2021届全国新高考数学备考复习 基本不等式
高考数学复习专题 基本不等式 (文 精讲)

专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】 高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6B .8 2C .5D .9高频考点二 利用基本不等式解决实际问题【例2】【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.,,,,,,,,【方法技巧】利用基本不等式解决实际问题的三个注意点 (1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】(2020·山西省大同模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km /h )(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ . 【答案】45【解析】∵22451x y y +=∴0y ≠且42215y x y -=∴422222222114144+2555555y y y x y y y y y-+=+=≥⋅=,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45. 【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【答案】23+2【解析】∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【答案】92【解析】(x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy =2+5xy ,∵x >0,y >0且x +2y =4, ∴4=x +2y ≥22xy ,∴xy ≤2,∴1xy ≥12,∴2+5xy ≥2+52=92.【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6 B .8 2 C .5 D .9【答案】A【答案】∵a >0,b >0,且2a +b =ab -1, ∴a =b +1b -2>0,∴b >2,∴a +2b =b +1b -2+2b =2(b -2)+3b -2+5≥5+22(b -2)·3b -2=5+2 6.当且仅当2(b -2)=3b -2,即b =2+62时取等号.∴a +2b 的最小值为5+26,故选A 。
(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
高考数学复习考点知识与题型专题讲解44---基本不等式

高考数学复习考点知识与题型专题讲解基本不等式 考试要求1.掌握基本不等式及常见变型.2.会用基本不等式解决简单的最值问题. 知识梳理1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b 2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b ≥2(a ,b 同号).(3)ab ≤⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ). (4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P . (2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22与ab ≤a +b 2等号成立的条件是相同的.(×) (2)y =x +1x 的最小值是2.(×)(3)若x >0,y >0且x +y =xy ,则xy 的最小值为4.(√)(4)函数y =sin x +4sin x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值为4.(×)教材改编题1.已知x >2,则x +1x -2的最小值是() A .1B .2C .22D .4答案D解析∵x >2,∴x +1x -2=x -2+1x -2+2≥2(x -2)1x -2+2=4,当且仅当x -2=1x -2,即x =3时,等号成立.2.函数y =4-x -1x (x <0)()A .有最小值2B .有最小值6C .有最大值2D .有最大值6答案B解析y =4+(-x )+1(-x )≥4+2(-x )·⎝ ⎛⎭⎪⎫-1x =6. 当且仅当-x =1-x ,即x =-1时取等号. 3.若a ,b ∈R ,下列不等式成立的是________.①b a +a b ≥2;②ab ≤a 2+b 22;③a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22; ④2ab a +b≤ab . 答案②③解析当b a 为负时,①不成立.当ab <0时,④不成立.题型一 利用基本不等式求最值命题点1配凑法例1(1)(2022·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为()A.94B .4C.92D .9答案C解析y =4x (3-2x )=2·2x ·(3-2x )≤2·⎝ ⎛⎭⎪⎫2x +3-2x 22=92. 当且仅当2x =3-2x ,即x =34时取等号,∴当x =34时,y max =92.(2)若x <23,则f (x )=3x +1+93x -2有() A .最大值0B .最小值9C .最大值-3D .最小值-3答案C解析∵x <23,∴3x -2<0,f (x )=3x -2+93x -2+3 =-⎣⎢⎡⎦⎥⎤(2-3x )+92-3x +3≤-2(2-3x )·92-3x+3=-3. 当且仅当2-3x =92-3x ,即x =-13时取“=”. (3)(2022·绍兴模拟)若-1<x <1,则y =x 2-2x +22x -2的最大值为________. 答案 -1解析因为-1<x <1,则0<1-x <2,于是得y =-12·(1-x )2+11-x=-12⎣⎢⎡⎦⎥⎤(1-x )+11-x ≤-12·2(1-x )·11-x=-1, 当且仅当1-x =11-x,即x =0时取“=”, 所以当x =0时,y =x 2-2x +22x -2有最大值-1.命题点2常数代换法例2(2022·重庆模拟)已知a >0,b >0,且a +b =2,则2a +12b 的最小值是()A .1B .2C.94D.92答案C解析因为a >0,b >0,且a +b =2,所以a +b 2=1,所以2a +12b =12(a +b )⎝ ⎛⎭⎪⎫2a +12b =12⎝ ⎛⎭⎪⎫2b a +a 2b +52 ≥12×⎝ ⎛⎭⎪⎫2+52=94, 当且仅当a =43,b =23时,等号成立.命题点3消元法例3已知x >0,y >0且x +y +xy =3,则x +y 的最小值为________.答案2解析方法一(换元消元法)∵x +y +xy =3,则3-(x +y )=xy ≤⎝ ⎛⎭⎪⎫x +y 22, 即(x +y )2+4(x +y )-12≥0,令t =x +y ,则t >0,∴t 2+4t -12≥0,解得t ≥2,∴x +y 的最小值为2.方法二(代入消元法)由x+y+xy=3得y=3-x x+1,∵x>0,y>0,∴0<x<3,∴x+y=x+3-xx+1=x+4x+1-1=x+1+4x+1-2≥2(x+1)·4x+1-2=2,当且仅当x+1=4x+1,即x=1时取等号,∴x+y的最小值为2.延伸探究本例条件不变,求xy的最大值.解∵x+y+xy=3,∴3-xy=x+y≥2xy,当且仅当x=y时取等号,令t=xy,则t>0,∴3-t2≥2t,即t2+2t-3≤0,即0<t≤1,∴当x =y =1时,xy 最大值为1. 教师备选1.(2022·哈尔滨模拟)已知x >0,y >0,且2x +8y -xy =0,则当x +y 取得最小值时,y 等于()A .16B .6C .18D .12答案B解析因为x >0,y >0,2x +8y =xy ,所以2y +8x =1,所以x +y =(x +y )⎝ ⎛⎭⎪⎫2y +8x =10+2x y +8y x ≥10+22x y ·8y x =10+2×4=18, 当且仅当⎩⎨⎧ 2x y =8y x ,2x +8y -xy =0,即⎩⎪⎨⎪⎧x =12,y =6时取等号, 所以当x +y 取得最小值时,y =6.2.已知函数f (x )=-x 2x +1(x <-1),则() A .f (x )有最小值4B .f (x )有最小值-4C .f (x )有最大值4D .f (x )有最大值-4答案A解析f (x )=-x 2x +1=-x 2-1+1x +1=-⎝ ⎛⎭⎪⎫x -1+1x +1=-⎝⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2. 因为x <-1,所以x +1<0,-(x +1)>0,所以f (x )≥21+2=4,当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立. 故f (x )有最小值4.思维升华(1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.跟踪训练1(1)已知函数f (x )=22x -1+x (2x >1),则f (x )的最小值为________. 答案52解析∵2x >1,∴x -12>0,f (x )=22x -1+x =1x -12+x -12+12≥21x -12·⎝ ⎛⎭⎪⎫x -12+12 =2+12=52, 当且仅当1x -12=x -12,即x =32时取“=”.∴f (x )的最小值为52.(2)已知x >0,y >0且x +y =5,则1x +1+1y +2的最小值为________. 答案12解析令x +1=m ,y +2=n ,∵x >0,y >0,∴m >0,n >0,则m +n =x +1+y +2=8, ∴1x +1+1y +2=1m +1n =⎝ ⎛⎭⎪⎫1m +1n ×18(m +n )=18⎝ ⎛⎭⎪⎫n m +m n +2≥18×(21+2)=12. 当且仅当n m =m n ,即m =n =4时等号成立.∴1x +1+1y +2的最小值为12. 题型二 基本不等式的常见变形应用例4(1)(2022·宁波模拟)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为()A.a +b 2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C.2ab a +b ≤ab (a >0,b >0)D.a +b 2≤a 2+b 22(a >0,b >0) 答案D解析由图形可知,OF =12AB =12(a +b ),OC =12(a +b )-b =12(a -b ),在Rt △OCF 中,由勾股定理可得,CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0).(2)(2022·广州模拟)已知0<a <1,b >1,则下列不等式中成立的是()A .a +b <4ab a +b B.ab <2ab a +bC.2a 2+2b 2<2abD .a +b <2a 2+2b 2答案D 解析对于选项A ,因为0<a <1,b >1,所以(a +b )2=a 2+2ab +b 2>4ab ,故选项A 错误;对于选项B ,ab >21a +1b=2ab a +b ,故选项B 错误; 对于选项C ,2(a 2+b 2)>2×2ab =2ab ,故选项C 错误;对于选项D,2a 2+2b 2>a 2+2ab +b 2=(a +b )2,所以a +b <2a 2+2b 2,故选项D 正确.教师备选若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是()A .a 2+b 2>2abB .a +b ≥2abC.1a +1b >2abD.b a +a b ≥2答案D解析a 2+b 2≥2ab ,所以A 错误;ab >0,只能说明两实数同号,同为正数,或同为负数,所以当a <0,b <0时,B 错误;同时C 错误;a b 或b a 都是正数,根据基本不等式求最值,a b +b a ≥2a b ×ba =2,故D 正确.思维升华基本不等式的常见变形(1)ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22. (2)21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).跟踪训练2(1)(2022·浙南名校联盟联考)已知命题p :a >b >0,命题q :a 2+b 22>⎝ ⎛⎭⎪⎫a +b 22,则p 是q 成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析∵a >b >0,则a 2+b 2>2ab ,∴2(a 2+b 2)>a 2+b 2+2ab ,∴2(a 2+b 2)>(a +b )2,∴a 2+b 22>⎝ ⎛⎭⎪⎫a +b 22, ∴由p 可推出q ,当a <0,b <0时,命题q 成立,如a =-1,b =-3时,a 2+b 22=5>⎝ ⎛⎭⎪⎫a +b 22=4, ∴由q 推不出p ,∴p 是q 成立的充分不必要条件.(2)(2022·漳州质检)已知a ,b 为互不相等的正实数,则下列四个式子中最大的是()A.2a +bB.1a +1bC.2ab D.2a 2+b 2 答案B解析∵a ,b 为互不相等的正实数, ∴1a +1b >2ab, 2a +b <22ab=1ab <2ab ,2a 2+b 2<22ab =1ab <2ab, ∴最大的是1a +1b .柯西不等式是法国著名的数学家、物理学家、天文学家柯西(Cauchy,1789-1857)发现的,故命名为柯西不等式.柯西不等式是数学中一个非常重要的不等式,除了用柯西不等式来证明一些不等式成立外,柯西不等式还常用于选择、填空求最值的问题中,借助柯西不等式的技巧可以达到事半功倍的效果.1.(柯西不等式的代数形式)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.推广一般情形:设a 1,a 2,…,a n ,b 1,b 2,…,b n ∈R ,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2(当且仅当b i =0(i =1,2,…,n )或存在一个实数k ,使得a i =kb i (i =1,2,…,n )时,等号成立).2.(柯西不等式的向量形式)设α,β为平面上的两个向量,则|α||β|≥|α·β|,其中当且仅当β是零向量,或存在实数k ,使α=k β时等号成立.3.(柯西不等式的三角不等式)设x 1,y 1,x 2,y 2,x 3,y 3为任意实数,则:(x 1-x 2)2+(y 1-y 2)2+(x 2-x 3)2+(y 2-y 3)2 ≥(x 1-x 3)2+(y 1-y 3)2. 一、利用柯西不等式求最值例1已知x ,y 满足x +3y =4,则4x 2+y 2的最小值为________.答案6437解析(x +3y )2≤(4x 2+y 2)⎝ ⎛⎭⎪⎫14+9, 所以4x 2+y 2≥16×437=6437,当且仅当y =12x 时,等号成立,所以4x 2+y 2的最小值为6437.例2已知正实数x ,y ,z 满足x 2+y 2+z 2=1,正实数a ,b ,c 满足a 2+b 2+c 2=9,则ax +by +cz 的最大值为________.答案3解析(ax +by +cz )2≤(a 2+b 2+c 2)·(x 2+y 2+z 2)=9,∴ax +by +cz ≤3,当且仅当a =3x ,b =3y ,c =3z 时取“=”,∴ax +by +cz 的最大值为3.例3函数y =5x -1+10-2x 的最大值为________.答案6 3解析y 2=(5x -1+10-2x )2=(5x -1+2·5-x )2≤(52+2)(x -1+5-x )=108,当且仅当x =12727时等号成立,∴y ≤6 3.二、利用柯西不等式证明不等式例4已知a 1,a 2,b 1,b 2为正实数,求证:(a 1b 1+a 2b 2)·⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2≥(a 1+a 2)2. 证明(a 1b 1+a 2b 2)⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2 =[(a 1b 1)2+(a 2b 2)2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 1b 12+⎝ ⎛⎭⎪⎫a 2b 22 ≥⎝⎛⎭⎪⎫a 1b 1·a 1b 1+a 2b 2·a 2b 22 =(a 1+a 2)2.当且仅当b 1=b 2时,等号成立.例5已知a 1,a 2,…,a n 都是实数,求证:1n (a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n .证明根据柯西不等式,有⎝⎛⎭⎫12+12+…+12n 个 (a 21+a 22+…+a 2n )≥(1×a 1+1×a 2+…+1×a n )2,所以1n (a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n .课时精练1.下列函数中,最小值为2的是()A.y=x+2 xB.y=x2+3 x2+2C.y=e x+e-xD.y=log3x+log x3(0<x<1) 答案C解析当x<0时,y=x+2x<0,故A错误;y=x2+3x2+2=x2+2+1x2+2≥2,当且仅当x2+2=1x2+2,即x2=-1时取等号,∵x2≠-1,故B错误;y=e x+e-x≥2e x·e-x=2,当且仅当e x=e-x,即x=0时取等号,故C正确;当x∈(0,1)时,y=log3x<0,故D错误.2.(2022·汉中模拟)若a>0,b>0且2a+b=4,则ab的最大值为()A .2B.12C .4D.14答案A解析4=2a +b ≥22ab ,即2≥2ab ,平方得ab ≤2,当且仅当2a =b ,即a =1,b =2时等号成立,∴ab 的最大值为2.3.(2022·苏州模拟)若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y,当且仅当a x =b y 时取等号.利用以上结论,函数f (x )=2x +91-2x,x ∈⎝ ⎛⎭⎪⎫0,12取得最小值时x 的值为()A.15B.14C.24D.13答案A解析f (x )=2x +91-2x =42x +91-2x≥(2+3)22x +1-2x =25,当且仅当22x =31-2x,即x =15时等号成立. 4.(2022·重庆模拟)已知x >2,y >1,(x -2)(y -1)=4,则x +y 的最小值是()A .1B .4C .7D .3+17答案C解析∵x >2,y >1,(x -2)(y -1)=4, ∴x +y =(x -2)+(y -1)+3 ≥2(x -2)(y -1)+3=7,当且仅当⎩⎪⎨⎪⎧ x =4,y =3时等号成立. 5.已知函数f (x )=14x +9x -1(x <1),下列结论正确的是() A .f (x )有最大值114B .f (x )有最大值-114C .f (x )有最小值132D .f (x )有最小值74答案B解析f (x )=x -14+9x -1+14=-⎝ ⎛⎭⎪⎪⎫1-x 4+91-x +14≤-21-x 4·91-x +14=-114,当且仅当x =-5时等号成立.6.已知函数f (x )=x x 2-x +4(x >0),则() A .f (x )有最大值3B .f (x )有最小值3C .f (x )有最小值13D .f (x )有最大值13答案D解析f (x )=x x 2-x +4=1x +4x -1≤124-1=13, 当且仅当x =4x ,即x =2时等号成立, ∴f (x )的最大值为13.7.(2022·济宁模拟)已知a ,b 为正实数,则“ab a +b ≤2”是“ab ≤16”的() A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件答案B解析由a ,b 为正实数,∴a +b ≥2ab ,当且仅当a =b 时等号成立,若ab ≤16,可得aba +b ≤ab 2ab =ab 2≤162=2,故必要性成立; 当a =2,b =10,此时ab a +b≤2,但ab =20>16,故充分性不成立, 因此“ab a +b≤2”是“ab ≤16”的必要不充分条件.8.已知正实数a,b满足a>0,b>0,且a+b=1,则下列不等式恒成立的有() ①2a+2b≥22;②a2+b2<1;③1a+1b<4;④a+1a>2.A.①②B.①③C.①②④D.②③④答案C解析∵2a+2b≥22a·2b=22a+b=22,当且仅当a=b时取等号,∴①正确;∵a2+b2<a2+b2+2ab=(a+b)2=1,∴②正确;∵1a+1b=(a+b)⎝⎛⎭⎪⎫1a+1b=2+ba+ab≥2+2ba×ab=4,当且仅当a=b时取等号,∴③错误;∵a>0,b>0,a+b=1,∴0<a<1,∵a+1a≥2a·1a=2,当且仅当a=1时取等号,∴a+1a>2,④正确.9.若0<x<2,则x4-x2的最大值为________.答案2解析∵0<x <2,∴x 4-x 2=x 2(4-x 2)≤x 2+4-x 22=2, 当且仅当x 2=4-x 2,即x =2时取“=”.10.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为________. 答案4解析依题意ab =a +b ,∴a +b =ab ≤⎝ ⎛⎭⎪⎫a +b 22, 即a +b ≤(a +b )24,∴a +b ≥4,当且仅当a =b 时取等号,∴a +b 的最小值为4.11.已知x >0,y >0且3x +4y -xy =0,则3x +y 的最小值为________. 答案27解析因为x >0,y >0,3x +4y =xy ,所以3y +4x =1,所以3x +y =(3x +y )⎝ ⎛⎭⎪⎫3y +4x =15+9x y +4y x ≥15+29x y ·4y x =27,当且仅当⎩⎨⎧ 9x y =4y x ,3x +4y -xy =0即⎩⎪⎨⎪⎧x =6,y =9时取等号,所以3x +y 的最小值为27.12.(2021·天津)若a >0,b >0,则1a +a b 2+b 的最小值为________. 答案2 2解析∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22b ·b =22, 当且仅当1a =a b 2且2b =b ,即a =b =2时等号成立,∴1a +a b 2+b 的最小值为2 2.13.(2022·南京模拟)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的取值范围是() A.⎣⎢⎡⎦⎥⎤-233,233 B.⎝ ⎛⎭⎪⎫-233,233 C.⎣⎢⎡⎦⎥⎤-223,223 D.⎝ ⎛⎭⎪⎫-223,223 答案A解析∵x 2+y 2+xy =1⇔xy =(x +y )2-1,又∵xy ≤⎝ ⎛⎭⎪⎫x +y 22, ∴(x +y )2-1≤⎝ ⎛⎭⎪⎫x +y 22,令x +y =t , 则4t 2-4≤t 2,∴-233≤t ≤233,即-233≤x +y ≤233,当且仅当x =y 时,取等号,∴x +y 的取值范围是⎣⎢⎡⎦⎥⎤-233,233. 14.设a >0,b >0,则下列不等式中一定成立的是________.(填序号) ①a +b +1ab ≥22; ②2ab a +b>ab ; ③a 2+b 2ab≥a +b ; ④(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4. 答案①③④解析因为a >0,b >0,所以a +b +1ab ≥2ab +1ab ≥22, 当且仅当a =b 且2ab =1ab, 即a =b =22时取等号,故①正确;因为a +b ≥2ab >0,所以2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号, 故②错误;因为2ab a +b ≤2ab 2ab =ab ,当且仅当a =b 时取等号, 所以a 2+b 2a +b =(a +b )2-2ab a +b =a +b -2ab a +b≥ 2ab -ab =ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b≥ab ,即a 2+b 2ab ≥a +b ,故③正确; 因为(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥ 2+2b a ·ab =4,当且仅当a =b 时取等号,故④正确.15.已知a >0,b >0,且a +b =1,则1a +1b +ab 的最小值为____________.答案174解析因为a >0,b >0,且a +b =1,所以1=a +b ≥2ab ,即0<ab ≤14,当且仅当a =b 时取等号, 令t =ab ,则1a +1b +ab =1ab +ab =1t +t ,t ∈⎝ ⎛⎦⎥⎤0,14,因为函数y =1t +t 在⎝ ⎛⎦⎥⎤0,14上为减函数, 所以当t =14时,函数y =1t +t 取得最小值,即y min =14+4=174.16.(2022·沙坪坝模拟)若x >0,y >0且x +y =xy ,则x x -1+2y y -1的最小值为________. 答案3+2 2解析因为x >0,y >0且x +y =xy ,则xy =x +y >y ,即有x >1,同理y >1,由x +y =xy 得,(x -1)(y -1)=1,于是得xx -1+2yy -1=1+1x -1+2+2y -1=3+⎝ ⎛⎭⎪⎫1x -1+2y -1≥3+21x -1·2y -1=3+22, 当且仅当1x -1=2y -1,即x =1+22,y =1+2时取“=”,所以xx -1+2yy -1的最小值为3+2 2.。
2021年高考数学高分套路 基本不等式(解析版)

mn
2
3.已知
a
1, b
0, a
b
2
,则
a
1 1
1 2b
的最小值为(
)
A. 3 2 2
B. 3 2 42
C. 3 2 2
D. 1 2 23
【答案】A
【解析】由题意知 a 1,b 0, a b 2 ,可得: (a 1) b 1, a 1 0 ,
则
a
1 1
1 2b
[(a
1)
b](
∴ + = [(x+2)+(y+1)] x+2 y+1 = y+1 x+2 ≥
x+2 y+1 4
4
4
x+2 4y+1
·
9
y+1 x+2 = ,
4
41
2
+
9
当且仅当 x=2y= 时, x+2 y+1 = min .
3
4
【套路总结】 在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数 1”的替换,或构造不等式 求解.
2 的最大值为 .
4
2
1
(2)因为 x<5,所以 5-4x>0,则 f(x)=4x-2+
1
5-4x+
=-
5-4x +3
4
4x-5
1
1
≤-2 (5-4x)· +3=-2+3=1.当且仅当 5-4x= ,即 x=1 时,等号成立.
5-4x
5-4x
1 故 f(x)=4x-2+ 的最大值为 1.
4x-5 x2+2
1
1
【解析】 x(4-3x)= ·(3x)(4-3x)≤ ·
2
2=4,
3
3
3
2021年新课标新高考数学复习课件:§2.2 基本不等式与不等式的综合应用

(2)
ab
b +a
≥2(a,b同号).
(3)ab≤
a
b 2 2 (a,b∈R).
(4)
a2 b2 ≥ a b ≥
2
2
ab
≥
1
2
1
(a,b∈R+).
ab
3.利用基本不等式求最值
已知x>0,y>0,
(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最① 小 值② 2 p (简记:积定和最小).
解题导引 (1)主要是求半个圆柱的侧面积及两个半圆的面积之和,先求出 每个半圆柱型大棚的底面半径,再求每个半圆柱型大棚的表面积(不含与 地面接触的面). (2)设每个半圆柱型大棚的底面半径为r m,由已知条件知,n个半圆柱型大 棚间有(n-1)个1米宽的空地,分析出n,r之间的关系,即2nr+(n-1)×1=99,再把r 用n表示出来,将总建设造价均用n表示,求出费用关于n的函数关系,再求其 取最小值时n的值.
(1)若对于所有的实数x,不等式恒成立,求m的取值范围;
(2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围.
解析 (1)当m=0时,不等式mx2-2x-m+1<0可化为1-2x<0,显然对所有的实
数x,不等式不恒成立.∴m≠0.设f(x)=mx2-2x-m+1,
∵f(x)<0恒成立,∴
则
g g
(-1) 1 a 2a-2 (1) 1-a 2a-2
3a-1 a-1 0,
0,
解得a≤1 .
3
∴实数a的取值范围为
-
,
1 3
.
2021届高考数学总复习(人教A版,理科)配套题库: 基本不等式(含答案解析)

第4讲 基本不等式一、选择题1.若x >0,则x +4x的最小值为( ).A .2B .3C .2 2D .4解析 ∵x >0,∴x +4x≥4.答案 D2.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( ).A.72B .4C.92D .5解析 依题意得1a +4b =12⎝ ⎛⎭⎪⎫1a +4b (a +b )=12⎣⎢⎡⎦⎥⎤5+⎝ ⎛⎭⎪⎫b a +4a b ≥12⎝ ⎛⎭⎪⎫5+2b a ×4a b =92,当且仅当⎩⎪⎨⎪⎧a +b =2b a =4a b a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92.答案 C3.小王从甲地到乙地的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ). A .a <v <ab B .v =ab C.ab <v <a +b2D .v =a +b2解析 设甲、乙两地之间的距离为s . ∵a <b ,∴v =2ss a +s b=2ab a +b<2ab2ab =ab .又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a .答案 A4.若正实数a ,b 满足a +b =1,则( ). A.1a +1b有最大值4B .ab 有最小值14C.a +b 有最大值 2D .a 2+b 2有最小值22解析 由基本不等式,得ab ≤a 2+b 22=a +b2-2ab2,所以ab ≤14,故B 错;1a +1b =a +bab=1ab≥4,故A 错;由基本不等式得a +b 2≤ a +b 2=12,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故D 错. 答案 C5.已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( ).A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)解析 ∵x >0,y >0且2x +1y =1, ∴x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+4y x +x y≥4+24y x ·x y =8,当且仅当4y x =x y ,即x =4,y =2时取等号,∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4<m <2. 答案 D。
2021高考数学9.3 基本不等式

不等式
高考第一轮复习 第三节 基本不等式
1高考引航
2必备知识
3关键能力
高考引航
知识清单
必备知识
答案
基础训练
题型归纳题型一 利用基本不等式求最值关键能力
点拨:在利用基本不等式求最值时,必须满足三个条件:
①各项均为正数;②含变数的各项的和(或积)必须是定值;③当含变数的各项均相等时取得最值,即一正、二定、三相等.这三个条件极易忽略而导致解
题型二 基本不等式与其他知识的交汇问题值
答案
解析
点拨:求基本不等式与其他知识交汇的最值问题的类型及策略:
(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.
(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.
答案
解析
题型三 基本不等式的实际应用
解析
点拨:利用基本不等式解决实际应用题的基本思路:①设变量时一般要把求最大值或最小值的变量定义为函数;②根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值;③在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.
解析
方法突破
方法一 利用基本不等式求参数的值或取值范围
答案
解析
方法二 利用基本不等式证明不等式
解析
谢谢观赏。
2021版新高考数学一轮复习讲义:第六章第四讲 基本不等式 (含解析)

第四讲 基本不等式ZHI SHI SHU LI SHUANG JI ZI CE知识梳理·双基自测 知识梳理知识点一 重要不等式a 2+b 2≥__2ab __(a ,b ∈R )(当且仅当__a =b __时等号成立). 知识点二 基本不等式ab ≤a +b2(均值定理) (1)基本不等式成立的条件:__a >0,b >0__; (2)等号成立的条件:当且仅当__a =b __时等号成立;(3)其中a +b2叫做正数a ,b 的__算术平均数__,ab 叫做正数a ,b 的__几何平均数__.知识点三 利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当__x =y __时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)重要结论常用的几个重要不等式(1)a +b ≥2ab (a >0,b >0).(当且仅当a =b 时取等号) (2)ab ≤(a +b 2)2(a ,b ∈R ).(当且仅当a =b 时取等号)(3)(a +b 2)2≤a 2+b 22(a ,b ∈R ).(当且仅当a =b 时取等号)(4)b a +ab ≥2(a ,b 同号).(当且仅当a =b 时取等号). (5)21a +1b≤ab ≤a +b2≤a 2+b 22(a ,b >0当且仅当a =b 时取等号). 双基自测题组一 走出误区1.(多选题)下列命题不正确的是( ABC )A .“x >0且y >0”是“x y +yx ≥2”的充要条件B .若x >0,则x 3+1x2的最小值为2xC .不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件D .两个正数的等差中项不小于它们的等比中项 题组二 走进教材2.(必修5P 100练习T1改编)若x <0,则x +1x ( D )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2[解析] 因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2.3.(必修五P 100A 组T2改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__25__m 2.[解析] 设矩形的一边为x m ,面积为y m 2, 则另一边为12×(20-2x )=(10-x )m ,其中0<x <10,∴y =x (10-x )≤[x +(10-x )2]2=25,当且仅当x =10-x ,即x =5时,y max =25. 题组三 考题再现4.(2017·江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__30__.[解析] 总费用为4x +600x ×6=4(x +900x )≥4×2900=240,当且仅当x =900x ,即x =30时等号成立.5.(2019·天津,13)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 92 .[解析] (x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy =2+5xy .∵x >0,y >0,∴4=x +2y ≥2x ·2y ,解得0<xy ≤2, 当且仅当x =2y =2,即x =2且y =1时“=”成立.此时1xy ≥12,∴2+5xy ≥2+52=92,故(x +1)(2y +1)xy 的最小值为92.KAO DIAN TU PO HU DONG TAN JIU考点突破·互动探究考点一 利用基本不等式求最值——多维探究角度1 配凑法求最值例1 (1)已知a ,b 是正数,且4a +3b =6,则a (a +3b )的最大值是( C ) A .98B .94C .3D .9(2)(2020·吉林模拟)已知x >2,若f (x )=x +1x -2在x =n 处取得最小值,则n =( B )A .52B .3C .72D .4(3)(2020·重庆南开中学质检)已知实数a ,b >1,且满足ab -a -b =5,则2a +3b 的最小值为__17__.[解析] (1)∵a >0,b >0,4a +3b =6,∴a (a +3b )=13·3a (a +3b )≤13(3a +a +3b 2)2=13×(62)2=3,当且仅当3a =a +3b ,即a =1,b =23时,a (a +3b )的最大值是3.(2)由f (x )=x +1x -2=(x -2)+1x -2+2≥4,当且仅当x -2=1x -2>0,即x =3时,取得等号,故选B .(3)由ab -a -b =5⇒6=(a -1)(b -1) ⇒36=(2a -2)(3b -3)≤(2a -2+3b -32)2则2a +3b ≥17,当且仅当a =4,b =3取最小值. [易错警示] 求最值时忽视两项和或积为定值致错利用基本不等式求最值,在保证各项为正数的情况下,必须考虑两项和或两项积为定值,本题解答易忽视两项和为定值的条件,即错误解法为:a (a +3b )≤(a +a +3b2)2,当且仅当a=a +3b ,且4a +3b =6,即a =32,b =0时,a (a +3b )的最大值为94,从而错选B .[引申]f (x )=x +1x -2的值域为__(-∞,0]∪[4,+∞)__. [解析] f (x )=(x -2)+1x -2+2, ∵|(x -2)+1x -2|=|x -2|+1|x -2|≥2 (当且仅当|x -2|=1即x =3或1时取等号) ∴(x -2)+1x -2≥2或x -2+1x -2≤-2,∴f (x )≥4或f (x )≤0,即f (x )的值域为(-∞,0]∪[4,+∞). 名师点拨 ☞拼凑法求最值的技巧(1)用均值定理求最值要注意三个条件:一正、二定、三相等.“一正”不满足时,需提负号或加以讨论,“二定”不满足时,需变形,“三相等”不满足时,可利用函数单调性.(2)求乘积的最值.同样要检验“一正、二定、三相等”,如例(2)的关键是变形,凑出积为常数.角度2 换元法求最值例2 (1)函数y =x -1x +3+x -1的最大值为 15 .(2)(2020·百校联盟尖子生联考)已知a ,b ∈R +,且a +2b =ab -16,则ab 的最小值为( B )A .16B .32C .64D .128[解析] (1)令t =x -1≥0,则x =t 2+1,所以y =t t 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0;当t >0时,即x >1时,y =1t +4t+1,因为t +4t ≥24=4(当且仅当t =2时取等号),所以y =1t +4t +1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).(2)ab -16=a +2b ≥22ab ,令ab =t , 则t 2-22t -16≥0⇒t ≥22+722=42,故ab ≥32,即ab 最小值为32.(当且仅当a =8,b =4时取等号)故选B . 角度3 常数代换法求最值例3 (1)(2020·天津七校期中联考)已知a >0,b >0,且1a +1+1b=1,求a +b 的最小值__3__.(2)(2020·浙江宁波适应性考试)已知正实数a ,b 满足a +b =1,则1a (b +1b )的最小值是( C )A .112B .5C .2+2 2D .3+ 2[解析] (1)∵a >0,b >0,且1a +1+1b =1,∴a +b =[(a +1)+b ]-1=(1a +1+1b )[(a +1)+b ]-1=b a +1+a +1b +1≥2b a +1·a +1b+1=3, 当且仅当a +1=b ,即a =1,b =2时取等号, ∴a +b 的最小值为3,另解:(换元法)由1a +1+1b =1得b =1+1a ,(a >0),∴a +b =a +1a+1≥2a ·1a+1=3, 当且仅当a =1,b =2时取等号,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2节 基本不等式
【答案】(-4,3)
第2节 基本不等式
考点3 利用基本不等式证明不等式
第2节 基本不等式
第2节 基本不等式
必备知识 整合提升
第2节 基ห้องสมุดไป่ตู้不等式
第2节 基本不等式
第2节 基本不等式
第2节 基本不等式
第2节 基本不等式
考点精析 考法突破
考点1 利用基本不等式求最值
第2节 基本不等式
第2节 基本不等式
第2节 基本不等式
对点练
第2节 基本不等式
第2节 基本不等式
思维提升 针对强化
提升点 重要不等关系的应用
第2节 基本不等式
第2节 基本不等式
对点练
【答案】D
第2节 基本不等式
【答案】A
第2节 基本不等式
【答案】A
第2节 基本不等式
考点精析 考法突破
利用基本不等式求最值的解法技巧
(1)已知恒等式,求最值问题,注意给出目标式子与恒等式的关 系.若目标式子是恒等式的一部分,则直接应用基本不等式求 解;否则,可以尝试“1”的代换、“减元”等方法的应用. (2)构造利用基本不等式的形式,再对照基本不等式的使用条件, “一正”不满足时要乘-1变为正数,“二定”不满足时要凑定 值,“三相等”不满足时要改用函数的图像或单调性求最值
第2节 基本不等式
第2节 基本不等式
对点练
【答案】A
第2节 基本不等式
【答案】B
第2节 基本不等式
【答案】16
第2节 基本不等式
考点3 利用基本不等式证明不等式
利用基本不等式证明不等式的题型与解法: (1)不含等式条件的证明问题:首先观察要证明的不等式的形式, 若符合基本不等式的条件,可以直接利用基本不等式证明;若 不符合,则需对代数式进行拆项、变形、配凑等,使之达到基 本不等式的条件. (2)含有等式条件的证明问题:分析等式条件与要证明的不等式 之间的联系,将要证的不等式化为含有等式条件的式子,将等 式条件代入求解.当等式条件中含有1时,注意1的代换.
利用基本不等式求最值的常用方法
(1)拼凑法:将相关代数式进行适当的变形,通过添项、拆项、 变系数、凑因子等方法凑成和为定值或积为定值的形式.求几 个正数和的最小值时,通常利用添加常数、拆项等方式进行拼 凑;求几个正数积的最大值,通常利用乘或除以常数、拆因式 等方式拼凑. (2)换元法:当分母是多项式,无法直接应用基本不等式时,可 先换元,将分母变为单项式,凑出基本不等式的使用条件,再 利用基本不等式求解. (3)常数代换法:在条件最值问题中,多次连续应用基本不等式 时,经常出现各次等号成立的条件不能同时取到,这时可考虑 应用常数代换法
2021届全国新高考数学备考复习 基本不等式
基本不等式
真题自测 考向速览 必备知识 整合提升 考点精析 考法突破 思维提升 针对强化
第2节 基本不等式
真题自测 考向速览
考点1 利用基本不等式求最值
第2节 基本不等式
第2节 基本不等式
【答案】9
第2节 基本不等式
考点2 利用基本不等式求参数的取值范围
第2节 基本不等式
第2节 基本不等式
第2节 基本不等式
对点练
1.
【答案】A
第2节 基本不等式
2.
【答案】C
第2节 基本不等式
3.
【答案】C
第2节 基本不等式
4.(多选)[山东莱州一中2020届月考]若正实数a,b满足a+b=1,则下列选项中 正确的是( )
【答案】AC
第2节 基本不等式
第2节 基本不等式
考点2 利用基本不等式求参数的取值范围
利用基本不等式求参数的取值范围的常见题型和解题策略: (1)不等式恒成立或有解求参数的取值问题:利用分离参数的方 法,转化为求函数的最值,再利用基本不等式求解. (2)方程有解求参数的取值范围问题:利用分离参数的方法,转 化为求函数的值域,再利用基本不等式求解.