北京市第四中学中考数学冲刺复习 专题训练 1 一元二次方程及解法(一)直接开平方法(无答案)
北京市第四中学中考数学冲刺复习第3章一元一次方程01从算式到方程(无答案)

方法1:
方法2:
〖问题3〗李白街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,问原来有多少斗酒?
例2、已知方程 ,试确定下列各数
,谁是此方程的解?
例3、已知x=3是方程2x +(m-1)x=6的解,求m的值。
3、求方程的解的过程或说明方程无解的过程叫做解方程。
例4、解Hale Waihona Puke 程:4、一元一次方程的有关概念
(1)、只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根。
例如:(1)x2—x-2=0是一元方程,它的根是x1=2,x2=—1;
性质2:等号两边同时乘以同一个数,或除以同一个不为零的数,等号依然成立。
符号表示:a=bac=bc。
例6、判断正误:
例7、用适当的数或整式填空:
(1)如果a+1=1,那么a=.
(2)如果0。6x=2—0.4x,那么x=.
(3)如果13x=12x-2,那么x=.
(4)如果x—1=y-1,那么x=.
(5)如果 ,那么a=。
从算式到方程
一、导入新课
•Why-—为什么要学习方程?
•What—-方程是什么?
•How--怎么学习?
先学习如何解方程,再谈应用
〖问题1 〗汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米. 王家庄到翠湖的路程有多远?
北京中考一元二次方程全章复习

一元二次方程复习22.1 一元二次方程(1)一元二次方程的定义:请你举出几个一元二次方程的例子:一元二次方程的一般形式:。
其中叫二次项,叫一次项,叫常数项,叫二次项系数,叫一次项系数。
想一想:分别找出下列方程中的二次项,一次项,常数项,二次项系数,一次项系数。
⑴x2+10x-900=0 ⑵5x2+10x-2.2=0 ⑶x2-x-56=0⑷4x2=9 ⑸x2+3x=0 ⑹3y2-5y=7做一做:1、将方程3x(x-10)=5(x+2)化成一元二次方程的一般形式,并写出二次项,一次项,常数项,二次项系数,一次项系数。
2、将导语中的方程化成一元二次方程的一般形式,并写出二次项,一次项,常数项,二次项系数,一次项系数。
拓展练习1、如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,如果梯子的顶端下滑1m,则梯子底端滑动多少米?2、有一群蜜蜂,其半数的平方根只飞向茉莉花丛, 留在家里,还有两只去寻找荷花瓣里嗡嗡叫的雄蜂,这两只雄蜂被荷花的香味吸引,傍晚时由于花瓣合拢,飞不出去了,请你告诉我蜂群中有多少只蜜蜂22.1 一元二次方程(2)1、下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.(1)x 2-64=0 (2)3x 2-6=0 (3)x 2-3x=0应用拓展1、要剪一块面积为150cm 2的长方形铁片,使它的长比宽多5cm ,•这块铁片应该怎样剪?2、已知x=2是关于x 的方程1.5x 2-2a=0的解,求式子2a-1的值?22.1一元二次方程的概念和直接开平方法解一元二次方程一元二次方程的一般形式: ,其中二次项是 ,二次项系数是 ,一次项是 ,一次项系数是 , 常数项是 。
叫做一元二次方程的根。
1、判断下列关于x 的方程是否是一元二次方程,若是一元二次方程,请写出它的a 、b 、c① 3x 2=2x-1 ② x 2+x 2=0 ③ x 2=5④ ax 2+bx+c=0 ⑤ (x-2)(x+1)=(x+3)(x-1)2、已知关于x 的方程(m+2)x m +3x+m=0是一元二次方程,求此一元二次方程。
北京市第四中2019年中考数学冲刺复习专题训代数综合问题

代数综合问题初中代数综合题,主要以方程、函数这两部分为要点,所以坚固地掌握方程与不等式的解法、一元二次方程的解法和根的判别式、函数分析式确实定及函数性质等重要基础知识是解好代数综合题的要点.在很多问题中,代数和几何问题交叉在一同,就要交流这些知识之间的内在联系,以数形联合的方法找到解决问题的打破口.今日我们主要介绍三类问题的常看法法:1、整体的想法;2、对于整数根的问题;3、需要数形联合的问题.例 1. 已知对于 x 的方程mx2(3m 1) x 30 .(1)求证 : 无论 m为任何实数 ,此方程总有实数根;(2)若抛物线y mx23m 1 x3与 x 轴交于两个不一样的整数点,且 m 为正整数,试确立此抛物线的分析式;(3)若点 P( x1, y1)与(x1 n, y2 )在()中抛物线上(点、不重Q2P Q 合), 且 y1=y2, 求代数式4 x1212x1n 5n 2 16n 8 的值.例 2.已知:如图,平行于x轴的直线y=a(a≠0)与函数y=x和函数 y 1的图象分别交于点A和点B,又有定点P(2,0).x(1) 若 a>0,且tan POB 1,求线段AB的长;9(2) 在过 A,B 两点且极点在直线y=x 上的抛物线中,已知线段AB 83,且在它的对称轴左侧时, y 跟着 x 的增大而增大,求知足条件的抛物线的分析式;(3) 已知经过 A,B,P 三点的抛物线,平移后能获得y9 x2的图5象,求点 P 到直线 AB的距离.例 3.已知:对于x的一元二次方程:x22mx m240 .(1)求证 : 这个方程有两个不相等的实数根;(2)当抛物线y x22mx m2 4 与x轴的交点位于原点的双侧,且到原点的距离相等时,求此抛物线的分析式;(3)将( 2)中的抛物线在x 轴下方的部分沿x 轴翻折,其他部分保持不变,获得图形C1, 将图形 C1向右平移一个单位 , 得到图形 C2,当直线y=x b (b<0) 与图形 C2恰有两个公共点时,写出 b 的取值范围 .。
2020-2021北京备战中考数学压轴题专题复习—一元二次方程组的综合

2020-2021北京备战中考数学压轴题专题复习—一元二次方程组的综合一、一元二次方程1.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值. 【答案】0.【解析】【分析】 由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解.【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩V === , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1, 则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义. 综上,代数式2216k k k -+-的值为0 【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,2.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A ,B 两个社区,B 社区居民人口数量不超过A 社区居民人口数量的2倍. (1)求A 社区居民人口至少有多少万人?(2)街道工作人员调查A ,B 两个社区居民对“社会主义核心价值观”知晓情况发现:A 社区有1.2万人知晓,B 社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A 社区的知晓人数平均月增长率为m %,B 社区的知晓人数第一个月增长了45m %,第二月在第一个月的基础上又增长了2m %,两个月后,街道居民的知晓率达到92%,求m 的值.【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50.【解析】【分析】(1)设A 社区居民人口有x 万人,根据“B 社区居民人口数量不超过A 社区居民人口数量的2倍”列出不等式求解即可;(2)A 社区的知晓人数+B 社区的知晓人数=7.5×92%,据此列出关于m 的方程并解答.【详解】解:(1)设A 社区居民人口有x 万人,则B 社区有(7.5-x )万人,依题意得:7.5-x ≤2x ,解得x ≥2.5.即A 社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m %)2+1.5×(1+45m %)+1.5×(1+45m %)(1+2m %)=7.5×92%, 解得m =50答:m 的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.3.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.4.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.5.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程;()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.6.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴x=2b a-± ∴x1x 2.7.阅读下面的例题,范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去). ∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0.【答案】x 1=4,x 2=﹣5.【解析】【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可.【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x <10时,原方程化为x 2+x ﹣20=0,解得x 3=4,x 4=﹣5,故原方程的根是x 1=4,x 2=﹣5.【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.8.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.10.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20考点:一元二次方程的应用.11.已知关于x的方程x2-(m+2)x+(2m-1)=0。
北京第四中学九年级数学上册第二十一章《一元二次方程》测试卷(培优专题)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM 2.方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠13.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++= 4.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+= 5.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b 6.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+ 7.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 8.当分式2369x x x --+的值为0时,则x 等于( ) A .3B .0C .3±D .-3 9.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20% 10.不解方程,判断方程23620x x --=的根的情况是( ) A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确 11.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532C .532D .535 12.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++=13.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定 14.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( )A .m ≠1B .m =1C .m ≥1D .m ≠0 15.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题16.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.17.已知12,x x 是一元二次方程21402x mx m -+-=的两个实数根且12111x x +=,则m 的值为______.18.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.19.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a +3β的值为________.20.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.21.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______22.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____.23.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积六十步,只云长阔共十六步,问长多阔几何”.意思是:一块矩形田地的面积为60平方步,只知道它的长与宽共16步,根据题意得,设长为x 步,列出方程_______. 24.若a 是方程210x x ++=的根,则代数式22020a a --的值是________. 25.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________. 26.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.三、解答题27.解方程:(1)()2316x -=(2)22410x x --=(用公式法解)28.已知关于x 的一元二次方程22210x k x k +++=()有两个不相等的实数根. (1)求k 的取值范围;(2)设方程的两个实数根分别为12,x x ,当1k =时,求2212x x +的值. 29.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.30.解方程:22350x x --= (请用两种方法解方程)。
北京第四中学九年级数学上册第二十一章《一元二次方程》测试卷(培优专题)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .4B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.2.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A 51-B 51+C 53+D 21B 解析:B【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论.【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b ,则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0, ∴2)10a a b b +-=(, 解得:152a b -±=,∵a b >0, ∴152a b -+=, ∴当a=1时,251251b +==-, 故选:B .【点睛】 本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.3.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .16B 解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.4.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根A 解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.5.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-B解析:B【分析】根据因式分解法解方程即可;【详解】 ()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.6.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1-D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).7.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2-D 解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.8.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.9.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( )A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5B解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x 2﹣4x ﹣1=0x 2-4x=1x 2-4x+4=1+4(x-2)2=5,故选:B .【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.10.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( ) A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定B解析:B【分析】 根据方程的系数结合根的判别式,可得出△21432k ⎛⎫=-+ ⎪⎝⎭>0,由此即可得出:无论k (k≠1)为何值,该方程总有两个不相等的实数根.【详解】在方程()21210--+=k x kx 中, ∵1a k =-,2b k =-,1c =,∴()()224241b ac k k =-=--- 214302k ⎛⎫=-+> ⎪⎝⎭, ∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”.二、填空题11.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.﹣【分析】由根与系数的关系即可求出答案【详解】解:∵一元二次方程2x2+3x ﹣1=0的两个根是x1x2∴x1x2=﹣故答案为:﹣【点睛】本题考查了根与系数的关系解题的关键是掌握根与系数的关系进行解题解析:﹣12【分析】由根与系数的关系,即可求出答案.【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.13.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.14.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.-1【分析】根据方程的根的判别式得出m 的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m 结合α2+β2=12即可得出关于m 的一元二次方程解之即可得出结论【详解】解:∵关于x 的解析:-1【分析】根据方程的根的判别式,得出m 的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m 2-m ,结合α2+β2=12即可得出关于m 的一元二次方程,解之即可得出结论.【详解】解:∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m 2-m )=-4m+4≥0,解得:m≤1.∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m 2-m ,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m 2-m )=12,即m 2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m 的一元二次方程.15.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.16.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.17.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一 解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.18.已知等腰三角形的边长是方程213360x x -+=的两个根,则这个等腰三角形的周长是______.22【分析】先利用因式分解法求出方程的两个根从而可得等腰三角形的两边长再根据等腰三角形的定义三角形的三边关系定理可得这个等腰三角形的三边长然后利用三角形的周长公式即可得【详解】因式分解得解得等腰三角 解析:22【分析】先利用因式分解法求出方程的两个根,从而可得等腰三角形的两边长,再根据等腰三角形的定义、三角形的三边关系定理可得这个等腰三角形的三边长,然后利用三角形的周长公式即可得.【详解】213360x x -+=,因式分解,得(4)(9)0x x --=,解得124,9x x ==,等腰三角形的边长是方程213360x x -+=的两个根,∴这个等腰三角形的两边长为4,9,(1)当边长为4的边为腰时,这个等腰三角形的三边长为4,4,9,此时449+<,不满足三角形的三边关系定理,舍去;(2)当边长为9的边为腰时,这个等腰三角形的三边长为4,9,9,此时499+>,满足三角形的三边关系定理,则这个等腰三角形的周长为49922++=;综上,这个等腰三角形的周长为22,故答案为:22.【点睛】本题考查了解一元二次方程、等腰三角形的定义、三角形的三边关系定理等知识点,熟练掌握一元二次方程的解法是解题关键.19.如图,将一张矩形纸片ABCD 折叠,使两个顶点A C 、重合,折痕为FG ,若4,8AB BC ==,则线段BF 的长为_________.3【分析】根据折叠性质可得AF=FC 设AF=x则BF=8-x 则根据勾股定理可以得到关于x 的方程解方程得到x 的值后即可得到8-x 即BF 的值【详解】∵将一矩形纸片折叠使两个顶点重合折痕为∴是的垂直平分线解析:3【分析】根据折叠性质可得AF=FC ,设AF=x ,则BF=8-x ,则根据勾股定理可以得到关于x 的方程,解方程得到x 的值后即可得到8-x 即BF 的值 .【详解】∵将一矩形纸片ABCD 折叠,使两个顶点,A C 重合,折痕为FG ,∴FG 是AC 的垂直平分线,∴AF CF =,设AF FC x ==,在Rt ABF ∆中,由勾股定理得:222AB BF AF +=,即()22248x x +-=解得:5x =,即5,853CF BF ==-=,故答案为:3.【点睛】本题考查矩形与折叠的综合运用,综合运用折叠性质、方程思想和勾股定理求解是解题关键.20.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 三、解答题21.商店销售某种商品,每件成本为30元.经市场调研,售价为40元时,可销售200件;售价每增加2元,销售量将减少20件.如果这种商品全部销售完,该商店可盈利2250元,那么该商品每件售价多少元?解析:每件售价为45元【分析】设该商品的单价为x 元,根据题意得到方程,解方程即可求解.【详解】解:设该商品的单价为x 元.根据题意,得()()3020010402250---=⎡⎤⎣⎦x x .解这个方程,得1245x x ==.答:每件售价为45元.【点睛】本题考查一元一次方程的应用,解题的关键是根据利润得到相应的等量关系是解题的关键.22.解方程:2410y y --=.解析:12y =22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 23.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)12x x ==【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =2b a-±,即x 1,x 2 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 24.解方程:(2)(x+1)2=6x+6解析:(1)11x =-,29x =;(2)11x =-,25x =.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(2)289x x ,2228494x x -+=+2(4)25x -=,45x =±,∴11x =-,29x =;(2)()2166x x +=+, ()21(66)0x x +-+=, ()216(1)0x x +-+=, ()()1160++-=x x ,(1)(5)0x x +-=,11x =-, 25x =.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.25.如图,利用22米长的墙为一边,用篱笆围成一个长方形仓库ABCD ,中间用篱笆分割出两个小长方形,在与墙平行的一边要开两扇1米宽的门,总共用去篱笆34米,为了使这个长方形ABCD 的面积为96平方米,求AB 和BC 的长.解析:AB=8米,BC=12米.【分析】设AB 为x 米,然后表示出BC 的长为(36-3x )米,利用矩形的面积计算方法列出方程求解即可.【详解】解:设AB 为x 米,则BC 为(36-3x )米,x (36-3x )=96,解得:x 1=4,x 2=8,当x=4时,36-3x=24>22(不合题意,舍去),当x=8时,36-3x=12.答:AB=8米,BC=12米.【点睛】本题考查了一元二次方程的应用,解题的关键是设出一边的长,并用未知数表示出另一边的长.26.阅读下列材料,解答问题.222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+, 原方程可化为222()m n m n +=+,0mn ,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.解析:x 1=54,x 2=23【分析】 设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,代入后求出mn =0,即可得出(4x -5)(3x -2)=0,求出即可.【详解】解:(4x -5)2+(3x -2)2=(x -3)2,设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,原方程化为:m 2+n 2=(m -n )2,整理得:mn =0,即(4x -5)(3x -2)=0,∴4x -5=0,3x -2=0,∴x 1=54,x 2=23. 【点睛】 本题考查了解一元二次方程,能把一元二次方程转化成(4x -5)(3x -2)=0是解此题的关键.27.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+解析:(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=, 【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=, 整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.28.解方程.(1)230x x +-=. (2)4(21)12x x x -=-.解析:(1)12x x ==.(2)1211,24x x ==-. 【分析】(1)用配方法解即可;(2)先移项然后提取公因式,即可求解.【详解】(1)23+=x x , ∴211344x x ++=+, ∴211324x ⎛⎫+= ⎪⎝⎭,∴12x +=12x x ∴== (2)移项,得4(21)(21)0x x x -+-=,提取公因式,得(21)(41)0x x -+=,210x ∴-=或410x +=,1211,24x x ∴==-. 【点睛】本题考查了一元二次方程的解法,掌握基本解法并熟练进行解题是关键.。
北京市第四中学2017年中考数学冲刺复习 专题训练 3 一元二次方程的解法三公式法和因式分解法 精品

一元二次方程的解法(三)公式法和因式分解法复习:1.直接开平方法:2.配方法:为少犯配方时计算错误,一般这样配方,例如:用配方法解方程:22510x x -+=把二次项系数化为1,得:把常数项移到等号的右边:方程两边同时加上一次项系数一半的平方: 配方,计算要准确:两边开平方:移项:正确写出原方程的解: 一、求根公式法探索:我们来解一般形式的一元二次方程ax 2+bx+c=0(a ≠0)解:因为a ≠0,方程两边都除以a ,得20bcx x a a ++=. 移项,得2bcx x a a +=-. 配方,得2222()()222bbbcx x a a a a +⋅⋅+=-, 即2224()24bb acx a a -+=.因为a ≠0,所以42a >0,当24b ac -<0时,方程无实数根;当24b ac -≥0时,直接开平方,得2b x a +=所以2b x a =-±,即12x x ==一元二次方程ax 2+bx+c=0(a ≠0)法2:4 a 2x 2+4abx +4ac =022a x ()+2·2ax ·b +b 2=b 2-4ac(2ax+b)2= b 2-4ac由以上研究的结果,得到了一元二次方程a 2x +bx +c =0的求根公式:240)x b ac =-≥.利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得 方程的根.这种解方程的方法叫做公式法.例1:用公式法解方程 2341x x =+练习:用公式法解方程:(1)2 1.53x x +=-;(2)2102x -+=;(3)24320x x -+=.例2:解关于x 的方程2210x ax --=;练习:解关于x 的方程2223(1)x mx mx x m ++=+≠;小结:公式法——适用于 的方程.反映了一元二次方程的根与 系数的关系,(1)一元二次方程首先必须要把方程化为一般形式,准确找出各项系数 a 、b 、c ;(2)先求出24b ac ∆=-的值,若240b ac ∆=-≥,则代入公式 .若240b ac ∆=-<,则 ;例3:解方程:25x =二、因式分解法依据:000A B A B ⋅=⇔==或(A 、B 至少一个为0)先因式分解使方程化为两个一次式的乘积等于0的形式,再使两个一 次式分别等于0,从而实现降次;这种解法叫做因式分解法.所有学 过的因式分解方法:提公因式法、公式法、十字相乘法.注意:1??A B A B ⋅=⇒==(不确定A 、B 的值).例4:用因式分解法求解下列方程:(1)(2) 22(4)(52)x x -=-.(3)(2)20x x x -+-=; (4)26x x -=;()()()24 85860x x +-++=()5(2)20x x x -+-=练习:(1)22135-2--244x x x x =+; (2)3(21)42x x x +=+;例5:2(1)24)0x x +-= 2(2)0x()223320x mx m -+=()()224210x a x a a -+++=总结:1. 一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不 为 0,这样的方程叫一元二次方程.一般形式:ax 2+bx+c=0 (a ≠0)2.一元二次方程的解法:(1) 直接开平方法:是以平方根为基础的一种解一元二次方程的方法(2) 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一 元二次方程的方法.用配方法解一元二次方程:ax 2+bx+c=0(a ≠0)的一 般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项, 23p +=即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m)2=n的形式;⑤如果n≥0就可以用两边开平方来求出方程的解;如果n<0,则原方程无解.(3)通过配方推导出来的.一元二次方程的求根公式是x(b2-4ac≥0),步骤是:(1)将方程化为一般形式ax2+bx+c=0;(2)计算代数式b2-4ac的值;(3)当b2-4ac≥0由求根公式写出方程的解,当b2-4ac<0时方程无实根。
北京第四中学中考数学二次函数和几何综合专题

北京第四中学中考数学二次函数和几何综合专题一、二次函数压轴题1.如图,抛物线2y ax bx c =++(0a ≠)交直线AC :443y x =--于点A ,点C 两点,且过点()4,0B ,连接AC ,BC .(1)求此抛物线的表达式与顶点坐标;(2)点P 是第四象限内抛物线上的一个动点,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q .设点P 的横坐标为m ,试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由;(3)若点E 在x 轴上,点F 在抛物线上,是否存在以点B ,C ,E ,F 为顶点的平行四边形?若存在,求点F 的坐标;若不存在,请说明理由.2.如图,抛物线213222y x x =-++与x 轴交于点A B 、,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 的坐标为()0m ,,过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、点B 、点C 的坐标;(2)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究当m 为何值时,四边形CQMD 是平行四边形;(3)在点P 的运动过程中,是否存在点Q ,使BDQ △是以BD 为直角边的直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.3.在数学拓展课上,九(1)班同学根据学习函数的经验,对新函数y=x 2﹣2|x|的图象和性质进行了探究,探究过程如下:(初步尝试)求二次函数y=x 2﹣2x 的顶点坐标及与x 轴的交点坐标;(类比探究)当函数y=x2﹣2|x|时,自变量x的取值范围是全体实数,下表为y与x的几组对应值.x…﹣3﹣52﹣2﹣1012523…y (35)40﹣10﹣10543…①根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请你画出该函数图象的另一部分;②根据画出的函数图象,写出该函数的两条性质.(深入探究)若点M(m,y1)在图象上,且y1≤0,若点N(m+k,y2)也在图象上,且满足y2≥3恒成立,求k的取值范围.4.如图1,点EF在直线l的同一侧,要在直线l上找一点K,使KE与KF的距离之和最小,我们可以作出点E关于l的对称点E′,连接FE′交直线L于点K,则点K即为所求.(1)(实践运用)抛物线y=ax2+bx+c经过点A(﹣1,0)、B(3,0)、C(0,﹣3).如图2.①求该抛物线的解析式;②在抛物线的对称轴上找一点P,使PA+PC的值最小,并求出此时点P的坐标及PA+PC的最小值.(2)(知识拓展)在对称轴上找一点Q,使|QA﹣QC|的值最大,并求出此时点Q的坐标.5.小明在学习函数的过程中遇到这样一个函数:y=[x],若x≥0时,[x]=x2﹣1;若x<0时,x=﹣x+1.小明根据学习函数的经验,对该函数进行了探究.(1)下列关于该函数图像的性质正确的是 ;(填序号)①y 随x 的增大而增大;②该函数图像关于y 轴对称;③当x =0时,函数有最小值为﹣1;④该函数图像不经过第三象限.(2)①在平面直角坐标系xOy 中画出该函数图像;②若关于x 的方程2x +c =[x ]有两个互不相等的实数根,请结合函数图像,直接写出c 的取值范围是 ;(3)若点(a ,b )在函数y =x ﹣3图像上,且﹣12<[a ]≤2,则b 的取值范围是 .6.已知抛物线2:23G y mx mx =--有最低点为F .(1)当抛物线经过点E (-1,3)时,①求抛物线的解析式;②点M 是直线EF 下方抛物线上的一动点,过点M 作平行于y 轴的直线,与直线EF 交于点N ,求线段MN 长度的最大值;(2)将抛物线G 向右平移m 个单位得到抛物线1G .经过探究发现,随着m 的变化,抛物线1G 顶点的纵坐标y 和横坐标x 之间存在一个函数,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H ,抛物线G 与函数H 的交点为P ,请结合图象求出点P 的纵坐标的取值范围.7.综合与探究.如图,在平面直角坐标系中,抛物线y =﹣x 2﹣3x +4与x 轴分别交于点A 和点B (点A 在点B 的左侧),交y 轴于点C .点P 是线段OA 上的一个动点,沿OA 以每秒1个单位长度的速度由点O 向点A 运动,过点P 作DP ⊥x 轴,交抛物线于点D ,交直线AC 于点E ,连接BE .(1)求直线AC 的表达式;(2)在点P 运动过程中,运动时间为何值时,EC =ED ?(3)在点P 运动过程中,△EBP 的周长是否存在最小值?若存在,求出此时点P 的坐标;若不存在,请说明理由.8.已知抛物线()2n n n y x a b =--+(n 为正整数,且120n a a a ≤<<<)与x 轴的交点为(0,0)A 和()1,0,2n n n n A c c c -=+.当1n =时,第1条抛物线()2111=--+y x a b 与x 轴的交点为(0,0)A 和1(2,0)A ,其他以此类推.(1)求11,a b 的值及抛物 线2y 的解析式.(2)抛物线n y 的顶点n B 的坐标为(_______,_______);以此类推,第(1)n +条抛物线1n y +的顶点1n B +的坐标为(______,_______);所有抛物线的顶点坐标(,)x y 满足的函数关系式是_________.(3)探究以下结论:①是否存在抛物线n y ,使得△n n AA B 为等腰直角三角形?若存在,请求出抛物线n y 的解析式;若不存在,请说明理由.②若直线(0)=>x m m 与抛物线n y 分别交于点12,,,n C C C ,则线段12231,,,n n C C C C C C -的长有何规律?请用含有m 的代数式表示.9.如图,抛物线y =ax 2+bx +4交x 轴于A (﹣3,0),B (4,0)两点,与y 轴交于点C ,连接AC ,BC .点P 是第一象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .(1)求此抛物线的表达式:(2)过点P 作PN ⊥BC ,垂足为点N ,请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由.10.如图,抛物线24y ax bx =++交x 轴于(3,0)A -,(4,0)B 两点,与y 轴交于点C ,AC ,BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q .(1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .设M 点的坐标为(,0)M m ,请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.二、中考几何压轴题11.如图l ,在正方形ABCD ABCD 中,8AB =AB=8,点E E 在AC AC 上,且22AE =,22AE =过E 点作EF AC ⊥于点E ,交AB 于点F ,连接CF ,DE .(问题发现)(1)线段DE 与CF 的数量关系是________,直线DE 与CF 所夹锐角的度数是___________;(拓展探究)(2)当AEF ∆绕点A 顺时针旋转时,上述结论是否成立?若成立,请写出结论并结合图2给出证明;若不成立,请说明理由;(解决问题)(3)在(2)的条件下,当点E到直线AD的距离为2时,请直接写出CF的长.12.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.13.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.14.我们定义:连结凸四边形一组对边中点的线段叫做四边形的“准中位线”.(1)概念理解:如图1,四边形ABCD 中,F 为CD 的中点,90ADB ∠=︒,E 是AB 边上一点,满足DE AE =,试判断EF 是否为四边形ABCD 的准中位线,并说明理由.(2)问题探究:如图2,ABC ∆中,90ACB ∠=︒,6AC =,8BC =,动点E 以每秒1个单位的速度,从点A 出发向点C 运动,动点F 以每秒6个单位的速度,从点C 出发沿射线CB 运动,当点E 运动至点C 时,两点同时停止运动.D 为线段AB 上任意一点,连接并延长CD ,射线CD 与点,,,A B E F 构成的四边形的两边分别相交于点,M N ,设运动时间为t .问t 为何值时,MN 为点,,,A B E F 构成的四边形的准中位线.(3)应用拓展:如图3,EF 为四边形ABCD 的准中位线,AB CD =,延长FE 分别与BA ,CD 的延长线交于点,M N ,请找出图中与M ∠相等的角并证明.15.问题提出(1)如图(1),在等边三角形ABC 中,点M 是BC 上的任意一点(不含端点B 、C ),连接AM ,以AM 为边作等边三角形AMN ,连接CN ,则∠ACN = °.类比探究(2)如图(2),在等边三角形ABC 中,点M 是BC 延长线上的任意一点(不含端点C ),其他条件不变,(1)中的结论还成立吗?请说明理由.拓展延伸(3)如图(3),在等腰三角形ABC 中,BA =BC ,点M 是BC 上的任意一点(不含端点B 、C ),连接AM ,以AM 为边作等腰三角形AMN ,使AM =MN ,连接CN .添加一个条件,使得∠ABC =∠ACN 仍成立,写出你所添加的条件,并说明理由.16.△ABC 中,∠BAC=α°,AB=AC ,D 是BC 上一点,将AD 绕点A 顺时针旋转α°,得到线段AE ,连接BE .(1)(特例感知)如图1,若α=90,则BD+BE 与AB 的数量关系是 .(2)(类比探究)如图2,若α=120,试探究BD+BE 与AB 的数量关系,并证明.(3)(拓展延伸)如图3,若α=120,AB=AC=4,33,Q 为BA 延长线上的一点,将QD 绕点Q 顺时针旋转120°,得到线段QE ,DE ⊥BC ,求AQ 的长.17.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.18.等腰△ABC ,AB =AC ,∠BAC =120°,AF ⊥BC 于F ,将腰AB 绕点A 逆时针旋转至AB ′,记旋转角为α,连接BB ′,过C 作CE 垂直于直线BB ′,垂足为E ,连接CB ′.(1)问题发现:如图1,当40α=︒时,CB E ∠'的度数为_______;连接EF ,则EF AB '的值为________.(2)拓展探究:当0360α︒<<︒,且120α≠︒时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②解决问题:当A ,E ,F 三点共线时,请直接写出BB BE '的值. 19.如图:两个菱形ABCD 与菱形BEFG 的边AB BE ,在同一条直线上,边长分别为a 和b ,点C 在BG 上,点M 为CG 的中点.(1)观察猜想:如图①,线段BM 与线段AE 的数量关系是______________. (2)拓展探究:如图②,120ABC ∠=︒,将图①中的菱形BEFG 绕点B 顺时针旋转至图②位置,其他条件不变,连接BM ,①猜想线段BM 与线段AE 的数量关系,并说明理由.②求出线段BM 与AE 所成的最小夹角.(3)解决问题:如图③,若将题目中的菱形改为矩形,且3BC EF AB BE==,请直接写出线段BM 与线段AE 的数量关系.20.综合与实践(1)问题发现:正方形ABCD 和等腰直角△BEF 按如图①所示的方式放置,点F 在AB 上,连接AE 、CF ,则AE 、CF 的数量关系为 ,位置关系为 .(2)类比探究:正方形ABCD 保持固定,等腰直角△BEF 绕点B 顺时针旋转,旋转角为α(0°<α ≤360°),请问(1)中的结论还成立吗?请就图②说明你的理由:(3)拓展延伸:在(2)的条件下,若AB = 2 BF = 4,在等腰直角△BEF 旋转的过程中,当CF 为最大值时,请直接写出DE 的长.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.A解析:(1)顶点坐标为149,212⎛⎫- ⎪⎝⎭;(2)存在, ()11,3Q -,2Q ⎝⎭;(3)14F ⎫⎪⎪⎝⎭或24F ⎫⎪⎪⎝⎭或()31,4F -. 【分析】(1)根据一次函数解析式求出A 、C 两点的坐标,把A 、B 、C 三点代入解析式求解即可求的解析式,然后把解析式化为顶点式可求得结果.(2)先求出BC 所在直线的解析式,设出P 、Q 两点的坐标,根据勾股定理求出AC ,根据以A ,C ,Q 为顶点的三角形是等腰三角形可分类讨论,分为AQ=AC,AC=CQ,AQ=CQ 三种情况.(3)分两种情况讨论,一是F 在抛物线上方,过点F 作FH x ⊥轴,可得FH=4,设211,433F n n n ⎛⎫-- ⎪⎝⎭,可得2114433n n --=,求出n 代入即可;二是F 在抛物线下方,可得2114-433--=n n ,求出n 的值即可,最后的结果综合两个结果即可. 【详解】解:(1)443y x =-- ∵当0y =时,4403--=x , ∴3x =-;∴()30A -,,()0,4C -; 二次函数过点A 、B ,设()()34y a x x =+-;∵过点()0,4C -,∴124a -=-; ∴13a =; ∴()()1343y x x =+- 211433x x =--; ∵211493212y x ⎛⎫=-- ⎪⎝⎭, ∴顶点坐标为149,212⎛⎫- ⎪⎝⎭.(2)存在.设BC y kx b =+过B 、C ,440b k b =-⎧⎨+=⎩; 设解得:14k b =⎧⎨=-⎩; ∴4BC y x =-; 设21)1,433(P w m m --、(),4Q m m -; 在Rt AOC ∆中,解得5AC =;①当AQ AC =时;()()222345m m ++--=⎡⎤⎣⎦; 解得:10m =(不合题意舍去),21m =;∴()11,3Q -;②当CQ AC =时;()222445m m +---=⎡⎤⎣⎦; 解得:1522m =,2522m =-(不合题意舍去); ∴252528,22Q ⎛⎫- ⎪ ⎪⎝⎭; ③当AQ CQ =时;()()()22223444m m m m ++--=+---⎡⎤⎡⎤⎣⎦⎣⎦; 解得:2542m =>(不合题意舍去); ∴()11,3Q -,252528,22Q ⎛⎫- ⎪ ⎪⎝⎭; (3)当F 在抛物线上方时,//BC EF ,BC EF =时;过点F 作FH x ⊥轴,FEH ∆与BCOQ ∆全等;则4FH =;设211,433F n n n ⎛⎫-- ⎪⎝⎭;则2114433n n --=;解得;1n =2n =14F ⎫⎪⎪⎝⎭或24F ⎫⎪⎪⎝⎭; 当F 在抛物线下方时,2114433n n --=-; 30n =(不合题意舍去),41n =;∴()31,4F -;∴14F ⎫⎪⎪⎝⎭或24F ⎫⎪⎪⎝⎭或()31,4F -. 【点睛】本题主要考查了二次函数综合应用,准确分析题目条件,利用了等腰三角形、直角三角形的性质进行求解.2.C解析:(1)1,04,00,2B C A -(),(),()(2)当2m =,四边形CQMD 是平行四边形(3)存在,点Q 的坐标为3,2(),()8,18- ,()1,0-【分析】(1)根据函数解析式列方程即可;(2)根据平行四边形的判定,用含未知数的值表示QM 的长度,从而可求解;(3)设Q 点的坐标为213,222⎛⎫-++ ⎪⎝⎭m m m ,分两种情况讨论:①当∠QBD=90时,由勾股定理可得:222BQ BD DQ +=,②当∠QDB=90时,由勾股定理可得:222BQ BD DQ =+,可解出m 的值.【详解】(1)令0x =,则2y =,C 点的坐标为(0,2);令0y =,则2130222x x =-++ 解得121,4x x =-=,点A 为(-1,0);点B 为(4,0) ∴1,04,00,2B C A -(),(),()(2)如图1所示:点C 与点D 关于x 轴对称,点()0,2D -,设直线BD 的解析式为2y kx =-,将()4,0B 代入得:420k -= 解得12k = ∴直线BD 的解析式为:122y x =- ∵//QM DC∴当=QM DC 时,四边形CQMD 是平行四边形设Q 点的坐标为213,222⎛⎫-++ ⎪⎝⎭m m m ,则1,22M m m ⎛⎫- ⎪⎝⎭ ∴2131224222m m m ⎛⎫-++--= ⎪⎝⎭解得12m = 20m =(不合题意,舍去)∴当2m =,四边形CQMD 是平行四边形(3)存在,设Q 点的坐标为213,222⎛⎫-++ ⎪⎝⎭m m m ∵BDQ △是以BD 为直角边的直角三角形∴①当∠QBD=90时,由勾股定理可得:222BQ BD DQ +=即()22222213134220222222m m m m m m ⎛⎫⎛⎫-+-+++=+-+++ ⎪ ⎪⎝⎭⎝⎭ 解得13m = 24m =(不合题意,舍去)∴Q 点的坐标为3,2()②当∠QDB=90时,由勾股定理可得:222BQ BD DQ =+即()22222213134220222222m m m m m m ⎛⎫⎛⎫-+-++=++-+++ ⎪ ⎪⎝⎭⎝⎭ 解得18m = 21m =-Q 点的坐标为()8,18- ()1,0-综上所述:点Q 的坐标为3,2(),()8,18- ,()1,0-.【点睛】本题考查了一次函数和抛物线的综合问题,解题的关键在于拿出函数解析式,会用含未知数的代数式表示出关键的点的坐标和线段的长度.3.【初步尝试】(0,0),(2,0);【类比探究】①如图所示:②函数图象的性质:1.图象关于y轴对称;2.当x取1或﹣1时,函数有最小值﹣1;【深入探究】k≤﹣5或k≥5.【详解】【分析】【初步尝试】利用配方法将y=x2﹣2x化为顶点式,可得顶点坐标,令y=0,解方程x2﹣2x=0,求出x的值,即可得到抛物线与x轴的交点坐标;【类比探究】①根据表中数据描点连线,即可得到该函数图象的另一部分;②根据画出的图象,结合二次函数的性质即可写出该函数的两条性质;【深入探究】根据图象可知y1≤0时,﹣2≤m≤2;y2≥3时,m+k≤﹣3或m+k≥3,根据不等式的性质即可求出k的取值范围.【详解】【初步尝试】∵y=x2﹣2x=(x﹣1)2﹣1,∴此抛物线的顶点坐标为(1,﹣1);令y=0,则x2﹣2x=0,解得x1=0,x2=2,∴此抛物线与x轴的交点坐标为(0,0),(2,0);【类比探究】①如图所示:②函数图象的性质:图象关于y轴对称;当x取1或﹣1时,函数有最小值﹣1;【深入探究】根据图象可知,当y1≤0时,﹣2≤m≤2,当y2≥3时,m+k≤﹣3或m+k≥3,则k≤﹣5或k≥5,故k的取值范围是k≤﹣5或k≥5.【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征,利用数形结合思想解题是关键.4.A解析:(1)①y=x2﹣2x﹣3,②点P的坐标为(1,﹣2),PA+PC的最小值为2(2)点Q的坐标为(1,﹣6).【详解】分析:(1)①由点A 、B 的坐标可将抛物线的解析式变形为交点式,代入点C 的坐标即可求出a 值,此题得解;②由点A 、B 关于抛物线的对称轴对称可得出连接BC 交抛物线对称轴于点P ,此时PA +PC 的值最小,根据抛物线的解析式可求出其对称轴为直线x =1,由点B 、C 的坐标利用待定系数法可求出过点B 、C 的直线的解析式,代入x =1求出y 值,由此即可得出点P 的坐标,再利用勾股定理求出线段BC 的长即可;(2)连接AC 并延长AC 交抛物线对称轴与点Q ,此时|QA ﹣QC |的值最大,且|QA ﹣QC |的最大值为线段AC 的长(三角形两边之差小于第三边),由点A 、C 的坐标利用待定系数法可求出过点A 、C 的直线的解析式,代入x =1求出y 值,由此即可得出点Q 的坐标,此题得解.详解:(1)①∵抛物线与x 轴的交点为A (﹣1,0)、B (3,0),∴抛物线的解析式为y =a (x +1)(x ﹣3).∵抛物线过点C (0,﹣3),∴﹣3=(0+1)×(0﹣3)a ,∴a =1,∴该抛物线的解析式为y =(x +1)(x ﹣3)=x 2﹣2x ﹣3.②∵点A 、B 关于抛物线的对称轴对称,∴连接BC 交抛物线对称轴于点P ,此时PA +PC 的值最小,如图3所示.∵抛物线的解析式为y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1. 利用待定系数法可求出过点B 、C 的直线为y =x ﹣3,当x =1时,y =x ﹣3=1﹣3=﹣2,∴点P 的坐标为(1,﹣2),PA +PC 的最小值为BC =22OB OC +=32.(2)连接AC 并延长AC 交抛物线对称轴与点Q ,此时|QA ﹣QC |的值最大,且|QA ﹣QC |的最大值为线段AC 的长,如图4所示.利用待定系数法可求出过点A 、C 的直线为y =﹣3x ﹣3,当x =1时,y =﹣3x ﹣3=﹣3×1﹣3=﹣6,∴点Q 的坐标为(1,﹣6).点睛:本题是二次函数的综合题.考查了待定系数法求二次(一次)函数解析式、二次函数的性质、二次函数解析式的三种形式以及三角形的三边关系,解题的关键是:(1)①根据点的坐标利用待定系数法求出抛物线的解析式;②由点A 、B 关于抛物线的对称轴对称,找出当PA +PC 的值最小时点P 的位置;(2)利用三角形的三边关系找出使|QA ﹣QC |的值最大时点Q 的位置.5.(1)③④;(2)①见解析;②1c >或21c -<-;(3)43b -<-或23332b -<-【分析】(1)画出图象,根据函数的性质即可判断.(2)①根据题意列表、描点、连线即可.②将2x c +看成是一次函数2y x c =+,此函数与y 轴的交点是c ,因此要与[]x 图像有两个交点,则需要分情况讨论.当1c >时,满足两个交点的要求;当11c -<≤时,与图像没有两个交点;当1c -≥时,可以有两个交点,此种情况要代入221x c x +=-,根据根的判别式求出c 的范围即可.(3)因为1[]22a -<≤,所以根据分段函数的图像,求解取值在12-到2之间的自变量的范围,分情况讨论即可.再根据点(,)a b 在函数3y x =-图象上,则3b a =-,即3a b =+,代入到a 的取值范围中求解即可.【详解】解:(1)画出图象,根据图象可知,①当0x 时,y 随x 的增大而增大,故错误;②该函数图象关于y 轴不对称,故错误;③当0x =时,函数有最小值为1-,正确;④该函数图象不经过第三象限,正确;故答案为:③④.(2)①在平面直角坐标系xOy 中画出该函数图象,②关于x 的方程2[]x c x +=有两个互不相等的实数根,∴可以看成是[]y x =和2y x c =+有两个交点.2y x c =+是一次函数,与y 轴的交点为c ,∴当1c >时,满足两个交点的条件.若将2y x c =+向下平移与图像有两个交点,则1c -.∴方程为221x c x +=-,即22(1)0x x c --+=.∴△44(1)0c =++>,2c ∴>-,21c ∴-<-.故答案为:1c >或21c -<-.(3)1[]22a -<,∴当0a <时,1[]2a <,112a <-+,解出10a -<.当0a 时,1[]22a -<,21122a -<-3a .10a ∴-<3a <.点(,)a b 在函数3y x =-图象上,3b a ∴=-,3a b ∴=+,43b ∴-<-333b <-.故答案为:43b -<-333b -<-. 【点睛】此题考查的是分段函数,用数形结合的思想是解此题的关键.6.E解析:(1)①2243y x x =--;②2;(2)2(1)y x x =-->;(3)43P y -<<-【分析】(1)①把点E (-1,3)代入223y mx mx =--求出m 的值即可;②先求出直线EF 的解析式,设出点M 的坐标,得到MN 的二次函数关系式,根据二次函数的性质求解即可; (2)写出抛物线G 的顶点式,根据平移规律即可得到1G 的顶点式,进而得到1G 的顶点坐标(1,3)m m +--,即1,3x m y m =+=--,消去m ,得到y 与x 的函数关系式,再由0m >即可求得x 的取值范围;(3)求出抛物线怛过点A (2,-3),函数H 的图象恒过点B (2,-4),从图象可知两函数图象的交点P 应在A ,B 之间,即点P 的纵坐标在A ,B 点的纵坐标之间,从而可得结论.【详解】解:(1)①∵抛物线2:23G y mx mx =--经过点E (-1,3)∴233m+m =-∴2m =∴抛物线的解析式为:2243y x x =--②如图,∵点F 为抛物线的最低点,∴22243=2(1)5y x x x =----∴(1,5)F -设直线EF 的解析式为:y kx b =+把E (-1,3),F (1,-5)代入得,35k b k b -+=⎧⎨+=-⎩ 解得,41k b =-⎧⎨=-⎩∴直线EF 的解析式为:41y x =--设2(,243)M a a a --,则(,41)N a a --∴22(41)243)=(22M a N a a a ------+=∵20-<∴当0a =时,MN 有最大值,最大值为2;(2)∵抛物线2:(1)3G y m x m =---∴平移后的抛物线21:(1)3G y m x m m =----∴抛物线1G 的顶点坐标为(1,3)m m +--∴1,3x m y m =+=--∴132x y m +=+-=-∴2y x =--∵0,1m m x >=-∴10x ->∴1x >∴y 与x 的函数关系式为:2(1)y x x =-->(3)如图,函数:2(1)H y x x =-->的图象为射线,1x =时,123y =--=-;2x =时,224y =--=-∴函数H 的图象恒过点(2,-4)∵抛物线2:(1)3G y m x m =---,当1x =时,3y m =--;当2x =时,33y m m =--=-;∴抛物线G 恒过点A (2,-3)由图象可知,若抛物线G 与函数H 的图象有交点P ,则有B P A y y y <<∴点P 纵坐标的取值范围为:43P y -<<-【点睛】本题考查了二次函数综合题,涉及到待定系数法求解析式、二次函数的性质和数形结合思想等知识,熟练运用二次函数的性质解决问题是本题的关键.7.A解析:(1)直线AC 的表达式为y =x +4;(2)运动时间为0或(42EC =ED ;(3)3(,0)2P -【分析】(1)由抛物线的解析式中x ,y 分别为0,求出A ,C 的坐标,再利用待定系数法确定直线AC 的解析式;(2)设出运动时间为t 秒,然后用t 表示线段OP ,CE ,AP ,DE 的长度,利用已知列出方程即可求解;(3)利用等量代换求出△EBP 的周长为AB +BE ,由于AB 为定值,BE 最小时,△EBP 的周长最小,根据垂线段最短,确定点E 的位置,解直角三角形求出OP ,点P 坐标可求.【详解】解:(1)∵ 抛物线y =﹣x 2﹣3x +4与x 轴分别交于A ,B ,交y 轴于点C ,∴ 当x =0时,y =4.∴ C (0,4).当y =0时,﹣x 2﹣3x +4=0,∴ x 1=﹣4,x 2=1,∴ A (﹣4,0),B (1,0).设直线AC 的解析式为y =kx +b ,∴ -404k b b+=⎧⎨=⎩ 解得:14k b =⎧⎨=⎩∴ 直线AC 的表达式为y =x +4.(2)设点P 的运动时间为t 秒,∵点P 以每秒1个单位长度的速度由点O 向点A 运动, ∴ OP =t .∴ P (﹣t ,0).∵ A (﹣4,0),C (0,4),∴ OA =OC =4.∴ Rt △AOC 为等腰直角三角形.∴ ∠CAO =∠ACO =45°,AC=. ∵ DP ⊥x 轴,在Rt △APE 中,∠CAP =45°,∴ AP =PE =4﹣t ,AEAP 4﹣t ). ∴ EC =AC ﹣AE.∵ E ,P 的横坐标相同,∴ E (﹣t ,﹣t +4),D (﹣t ,﹣t 2+3t +4). ∴ DE =(﹣t 2+3t +4)﹣(﹣t +4)=﹣t 2+4t . ∵ EC =DE ,∴﹣t2+4t .解得:t =0或t =4∴ 当运动时间为0或(4)秒时,EC =ED .(3)存在.P 的坐标为(﹣32,0). 在Rt △AEP 中,∠OAC =45°,∴ AP =EP .∴ △AEB 的周长为EP +BP +BE =AP +BP +BE =AB +BE . ∵ AB =5,∴ 当BE 最小时,△AEB 的周长最小.当BE ⊥AC 时,BE 最小.在Rt △AEB 中,∵∠AEB =90°,∠BAC =45°,AB =5,BE ⊥AC ,∴ PB =12AB =52.∴ OP =PB ﹣OB =32. ∴ P (﹣32,0). 【点睛】本题考查了二次函数,一次函数的图象和性质,垂线段最短的性质,等腰三角形的性质,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系是解题的关键. 8.C解析:(1)1111a b =⎧⎨=⎩ ;y 2 =−(x−2)2+4;(2)(n ,n 2 );[(n +1),(n +1)2 ];y =x 2;(3)①存在,理由见详解;②C 1n -C n =2m .【分析】(1)1(2,0)A ),则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:()2112110=-0(-2-)a b a b ⎧-+⎪⎨=-+⎪⎩,解得:1111a b =⎧⎨=⎩ ,则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4,即可求解;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B +[(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ,即可求解; (3)①△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2+4n ),即可求解;②y 1n c -=−(m−n +1)2+(n−1)2,y n c =−(m−n )2+n 2,C 1n -C n = y n c −y 1n c -,即可求解.【详解】解:(1)1(2,0)A ,则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得: 2112110=()0(2)a b a b ⎧--+⎨=---+⎩,解得:1111a b =⎧⎨=⎩, 则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4; 故y 2 =−(x−2a )2+2b =−(x−2)2+4;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B + [(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ;故答案为:(n ,n 2 );[(n +1),(n +1)2];y =x 2;(3)①存在,理由:点A (0,0),点An (2n ,0)、点n B (n ,n 2 ),△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2 +n 4), 解得:n =1(不合题意的值已舍去),抛物线的表达式为:y =−(x−1)2 +1;②y 1n c -=−(m−n +1)2+(n−1)2,y n c =−(m−n )2+n 2,C 1n -C n =y n c −y 1n c -=−(m−n )2+n 2 +(m−n +1)2−(n−1)2=2m .【点睛】本题考查的是二次函数综合运用,这种找规律类型题目,通常按照题设的顺序逐次求解,通常比较容易.9.A解析:(1)211433y x x =-++;(2))2263PN m =--+,当m =2时,PN 的最大值为3;(3)Q (1,3)或(2 【分析】(1)由二次函数交点式表达式,即可求解.(2)由PN =PQ sin ∠PQN (﹣13m 2+13 m +4+m ﹣4)即可求解. (3)分AC =AQ 、AC =CQ 、CQ =AQ 三种情况,当AC =AQ 时,构造直角三角形AMQ 利用勾股定理可求坐标,AC =CQ 时,先求BQ 再求MB ,即可得到坐标,CQ =AQ 时,联立解得不合题意.【详解】解:(1)由二次函数交点式表达式得:y =a (x +3)(x ﹣4)=a (x 2﹣x ﹣12)=ax 2﹣ax ﹣12a ,即:﹣12a =4,解得:a =﹣13, 则抛物线的表达式为211433y x x =-++,(2)设点P (m ,﹣13m 2+13m +4),则点Q (m ,﹣m +4), ∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN ,PN =PQ sin ∠PQN (﹣13m 2+13m +4+m ﹣4(m ﹣2)2,∵0, ∴PN 有最大值,当m =2时,PN . (3)存在,理由:点A 、B 、C 的坐标分别为(﹣3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =∠OBC =∠OCB =45°,将点B (4,0)、C (0,4)的坐标代入一次函数表达式:y =kx +b得044k b b=+⎧⎨=⎩解得14 kb=-⎧⎨=⎩∴直线BC的解析式为y=﹣x+4…①,设直线AC的解析式为y=mx+n把点A(﹣3,0)、C(0,4)代入得034m n n=-+⎧⎨=⎩解得434 mn⎧=⎪⎨⎪=⎩∴直线AC的表达式为:y=43x+4,设直线AC的中点为K(﹣32,2),过点M与CA垂直直线的表达式中的k值为﹣34,设过点K与直线AC垂直直线的表达式为y=﹣34x+q把K(﹣32,2)代入得2=﹣34×(﹣32)+q解得q=7 8∴y=﹣34x+78…②,①当AC=AQ时,如图1,则AC=AQ=5,设:QM=MB=n,则AM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q(1,3),②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=2﹣5,则QM =MB, 故点Q(2③当CQ =AQ 时,联立①②,43748y x y x =-+⎧⎪⎨=-+⎪⎩, 解得,x =252(舍去), 综上所述点Q 的坐标为:Q (1,3)或Q【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法、一次函数的图像与性质、二次函数的图像与性质及等腰三角形的性质.10.A解析:(1)211433y x x =-++;(2)2PN =,当2m =时,PN 有最大值,. (3)满足条件的点Q 有两个,坐标分别为:()1,3Q,822Q ⎛- ⎝⎭. 【分析】(1)将点A 、B 的坐标代入解析式中求解即可;(2)由(1)求得点C 坐标,利用待定系数法求得直线BC 的解析式,然后用m 表示出PN ,再利用二次函数的性质即可求解;(3)分三种情况:①AC=CQ ;②AC=AQ ;③CQ=AQ ,分别求解即可.【详解】解:(1)将(3,0)A -,(4,0)B 代入24y ax bx =++,得934016440a b a b -+=⎧⎨++=⎩,解之,得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩. 所以,抛物线的表达式为211433y x x =-++.(2)由211433y x x =-++,得(0,4)C . 将点(4,0)B 、(0,4)C 代入y kx b =+,得404k b b +=⎧⎨=⎩,解之,得14k b =-⎧⎨=⎩. 所以,直线BC 的表达式为:4y x =-+.由(,0)M m ,得211,433P m m m ⎛⎫-++ ⎪⎝⎭,4(),Q m m -+. ∴221114443333PQ m m m m m =-+++-=-+ ∵OB OC =,∴45ABC OCB ∠=∠=︒.∴45PQN BQM ∠=∠=︒. ∴22214222sin 4523363PN PQ m m m m ⎛⎫=︒=-+=-+ ⎪⎝⎭. 2222(2)63m =--+. ∵206-< ∴当2m =时,PN 有最大值,最大值为223. (3)存在,理由如下:由点(3,0)A -,(0,4)C ,知5AC =.①当AC CQ =时,过Q 作QE y ⊥轴于点E ,易得222222[4(4)]2CQ EQ CE m m m =+=+--+=,由2225m =,得152m =252m = 此时,点52852Q -⎝⎭; ②当AC AQ =时,则5AQ AC ==.在Rt AMQ △中,由勾股定理,得22[(3)](4)25m m --+-+=.解之,得1m =或0m =(舍)此时,点()1,3Q ;③当CQ AQ =时,由2222[(3)](4)m m m =--+-+,得252m =(舍). 综上知所述,可知满足条件的点Q 有两个,坐标分别为:()1,3Q ,52852Q -⎝⎭.【点睛】本题是一道二次函数与几何图形的综合题,解答的关键是认真审题,找出相关条件,运用待定系数法、数形结合法等解题方法确定解题思路,对相关信息进行推理、探究、发现和计算.二、中考几何压轴题11.(1),;(2)结论仍然成立,证明详见解析;(3)的长为或.【分析】(1)延长DE 交CF 的延长线于点N ,由正方形的性质可得和均为等腰直角三角形,因此,易证,由相似三角形的性质即可得到,由三角形的解析:(1)2CF DE =,45︒;(2)结论仍然成立,证明详见解析;(3)CF 的长为45或413.【分析】(1)延长DE 交CF 的延长线于点N ,由正方形的性质可得Rt AEF ∆和Rt ADC ∆均为等腰直角三角形,因此2AF AC AE AD==,易证~FAC EAD ∆∆,由相似三角形的性质即可得到2CF DE =,由三角形的内角和即可得到45CNE ∠=︒;(2)延长DE 交CF 于点G ,由旋转的性质可知Rt AEF ∆和Rt ADC ∆均为等腰直角三角形,因此2AF AC AE AD==,易证∽∆∆FAC EAD ,同(1)易证结论仍成立; (3)由点E 到直线AD 的距离为2,22AE =,可知点F 在直线AD 或AB 上,分两种情况讨论:(i )当点F 在DA 的延长线或BA 延长线上时,由勾股定理可得CF 的长,(ii )当点F 在AD 或AB 上时,过点E 作AEF ∆的高,由勾股定理可得CF 的长.【详解】解:(1)如图①,延长DE 交CF 的延长线于点N ,∵AC 是正方形ABCD 的对角线,∴45FAE DAC ︒∠=∠=,∵AEF ∆是直角三角形,∴Rt AEF ∆和Rt ADC ∆均为等腰直角三角形,∴2AF AC AE AD= 又∵FAC EAD ∠=∠,∴~FAC EAD ∆∆,∴2==CF AF DE AE,ADE ACF ∠=∠, ∴2CF DE =;又∵180CAD ADE AED ︒∠+∠+∠=,180CNE CEN ECN ︒∠+∠+∠=,AED CEN ∠=∠, ∴45CNE CAD ∠=∠=︒故答案为:2CF DE =,45︒(2)结论仍然成立.理由如下:如图②,延长DE 交CF 于点G .∵AC 是正方形ABCD 的对角线,且Rt AEF ∆是由原题中图1的位置旋转得来, ∴45∠=∠=︒FAE DAC ,即Rt AEF ∆和Rt ADC ∆均为等腰直角三角形.∴2AF AC AE AD= 又∵∠=∠+∠FAC FAE EAC ,EAD DAC EAC ∠=∠+∠,∴FAC EAD ∠=∠.∴∽∆∆FAC EAD .∴2=CF AF DE AEADE ACF ∠=∠. ∴2CF DE .又∵180∠+∠+∠=︒CAD ADE AHD ,180︒∠+∠+∠=CGD ACG GHC ,∠=∠AHD GHC , ∴45∠=∠=︒CGD CAD .∴结论成立.(3)CF 的长为45413理由如下:∵点E 到直线AD 的距离为2,22AE =∴点F 在直线AD 或AB 上分两种情况讨论:(i )如图③,当点F 在DA 的延长线上时,过点E 作EG ⊥AD 交延长线于点G,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程及解法(一)
直接开平方法
引入
1、求直线y=2x 与双曲线y=6/x 的交点。
2、设计一座2m 高的人体雕像,使上部(腰以上)与下部高度比 等于下部与全部高度比问下部设计有多高?
1. 一元二次方程的概念:只含有一个未知数(一元),并且未知数的最高 次数是2(2次)的整式方程,叫做一元二次方程.
例1:判断下列各式哪些是一元二次方程.
①21x x ++;②2960x x -=;③2102y =;④21
5402x x -+=;
⑤2230x xy y +-=;⑥232y =;⑦2(1)(1)x x x +-=.
2.一元二次方程的一般形式:
一般地,任何一个关于x 的一元二次方程,都能化成形如 20(0)ax bx c a ++=≠,这种形式叫做一元二次方程的一般形式.其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.
注意:一元二次方程0a ≠,b 、c 可以为0
例2: 是关于x 的一元二次方程的条件是( )
A. a, b, c 为任意实数
B. a, b 不同时为零
C. a 不为零
D. b, c 不同时为零
例3:将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项 系数和常数项:
(1)2352x x =-;
(2)(1)(1)2a x x x +-=-.
3、一元二次方程的解
例4:方程 x 2-2x-2=0的两个根为( )
20ax bx c ++=
A. 121,2x x ==-
B.121,2x x =-=
C.1211x x ==练习:
1.(1)关于x 的方程是一元二次方程, 则m ; 关于x 的方程是一元一次方程, 则m ;
(2)关于x 的方程是一元二次方程,则 m ;
类似:()|m|210m x mx -+-=是一元二次方程,则m= ;
(3)关于x 的方程的一次项系数是-1, 则a ;
2.(1)x=1是的根,则a= .
(2)已知关于x 的一元二次方程 22(1)210m x x m -++-=有一个根是 0, 求m 的值.
3. 解方程:(1)232700x -=;(2)240y =;(3)240x +=.
27)x -=(5)20x m -= (6)22(2)4(31)x x -=+
形如2()(0)mx n p p +=≥的一元二次方程,采取整体直接开平方的方法求 根.。