ|的最大值为4.其中正确命题为()A.①④B.①③④C.②③④D.①②③④解析:对于①结论是正确的,由圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1可知两圆圆心分别为C1(2cosθ,2sinθ)与C2(0,0),半径分别为r1=1,r2=1,∴圆心距|C1C2|= 2cosθ 2+ 2sinθ 2=2,|C1C2|=r1+r2,故对于任意的θ,圆C1与圆C2始终相切.对于②结论是不正确的,由①可知两圆外切,只有3条公切线.对于③结论是正确的,由直线l :2(m +3)x +3(m +2)y -(2m +5)=0可化为m (2x +3y -2)+6x +6y -5=0.解方程组⎩⎪⎨⎪⎧2x +3y -2=0,6x +6y -5=0,得交点M ⎝⎛⎭⎫12,13,则|MO |=⎝⎛⎭⎫122+⎝⎛⎭⎫132=136<1,故点M 在圆C 2内,所以直线l 与圆C 2一定相交于两个不同的点.对于④结论是正确的,如图所示,当P ,Q 两点与公切点共线时距离最大,为|PQ |=2(r 1+r 2)=4.综上,正确的结论是①③④.故选B.答案:B 二、填空题9.(2016·河北邯郸月考)在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为__________.解析:方程表示的是以(1,3)为圆心,10为半径的圆.点E 为圆内一点,因此过点E 的最长的弦是直径(长为210),最短的弦(弦长为25)是与过点E 的直径垂直的弦.所以四边形ABCD 的面积为S =12×210×25=10 2.答案:10 210.(2016·四川绵阳期末)圆C 1的方程是(x -3)2+y 2=425,圆C 2的方程是(x -3-cos θ)2+(y -sin θ)2=125(θ∈R ),过C 2上任意一点P 作圆C 1的两条切线PM ,PN ,切点分别为M ,N ,则∠MPN 的最小正切值是__________.解析:圆C 2:(x -3-cos θ)2+(y -sin θ)2=125(θ∈R ),圆心C 2(3+cos θ,sin θ),半径等于15.由题意可知∠MPN 最小时,|PC 1|最大,最大为|C 1C 2|+15=65,∴PM =3625-425=425,∴tan ∠MPC 1=24, ∴tan ∠MPN =2×241-⎝⎛⎭⎫242=427.答案:42711.(2016·贵州遵义一模)如图,已知圆M :(x -3)2+(y -3)2=4,四边形ABCD 为圆M 的内接正方形,E ,F 分别为AB ,AD 的中点,当正方形ABCD 绕圆心M 转动时,ME →·OF →的最大值是__________.解析:由题意可得OF →=OM →+MF →,∴ME →·OF →=ME →·(OM →+MF →)=ME →·OM →+ME →·MF →.∵ME ⊥MF ,∴ME →·MF →=0,∴ME →·OF →=ME →·OM →.由题意可得,圆M 的半径为2,故正方形ABCD 的边长为22,故ME =2,再由OM =32,可得ME →·OM →=2·32·cos 〈ME →,OM →〉=6cos 〈ME →,OM →〉,即ME →·OF →=6cos 〈ME →,OM →〉,故ME →·OF →的最大值为6. 答案:6 三、解答题12.(2016·长沙模拟)已知圆C :x 2+y 2+2x -3=0. (1)求圆的圆心C 的坐标和半径长;(2)直线l 经过坐标原点且不与y 轴重合,l 与圆C 相交于A (x 1,y 1),B (x 2,y 2)两点,求证:1x 1+1x 2为定值;(3)斜率为1的直线m 与圆C 相交于D 、E 两点,求直线m 的方程,使△CDE 的面积最大.解:(1)圆C :x 2+y 2+2x -3=0,配方得(x +1)2+y 2=4, 则圆心O 的坐标为(-1,0),圆的半径长为2; (2)设直线l 的方程为y =kx ,联立方程组⎩⎪⎨⎪⎧x 2+y 2+2x -3=0y =kx ,消去y 得(1+k 2)x 2+2x -3=0,则有:x 1+x 2=-21+k 2,x 1x 2=-31+k 2; 所以1x 1+1x 2=x 1+x 2x 1x 2=23为定值;(3)设直线m 的方程为y =kx +b ,则圆心C 到直线m 的距离d =|b -1|2,所以|DE |=2R 2-d 2=24-d 2,S △CDE =12|DE |·d =4-d 2·d ≤ 4-d 2 +d 22=2,当且仅当d =4-d 2,即d =2时,△CDE 的面积最大, 从而|b -1|2=2,解之得b =3或b =-1,故所求直线方程为x -y +3=0或x -y -1=0.13.(2016·安徽模拟)已知曲线C 的极坐标方程是ρ=2sin θ,设直线l 的参数方程是⎩⎨⎧x =-35t +2y =45t(t 为参数).(1)将曲线C 的极坐标方程转化为直角坐标方程;(2)设直线l 与x 轴的交点是M ,N 为曲线C 上一动点,求|MN |的最大值. 解:(1)曲线C 的极坐标方程可化为:ρ2=2ρsin θ, 又x 2+y 2=ρ2,x =ρcos θ,y =ρsin θ.所以,曲C 的直角坐标方程为:x 2+y 2-2y =0.(2)将直线L 的参数方程化为直角坐标方程得:y =-43(x -2).令y =0得x =2即M 点的坐标为(2,0) 又曲线C 为圆,圆C 的圆心坐标为(0,1) 半径r =1,则|MC |=5, ∴|MN |≤|MC |+r =5+1. ∴|MN |的最大值为5+1.。

相关文档
最新文档