人教版2018最新高中数学高考三角函数重点题型解析及常见试题、答案Word版

合集下载

2018年高三最新 高考全国试题分类解析(三角函数部分) 精品

2018年高三最新 高考全国试题分类解析(三角函数部分) 精品

2018年全国高考数学试题(三角函数部分)选择题1.(北京卷)对任意的锐角α,β,下列不等关系中正确的是 D (A )sin(α+β)>sin α+sin β (B )sin(α+β)>cos α+cos β (C )cos(α+β)<sinα+sinβ (D )cos(α+β)<cosα+cosβ2.(北京卷)函数f (x )=cos xA(A )在[0,),(,]22πππ上递增,在33[,),(,2]22ππππ上递减 (B )在3[0,),[,)22πππ上递增,在3(,],(,2]22ππππ上递减 (C )在3(,],(,2]22ππππ上递增,在3[0,),[,)22πππ上递减 (D )在33[,),(,2]22ππππ上递增,在[0,),(,]22πππ上递减 3.(全国卷Ⅰ)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为 D(A )2(B )32(C )4(D )344.(全国卷Ⅰ)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: B ① 1cot tan =⋅B A② 2sin sin 0≤+<B A③ 1cos sin 22=+B A④ C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④ (D )②③5.(全国卷Ⅱ)函数f (x ) = | sin x +cos x |的最小正周期是 C (A)4π (B)2π(C )π (D )2π 6.(全国卷Ⅱ)已知函数y =tan x ω 在(-2π,2π)内是减函数,则 B(A )0 <ω ≤ 1 (B )-1 ≤ ω < 0 (C )ω≥ 1 (D )ω≤ -17.(全国卷Ⅱ)锐角三角形的内角A 、B 满足tan A -A2sin 1= tan B,则有(A )sin 2A –cos B = 0 (B)sin 2A + cos B = 0 (C)sin 2A – sin B = 0 (D) sin 2A+ sin B = 0 8.(全国卷Ⅲ)已知α为第三象限角,则2α所在的象限是 D(A )第一或第二象限 (B )第二或第三象限(C )第一或第三象限 (D )第二或第四象限9.(全国卷Ⅲ)设02x π≤≤,sin cos x x =-,则 C(A) 0x π≤≤ (B)744x ππ≤≤(C) 544x ππ≤≤ (D) 322x ππ≤≤10.(全国卷Ⅲ)22sin 2cos 1cos 2cos 2⋅=+ααααB (A) tan α (B) tan 2α (C) 1 (D)1211.(浙江卷)已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( A ) (A) 1 (B) -1 (C) 2k +1 (D) -2k +1 12.(浙江卷)函数y =sin(2x +6π)的最小正周期是( B ) (A)2π(B) π (C) 2π (D)4π 13.(江西卷)已知==ααcos ,32tan 则( B )A .54 B .-54 C .154 D .-53 14.(江西卷)设函数)(|,3sin |3sin )(x f x x x f 则+=为( A )A .周期函数,最小正周期为32π B .周期函数,最小正周期为3π C .周期函数,数小正周期为π2D .非周期函数15.(江西卷)在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则当△OAB的面积达最大值时,=θ( D ) A .6πB .4π C .3π D .2π 16、(江苏卷)若316sin =⎪⎭⎫⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos =( A ) A .97-B .31-C .31D .9717.(湖北卷)若∈<<=+απαααα则),20(tan cos sin( C )A .)6,0(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ18.(湖南卷)tan600°的值是( D )A .33-B .33C .3-D .319.(重庆卷)=+-)12sin12)(cos12sin12(cos ππππ( D )A .23-B .21-C .21D .2320.(福建卷)函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( C ) A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==21.(福建卷)函数x y 2cos =在下列哪个区间上是减函数( C )A .]4,4[ππ-B .]43,4[ππ C .]2,0[πD .],2[ππ22.(山东卷)已知函数)12cos()12sin(π-π-=x x y ,则下列判断正确的是( B ) (A )此函数的最小正周期为π2,其图象的一个对称中心是)0,12(π(B )此函数的最小正周期为π,其图象的一个对称中心是)0,12(π(C )此函数的最小正周期为π2,其图象的一个对称中心是)0,6(π(D )此函数的最小正周期为π,其图象的一个对称中心是)0,6(π23(山东卷)函数⎪⎩⎪⎨⎧≥<<-π=-0,01),sin()(12x e x x x f x ,若2)()1(=+a f f ,则a 的所有可能值为( B )(A )1 (B )22,1- (C )22- (D )22,1 24.(天津卷)要得到函数x y cos 2=的图象,只需将函数)42sin(2π+=x y 的图象上所有的点的(C )(A)横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度 (B)横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度(C)横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度 (D)横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度25(天津卷)函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为( A )(A ))48sin(4π+π-=x y (B ))48sin(4π-π=x y (C ))48sin(4π-π-=x y (D ))48sin(4π+π=x y填空题:1.(北京卷)已知tan2α=2,则tanα的值为-34,tan ()4πα+的值为-712.(全国卷Ⅱ)设a 为第四象限的角,若513sin 3sin =a a ,则tan 2a =___43-___________. 3.(上海卷)函数[]π2,0|,sin |2sin )(∈+=x x x x f 的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是__________。

【高考数学】2018最新高中数学高考三角函数重点题型解析及常见试题、答案(专题拔高特训)

【高考数学】2018最新高中数学高考三角函数重点题型解析及常见试题、答案(专题拔高特训)

高考三角函数重点题型解析及常见试题(附参考答案)三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( ) A .1-BC.12-D.12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令sin cos sin(),4t x x x π=++而74412x πππ<+≤,得1t <≤又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =+,选D 。

例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()12622f a b π=+= ,所以4b =,a =(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A .。

高考三角函数大题及解析

高考三角函数大题及解析

高考三角函数大题一.解答题(共14小题)2.(2018•新课标Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.3.(2018•北京)在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.4.(2018•北京)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.5.(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.6.(2018•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.7.(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.8.(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.9.(2017•新课标Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.10.(2017•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.11.(2017•北京)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.12.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.14.(2017•上海)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.2017-2018高考三角函数大题参考答案与试题解析一.解答题(共14小题)2.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.3.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.4.【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.5.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣6.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.7.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.8.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;=ac•sinB=2,∴ac=,(2)由(1)可知sinB=,∵S△ABC∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.9.【解答】解:(1)∵sinA+cosA=0,∴tanA=,∵0<A<π,∴A=,由余弦定理可得a2=b2+c2﹣2bccosA,即28=4+c2﹣2×2c×(﹣),即c2+2c﹣24=0,解得c=﹣6(舍去)或c=4,故c=4.(2)∵c2=b2+a2﹣2abcosC,∴16=28+4﹣2×2×2×cosC,∴cosC=,=AB•AC•sin∠BAC=×4×2×=2,∴CD===∴CD=BC∵S△ABC=S△ABC=∴S△ABD10.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sinA=.∴b=,sinA=;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.11.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC12.【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.14.【解答】解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2或3,若c=2,则cosB=<0,即有B为钝角,c=2不成立,则c=3,△ABC的面积为S=bcsinA=×5×3×=.第11页(共11页)。

2018年高考数学(文)考纲解读与热点难点突破专题05三角函数图象与性质-Word版含解析.doc

2018年高考数学(文)考纲解读与热点难点突破专题05三角函数图象与性质-Word版含解析.doc

1.将函数f (x )=sin ⎝⎛⎭⎪⎫x +π6的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是( )A .x =-π12B .x =π12C .x =π3D .x =2π32.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,如果x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.12 B .32 C.22D .1 解析:由题图可知,T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,则T =π,ω=2,又-π6+π32=π12,∴f (x )的图象过点⎝ ⎛⎭⎪⎫π12,1,即sin ⎝ ⎛⎭⎪⎫2×π12+φ=1,得φ=π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.而x 1+x 2=-π6+π3=π6,∴f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫2×π6+π3=sin 2π3=32.答案:B3.将函数y =3cos x +sin x (x ∈R)的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A.π6 B.π12 C.π3 D.5π6解析:∵y =3cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π3,∴将函数图象向左平移m 个单位长度后得g (x )=2sin ⎝ ⎛⎭⎪⎫x +π3+m 的图象,∵g (x )的图象关于y 轴对称,∴g (x )为偶函数,∴π3+m =π2+k π(k ∈Z),∴m =π6+k π(k ∈Z),又m >0,∴m 的最小值为π6.答案:A4.已知函数f (x )=A sin(ωx +φ)的图象如图所示,则该函数的解析式可能是( )A .f (x )=34sin ⎝ ⎛⎭⎪⎫32x +π6B .f (x )=45sin ⎝ ⎛⎭⎪⎫45x +15C .f (x )=45sin ⎝ ⎛⎭⎪⎫56x +π6D .f (x )=45sin ⎝ ⎛⎭⎪⎫23x -15解析:由图可以判断|A |<1,T >2π,则|ω|<1,f (0)>0,f (π)>0,f (2π)<0,只有选项B 满足上述条件. 答案:B5.已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A.43B.34C .-34D .±346.设a =tan 130°,b =cos(c os 0°),c =⎝⎛⎭⎪⎫x 2+120,则a ,b ,c 的大小关系是( )A .c >a >bB .c >b >aC .a >b >cD .b >c >a解析 a =tan 130°<0,b =cos(cos 0°)=cos 1,∴0<b <1;c =1,故选B. 答案 B7.已知1+sin αcos α=-12,则cos αsin α-1的值是( )A.12 B .-12C .2D .-2 解析 由同角三角函数关系式1-sin 2α=cos 2α及题意可得cos α≠0,且1-sin α≠0,∴1+sin αcos α=cos α1-sin α,∴cos α1-sin α=-12,即cos αsin α-1=12.答案 A8.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的图象为C ,下面结论中正确的是( )A .函数f (x )的最小正周期是2πB .图象C 关于点⎝ ⎛⎭⎪⎫π6,0对称C .图象C 可由函数g (x )=sin 2x 的图象向右平移π3个单位得到D .函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,π2上是增函数9.函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-32 B .-12C.12D.32解析 由函数f (x )的图象向左平移π6个单位得f (x )=sin ⎝⎛⎭⎪⎫2x +φ+π3的函数是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎪⎫2x -π3.又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,23π,所以当x =0时,f (x )取得最小值为-32.答案 A10.函数f (x )=A sin(ωx +φ)+b ⎝⎛⎭⎪⎫其中ω>0,|φ|<π2的图象如下,则S =f (0)+f (1)+…+f (2 011)等于( )A .0B .503C .1 006D .2 01211.设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2,且其图象关于y 轴对称,则函数y =f (x )的一个单调递减区间是( )A.⎝⎛⎭⎪⎫0,π2B.⎝⎛⎭⎪⎫π2,πC.⎝ ⎛⎭⎪⎫-π2,-π4D.⎝ ⎛⎭⎪⎫3π2,2π解析 因为f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3的图象关于y 轴对称,所以θ=-π6,所以f (x )=-2cos 12x 在⎝ ⎛⎭⎪⎫-π2,-π4递减,故选C.答案 C12.设函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的图象关于直线x =2π3对称,它的周期为π,则( )A .f (x )的图象过点⎝ ⎛⎭⎪⎫0,12B .f (x )在⎣⎢⎡⎦⎥⎤π12,2π3上是减函数C .f (x )的一个对称中心是⎝⎛⎭⎪⎫5π12,0D .将f (x )的图象向右平移|φ|个单位得到y =2sin ωx 的图象解析 因为设函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期为π,所以φ=π6,ω=2,所以f (x )=2sin(2x +π6)(ω>0,-π2<φ<π2),因为f ⎝ ⎛⎭⎪⎫5π12=0,所以f (x )的一个对称中心是⎝ ⎛⎭⎪⎫5π12,0,故选C.答案 C13.已知函数f (x )=2sin(x +φ)的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫2 008π3的值为( )A .-2B .2C .- 3D. 314.函数y =3sin x +3cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.解析:化简可得y =23sin ⎝⎛⎭⎪⎫x +π6,由2k π-π2≤x +π6≤2k π+π2(k ∈Z),得-2π3+2k π≤x ≤π3+2k π(k ∈Z),又x ∈⎣⎢⎡⎦⎥⎤0,π2,∴函数的单调递增区间是⎣⎢⎡⎦⎥⎤0,π3.答案:⎣⎢⎡⎦⎥⎤0,π315.已知ω>0,在函数y =2sin ωx 与2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.解析:令ωx =X ,则函数y =2sin X 与y =2cos X 图象交点坐标分别为⎝ ⎛⎭⎪⎫π4+2k π,2,⎝ ⎛⎭⎪⎫5π4+2k π,-2,k ∈Z.因为距离最短的两个交点的距离为23,所以相邻两点横坐标最短距离是2=T 2,所以T =4=2πω,所以ω=π2.答案:π216.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6-1(ω>0)的图象向右平移2π3个单位后与原图象重合,则ω的最小值是________.解析:将f (x )的图象向右平移2π3个单位后得到图象的函数解析式为2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -2π3+π6-1=2sin ⎝ ⎛⎭⎪⎫ωx -2ωπ3+π6-1,所以2ωπ3=2k π,k ∈Z,所以ω=3k ,k ∈Z,因为ω>0,k ∈Z,所以ω的最小值为3. 答案:317.已知a =(sin x ,-cos x ),b =(cos x ,3cos x ),函数f (x )=a ·b +32. (1)求f (x )的最小正周期,并求其图象对称中心的坐标; (2)当0≤x ≤π2时,求函数f (x )的值域.18.已知函数f (x )=sin 2x -sin 2⎝ ⎛⎭⎪⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.解:(1)由已知,有19.某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O最近的对称中心.解:(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎪⎫2x -π6, 因此g (x )=5sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-π6=5sin ⎝ ⎛⎭⎪⎫2x +π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z .令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎪⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝ ⎛⎭⎪⎫-π12,0.20.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫x ∈R ,ω>0,0<φ<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝ ⎛⎭⎪⎫x -π12-f ⎝ ⎛⎭⎪⎫x +π12的单调递增区间.所以函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .。

人教版2018最新高中数学高考三角函数重点题型解析及常见试题、答案Word版

人教版2018最新高中数学高考三角函数重点题型解析及常见试题、答案Word版

的,而
3
决. 解 析: 由 0
1 2sin x cos x ,换元解
x
3
,令 t
sin x
cos x
2 sin( x
4
), 而
4
x
7 4 12
,得
1 t
又t
2
2.
1 2sin x cos x ,得 sin x cos x
2
t
2
1 2

得 y
t
t
1 2
1 2
( t 1)
2
1 ,有 1 0
y
2
( 2)
2
即 x
( 2) f ( x ) 故当 2 x
4
8sin(2 x (k
2
6
)
4,
6
2
k a
2
6
Z ) 时,函数 f x 取得最大值为 12 .
是三角函数中的一个重要公式, 它在
点评: 结论 a sin 解决三角函数的图象、 点内容.
b cos
b sin
单调性、 最值、 周期以及化简求值恒等式的证明中有着广泛应用,
更多资料请加三好网小好师弟微信: sanhao1001
高考三角函数重点题型解析及常见试题
三角函数的图象,三角恒等变换(主要是求值) 用,平面向量的基本问题及其应用.
( 附参考答案 )

三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值) ,三角函数模型的应用,正余弦定理及其应 其主要方法是利用正余
B
10) 函数
y
tan x sin x
tan x sin x 在区间 (
2
,

2018年高考数学专题12任意角和弧度制及任意角的三角函数热点题型和提分秘籍理

2018年高考数学专题12任意角和弧度制及任意角的三角函数热点题型和提分秘籍理

专题12 任意角和弧度制及任意角的三角函数1.了解任意角的概念2.了解弧度制的概念,能进行弧度与角度的互化 3.理解任意角的三角函数(正弦、余弦、正切)的定义热点题型一 象限角与终边相同的角例1、 (1)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________。

(2)如果α是第三象限的角,试确定-α,2α的终边所在位置。

【答案】(1)⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π(2)见解析解析:(1)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π。

(2)由α是第三象限的角得π+2k π<α<3π2+2k π(k ∈Z ),所以-3π2-2k π<-α<-π-2k π(k ∈Z ),即π2+2k π<-α<π+2k π (k ∈Z ), 所以角-α的终边在第二象限。

由π+2k π<α<3π2+2k π(k ∈Z ),得2π+4k π<2α<3π+4k π(k ∈Z )。

所以角2α的终边在第一、二象限及y 轴的非负半轴。

【提分秘籍】1.终边在某直线上角的求法步骤(1)数形结合,在平面直角坐标系中画出该直线。

(2)按逆时针方向写出[0,2π)内的角。

(3)再由终边相同角的表示方法写出满足条件角的集合。

(4)求并集化简集合。

2.确定k α,αk(k ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出k α或αk的范围,然后根据k 的可能取值讨论确定k α或αk的终边所在位置。

【举一反三】设角α是第二象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则角α2属于( )A .第一象限B .第二象限C .第三象限D .第四象限热点题型二 扇形的弧长及面积公式例2、 (1)已知扇形周长为10,面积是4,求扇形的圆心角。

2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解(最新整理)

2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解(最新整理)

所以 BC 5 .
1
π
2.解:(Ⅰ)在△ABC 中,∵cosB=– ,∴B∈( ,π),∴sinB=
1 cos2 B 4
2.【2018 全国二卷 15】已知 sin α cos β 1 , cos α sin β 0 ,则 sin(α β) __________.
3.【2018
全国三卷
15】函数
f
x
cos
3x
π 6
在0
,π
的零点个数为________.
4.【2018 北京卷 11】设函数 f(x)= cos(x π)( 0) ,若 f (x) f ( π) 对任意的实数 x 都成立,则 ω
交 AC 于点 D,且 BD 1,则 4a c 的最小值为

7.【2018 浙江卷 13】在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.若 a= 7 ,b=2,A=60°, 则 sin B=___________,c=___________.
II
三.解答题 1.【2018 全国一卷 17】在平面四边形 ABCD 中, ADC 90 , A 45 , AB 2 , BD 5 .
sin 45 sin ADB
5
由题设知, ADB 90 ,所以 cos ADB
1 2
23 .
25 5
IV
(2)由题设及(1)知, cos BDC sin ADB 2 .在△BCD 中,由余弦定理得 5
BC2 BD2 DC2 2 BD DC cos BDC 25 8 2 5 2 2 2 25 . 5
6
4
的最小值为__________.
5. 【 2018 江 苏 卷 7】 已 知 函 数 y sin(2x )( ) 的 图 象 关 于 直 线 x 对 称 , 则 的 值

2018年高考数学—三角函数(解答+答案)

2018年高考数学—三角函数(解答+答案)

2018年高考数学——三角函数解答1.(18北京理(15)(本小题13分))在△ABC 中,a =7,b =8,cos B =–17. (Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.2.(18江苏16.(本小题满分14分))已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值;(2)求tan()αβ-的值.3.(18全国一理17.(12分))在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .4.(18天津理(15)(本小题满分13分))在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-. (I )求角B 的大小;学科*网(II )设a =2,c =3,求b 和sin(2)A B -的值.5.(18浙江18.(本题满分14分))已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455-,-). (Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=513,求cos β的值.6.(18北京文(16)(本小题13分))已知函数2()sin cos f x x x x =+.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值.参考答案:1.解:(Ⅰ)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =2431cos B -=. 由正弦定理得sin sin a b A B =⇒7sin A =43,∴sin A =3. ∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3. (Ⅱ)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A =31143()72⨯-+⨯=33. 如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337⨯=, ∴AC 边上的高为33.2.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈.又因为5cos()αβ+=,所以225sin()1cos ()αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.3.解:(1)在ABD △中,由正弦定理得sin sin BD AB A ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以2sin ADB ∠=. 由题设知,90ADB ∠<︒,所以223cos 1255ADB ∠=-=.(2)由题设及(1)知,cos sin BDC ADB ∠=∠=在BCD △中,由余弦定理得 2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.4.(Ⅰ)解:在△ABC 中,由正弦定理sin sin a b A B=,可得sin sin b A a B =,又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B =π3. (Ⅱ)解:在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b由πsin cos()6b A a B =-,可得sin A =.因为a <c ,故cos A .因此sin 22sin cos A A A =21cos22cos 17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=1127-=5.(Ⅰ)由角α的终边过点34(,)55P --得4sin 5α=-, 所以4sin(π)sin 5αα+=-=. (Ⅱ)由角α的终边过点34(,)55P --得3cos 5α=-, 由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-.6.【解析】(Ⅰ)1cos 211π1()22cos 2sin(2)22262x f x x x x x -=+=-+=-+, 所以()f x 的最小正周期为2ππ2T ==. (Ⅱ)由(Ⅰ)知π1()sin(2)62f x x =-+. 因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--. 要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1. 所以ππ262m -≥,即π3m ≥. 所以m 的最小值为π3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考三角函数重点题型解析及常见试题(附参考答案)三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( ) A .1-BC.12-D.12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令sin cos ),4t x x x π=+=+而74412x πππ<+≤,得1t <≤又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =+,选D 。

例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()1262f b π=+= ,所以4b =,a =(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A .例4 (2008高考江西文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是分析:分段去绝对值后,结合选择支分析判断.解析:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时.结合选择支和一些特殊点,选择答案D .点评:本题综合考察三角函数的图象和性质,当不注意正切函数的定义域或是函数分段不准确时,就会解错这个题目. 题型3 用三角恒等变换求值:其主要方法是通过和与差的,二倍角的三角变换公式解决. 例5 (2008高考山东卷理5)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是A.5-B.5C .45-D .45分析:所求的7πsin sin()66παα⎛⎫+=+ ⎪⎝⎭,将已知条件分拆整合后解决. 解析: C.34cos sin sin sin 6522565ππααααα⎛⎫⎛⎫-+=⇔+=⇔+= ⎪ ⎪⎝⎭⎝⎭,所以74sin sin 665ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭.ABCD-点评:本题考查两角和与差的正余弦、诱导公式等三角函数的知识,考查分拆与整合的数学思想和运算能力.解题的关键是对πcos sin 6αα⎛⎫-+= ⎪⎝⎭ 例6(2008高考浙江理8)若cos 2sin αα+=则tan α= A .21B .2C .21-D .2- 分析:可以结合已知和求解多方位地寻找解题的思路.()αϕ+=sin ϕϕ==1tan 2ϕ=,再由()sin 1αϕ+=-知道()22k k παϕπ+=-∈Z ,所以22k παπϕ=--,所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.方法二:将已知式两端平方得()2222222cos 4cos sin 4sin 55sin cos sin 4sin cos 4cos 0tan 4tan 40tan 2ααααααααααααα++==+⇒-+=⇒-+=⇒=方法三:令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =, 即sin 2cos 0αα-=,故tan 2α=.方法四:我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得x y ⎧=⎪⎪⎨⎪=⎪⎩从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的. 方法五:α只能是第三象限角,排除C .D .,这时直接从选择支入手验证,由于12计算麻烦,我们假定tan 2α=,不难由同角三角函数关系求出255sin ,cos 55αα=-=-,检验符合已知条件,故选B . 点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力.题型4 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型. 例7.(2008高考湖南理19)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A 相距402海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45θ+ (其中26sin 26θ=,090θ<<)且与点A 相距1013海里的位置C .(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.分析:根据方位角画出图形,如图.第一问实际上就是求BC 的长,在ABC ∆中用余弦定理即可解决;第二问本质上求是求点E 到直线BC 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决. 解析:(1)如图,402AB =2, 1013AC =26,sin 26BAC θθ∠==由于090θ<<,所以226526cos 1()2626θ=-=由余弦定理得222cos 10 5.BC AB AC AB AC θ=+-=所以船的行驶速度为10515523=(海里/小时). (2)方法一 : 如上面的图所示,以A 为原点建立平面直角坐标系, 设点,B C 的坐标分别是()()1122,,,B x y C x y ,BC 与x 轴的交点为D . 由题设有, 112402x y AB ===, 2cos 1013cos(45)30x AC CAD θ=∠=-=, 2sin 1013sin(45)20.y AC CAD θ=∠=-=所以过点,B C 的直线l 的斜率20210k ==,直线l 的方程为240y x =-. 又点()0,55E -到直线l 的距离|05540|35714d +-==<+,所以船会进入警戒水域.解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .在ABC ∆中,由余弦定理得,222cos 2AB BC AC ABC AB BC +-∠=⋅2222402105⨯⨯=31010.从而2910sin 1cos 1.1010ABC ABC ∠=-∠=-= 在ABQ ∆中,由正弦定理得,10402sin 1040sin(45)2210210AB ABC AQ ABC ⨯∠===-∠⨯. 由于5540AE AQ =>=,所以点Q 位于点A 和点E 之间,且15EQ AE AQ =-=. 过点E 作EP BC ⊥于点P ,则EP 为点E 到直线BC 的距离. 在QPE ∆Rt 中,5sin sin sin(45)15357.5PE QE PQE QE AQC QE ABC =∠=⋅∠=⋅-∠=⨯=< 所以船会进入警戒水域.点评:本题以教材上所常用的航海问题为背景,考查利用正余弦定理解决实际问题的能力,解决问题的关键是根据坐标方位画出正确的解题图. 本题容易出现两个方面的错误,一是对方位角的认识模糊,画图错误;二是由于运算相对繁琐,在运算上出错. 题型5 三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点.例8(2009年杭州市第一次高考科目教学质量检测理科第18题)已知向量)1,(sin ),2cos ,cos 2(x b x x a ωωω==,(0>ω),令b a x f ⋅=)(,且)(x f 的周期为π.(1) 求4f π⎛⎫⎪⎝⎭的值;(2)写出()f x 在]2,2[ππ-上的单调递增区间. 分析:根据平面向量数量积的计算公式将函数()f x 的解析式求出来,再根据)(x f 的周期为π就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可. 解析:(1)x x x b a x f ωωω2cos sin cos 2)(+=⋅=x x ωω2cos 2sin +=)42sin(2πω+=x ,∵)(x f 的周期为π. ∴1=ω, )42sin(2)(π+=x x f ,12cos 2sin )4(=π+π=π∴f .(2) 由于)42sin(2)(π+=x x f ,当πππππk x k 224222+≤+≤+-(Z k ∈)时,()f x 单增,即ππππk x k +≤≤+-883(Z k ∈),∵∈x ]2,2[ππ- ∴()f x 在]2,2[ππ-上的单调递增区间为]8,83[ππ-.点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点. 例9 (2009江苏泰州期末15题)已知向量()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,3,22παπ⎛⎫∈⎪⎝⎭,且a b ⊥.(1)求tan α的值; (2)求cos 23απ⎛⎫+⎪⎝⎭的值. 分析:根据两个平面向量垂直的条件将问题转化为一个三角函数的等式,通过这个等式探究第一问的答案,第一问解决后,借助于这个结果解决第二问.解析:(1)∵a b ⊥,∴0a b ⋅=.而()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,故226sin 5sin cos 4cos 0a b αααα⋅=+-=,由于cos 0α≠,∴26tan 5tan 40αα+-=, 解得4tan 3α=-,或1tan 2α=.∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,tan 0α<, 故1tan 2α=(舍去).∴4tan 3α=-. (2)∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,∴3ππ24α∈(,). 由4tan 3α=-,求得1tan 22α=-,tan 22α=(舍去).∴sincos 22αα==, cos 23απ⎛⎫+= ⎪⎝⎭ππcos cos sin sin 2323αα-=12=点评:本题以向量的垂直为依托,实质上考查的是三角恒等变换.在解题要注意角的范围对解题结果的影响.题型6 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是π,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型. 例10.(安徽省皖南八校2009届高三第二次联考理科数学17题)三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量(,),(,)m c a b a n a b c =--=+,若//m n , (1)求角B 的大小;(2)求sin sin A C +的取值范围.分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角,A C 就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题. 解析:(1)//,()()()m n c c a b a a b ∴---+,222222,1a c b c ac b a ac +-∴-=-∴=. 由余弦定理,得1cos ,23B B π==.(2)2,3A B C A C ππ++=∴+=,222sin sin sin sin()sin sin cos cos sin 333A C A A A A A πππ∴+=+-=+-33sin cos 3sin()226A A A π=+=+ 250,3666A A ππππ<<∴<+<13sin()1,sin sin 3262A A C π∴<+≤∴<+≤点评:本题从平面向量的平行关系入手,实质考查的是余弦定理和三角形中的三角恒等变换,解决三角形中的三角恒等变换要注意三角形内角和定理和角的范围对结果的影响.题型7 用平面向量解决平面图形中的问题:由于平面向量既有数的特征(能进行类似数的运算)又具有形的特征,因此利用平面向量去解决平面图形中的问题就是必然的了,这在近年的高考中经常出现.考试大纲明确指出用会用平面向量解决平面几何问题. 例11. 如图,已知点G 是ABO ∆的重心,点P 在OA 上,点Q 在OB 上,且PQ 过ABO ∆ 的重心G ,OP mOA =,OQ nOB =,试证明11m n+为常数,并求出这个常数.分析:根据两向量共线的充要条件和平面向量基本定理,把题目中需要的向量用基向量表达出来,本题的本质是点,,P G Q 共线,利用这个关系寻找,m n 所满足的方程. 解析:令OA a =,OB b =,则OP ma =,OQ nb =,设AB 的中点为M , 显然1().2OM a b =+,因为G 是ABC ∆的重心,所以21()33OG OM a b ==⋅+.由P 、G 、Q 三点共线,有PG 、GQ 共线,所以,有且只有一个实数λ,使 PG GQ λ=,而111()()333PG OG OP a b ma m a b =-=+-=-+, 111()()333GQ OQ OG nb a b a n b =-=-+=-+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、b 不共线,由平面向量基本定理得⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131n m λλ,消去λ,整理得3mn m n =+,故311=+nm .结论得证.这个常数是3. 【点评】平面向量是高中数学的重要工具,它有着广泛的应用,用它解决平面几何问题是一个重要方面,其基本思路是根据采用基向量或坐标把所要解决的有关的问题表达出来,再根据平面向量的有关知识加以处理.课标区已把几何证明选讲列入选考范围,应引起同学们的注意.题型8 用导数研究三角函数问题:导数是我们在中学里引进的一个研究函数的重要工具,利用导数探讨三角函数问题有它极大的优越性,特别是单调性和最值. 例12. 已知函数22()cos 2sin cos sin f x x t x x x =+-,若函数()f x 在区间(,]126ππ上是增函数,求实数t 的取值范围. 分析:函数的()f x 导数在(,]126ππ大于等于零恒成立. 解析:函数()f x 在区间(,]126ππ上是增函数,则等价于不等式()0f x '≥在区间(,]126ππ上恒成立,即()2sin 22cos 20f x x t x '=-+≥在区间(,]126ππ上恒成立, 从而tan 2t x ≥在区间(,]126ππ上恒成立, 而函数tan 2y x =在区间(,]126ππ上为增函数,所以函数tan 2y x =在区间(,]126ππ上的最大值为max tan(2)6y π=⨯=所以t ≥为所求.点评:用导数研究函数问题是导数的重要应用之一,是解决高中数学问题的一种重要的思想意识.本题如将()f x 化为()sin 2cos 2)f x t x x x ϕ=+=+的形式,则ϕ与t 有关,讨论起来极不方便,而借助于导数问题就很容易解决.题型9 三角函数性质的综合应用:将三角函数和其它的知识点相结合而产生一些综合性的试题,解决这类问题往往要综合运用我们的数学知识和数学思想,全方位的多方向进行思考.例13. 设二次函数2()(,)f x x bx c b c R =++∈,已知不论α,β为何实数,恒有(sin )0f α≥和(2cos )0f β+≤.(1)求证:1b c +=- ; (2)求证:3c ≥;(3)若函数(sin )f α的最大值为8,求b ,c 的值.分析:由三角函数的有界性可以得出()10f =,再结合有界性探求.解析:(1)因为1sin 1α-≤≤且(sin )0f α≥恒成立,所以(1)0f ≥,又因为12cos 3β≤+≤且(2cos )0f β+≤恒成立,所以(1)0f ≤, 从而知(1)0f =,10b c ++=,即1b c +=-.(2)由12cos 3β≤+≤且(2cos )0f β+≤恒成立得(3)0f ≤, 即 930b c ++≤,将1b c =--代如得9330c c --+≤,即3c ≥. (3)22211(sin )sin(1)sin (sin )()22c c f c c c αααα++=+--+=-+-, 因为122c+≥,所以当sin 1α=-时max [(sin )]8f α=, 由1810b c b c -+=⎧⎨++=⎩ , 解得 4b =-,3c =.点评:本题的关键是1b c +=-,由(sin )0(2cos )0f f αβ≥⎧⎨+≤⎩利用正余弦函数的有界性得出()()1010f f ≥⎧⎪⎨≤⎪⎩,从而(1)0f =,使问题解决,这里正余弦函数的有界性在起了重要作用.【专题训练与高考预测】 一、选择题1.若[0,2)απ∈,sin cos αα=-,则α的取值范围是( )A .[0,]2πB .[,]2ππ C .3[,]2ππ D .3[,2)2ππ 2.设α是锐角,且lg(1cos )m α-=,1lg 1cos n α=+,则lgsin α=( ) A .m n - B .11()2m n - C .2m n - D .11()2n m-3.若00||2sin15,||4cos15a b ==,a 与b 的夹角为30。

相关文档
最新文档