高三一轮复习三角函数专题
三角函数的概念 诱导公式(七大题型)(学生版)--2025年高考数学一轮复习

三角函数的概念 诱导公式(七大题型)目录:01任意角与弧度制02求弧长、扇形面积03求弧长、扇形面积的实际应用04三角函数的概念(求三角函数值及应用)05同角三角函数的基本关系06诱导公式07三角函数的概念诱导公式难点分析01任意角与弧度制1(2024高三·全国·专题练习)下列说法中正确的是()A.锐角是第一象限角B.终边相等的角必相等C.小于90°的角一定在第一象限D.第二象限角必大于第一象限角2(23-24高一上·湖南株洲·阶段练习)把5π4化成角度是()A.45°B.225°C.300°D.135°3(2023高三·全国·专题练习)与9π4终边相同的角的表达式中,正确的是()A.45°+2kπ,k∈ZB.k⋅360°+π4,k∈ZC.k⋅360°+315°,k∈ZD.2kπ-7π4,k∈Z4(2023高三·全国·专题练习)已知角α第二象限角,且cos α2=-cosα2,则角α2是() A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角5(2014高三·全国·专题练习)集合αkπ+π4≤α≤kπ+π2,k∈Z中的角所表示的范围(阴影部分)是()A. B.C. D.,B= 6(22-23高三上·贵州贵阳·期末)已知集合A=α 2kπ+π4≤α≤2kπ+π2,k∈Z,则()α kπ+π4≤α≤kπ+π2,k∈ZA.A⊆BB.B⊆AC.A=BD.A∩B=∅02求弧长、扇形面积7(23-24高三上·安徽铜陵·阶段练习)已知扇形的周长为30cm,圆心角为3rad,则此扇形的面积为()A.9cm2B.27cm2C.48cm2D.54cm28(23-24高三下·浙江·开学考试)半径为2的圆上长度为4的圆弧所对的圆心角是()A.1B.2C.4D.89(22-23高一下·河北张家口·期中)如图,已知扇形的周长为6,当该扇形的面积取最大值时,弦长AB=()A.3sin1B.3sin2C.3sin1°D.3sin2°10(22-23高三下·上海宝山·阶段练习)如图所示,圆心为原点O的单位圆的上半圆周上,有一动点P x,y,点B是P关于原点O的对称点.分别连结PA、PB、AB,如此形成了三个区 (y>0).设A1,0域,标记如图所示.使区域Ⅰ的面积等于区域Ⅱ、Ⅲ面积之和的点P的个数是()A.0个B.1个C.2个D.3个03求弧长、扇形面积的实际应用11(23-24高三上·广东肇庆·阶段练习)“顺德眼”是华南地区首座双立柱全拉索设计的摩天轮总共设有36个等间距座舱,其中亲子座舱4个,每2个亲子座舱之间有8个普通座舱,摩天轮上的座舱运动可以近似地看作是质点在圆周上做匀速圆周运动,质点运行轨迹为圆弧,运行距离为弧长,“顺德眼”在旋转过程中,座舱每秒运行约0.2米,转一周大约需要21分钟,则两个相邻的亲子座舱在运行一周的过程中,距离地面的高度差的最大值约为( )(参考数据:2π≈0.45,计算结果保留整数)A.40米B.50米C.57米D.63米12(23-24高三上·安徽·期中)扇子是引风用品,夏令必备之物.我国传统扇文化源远流长,是中华文化的一个组成部分.历史上最早的扇子是一种礼仪工具,后来慢慢演变为纳凉、娱乐、观赏的生活用品和工艺品.扇子的种类较多,受大众喜爱的有团扇和折扇.如图1是一把折扇,是用竹木做扇骨,用特殊纸或绫绢做扇面而制成的.完全打开后的折扇为扇形(如图2),若图2中∠ABC =θ,D ,E 分别在BA ,BC 上,AD =CE =m ,AC的长为l ,则该折扇的扇面ADEC 的面积为()图1 图2 A.m l -θ2B.m l -θm2C.m 2l -θ2D.m 2l -θm213(2024·湖南长沙·一模)“会圆术”是我国古代计算圆弧长度的方法,它是我国古代科技史上的杰作,如图所示AB是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB上,CD ⊥AB ,则AB的弧长的近似值s 的计算公式:s =AB +CD 2OA.利用上述公式解决如下问题:现有一自动伞在空中受人的体重影响,自然缓慢下降,伞面与人体恰好可以抽象成伞面的曲线在以人体为圆心的圆上的一段圆弧,若伞打开后绳长为6米,该圆弧所对的圆心角为60°,则伞的弧长大约为( )3≈1.7A.5.3米B.6.3米C.8.3米D.11.3米04三角函数的概念(求三角函数值及应用)14(23-24高三下·重庆渝中·阶段练习)已知角α的终边经过点P 1,2sin α ,则sin α的值不可能是() A.32B.0C.-32D.1215(2024·上海松江·二模)已知点A 的坐标为12,32 ,将OA 绕坐标原点O 逆时针旋转π2至OP ,则点P 的坐标为.16(2024·全国·模拟预测)已知角θ的顶点为坐标原点,始边为x 轴的非负半轴.若P m ,2 是角θ终边上一点,且cos θ=-31010,则m =.17(2023高三·全国·专题练习)已知角α的终边经过点P -x ,-6 ,且cos α=-513,则1sin α+1tan α=.18(2024·四川成都·模拟预测)在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 3,4 ,则sin α+2cos αcos α-sin α=()A.11B.-10C.10D.-1119(2024·云南昆明·一模)已知角θ的顶点为坐标原点O ,始边与x 轴的非负半轴重合,点A (1,a )(a ∈Z )在角θ终边上,且OA ≤3,则tan θ的值可以是.(写一个即可)20(2024高三·全国·专题练习)在平面直角坐标系xOy 中,角α的顶点为原点O ,以x 轴的非负半轴为始边,终边经过点P (1,m )(m <0),则下列各式的值恒大于0的有( )个.①sin αtan α;②cos α-sin α;③sin αcos α;④sin α+cos α.A.0B.1C.2D.321(21-22高三下·河南许昌·开学考试)已知某质点从平面直角坐标系xOy 中的初始位置点A 4,0 ,沿以O 为圆心,4为半径的圆周按逆时针方向匀速运动到B 点,则B 点的坐标为()A.4cos ∠AOB ,4sin ∠AOBB.4sin ∠AOB ,4cos ∠AOBC.4cos ∠AOB ,4 sin ∠AOBD.4sin ∠AOB ,4 cos ∠AOB05同角三角函数的基本关系22(21-22高一上·安徽宿州·期末)已知cos α=-513,且α为第二象限角,则sin α=()A.-1213B.-513C.1213D.12523(21-22高一上·四川遂宁·期末)已知cos x 1-sin x =3,则1+sin xcos x=()A.3B.-3C.33D.-3324(2024·河南洛阳·模拟预测)已知tan α=2,则5sin α+cos a2sin α-cos α=()A.13B.113C.53D.225(2023·全国·高考真题)若θ∈0,π2 ,tan θ=12,则sin θ-cos θ=.26(22-23高三·全国·对口高考)已知角α的终边落在直线y =-3x (x <0)上,则|sin α|sin α-|cos α|cos α=.27(2024高一上·全国·专题练习)已知tan α=12,则sin 2α+sin αcos αcos 2α+1的值为.06诱导公式28(2024·全国·模拟预测)已知sin 5π8+α =13,则cos π8+α =()A.-13B.13C.-33D.3329(2024·全国·模拟预测)已知cos θ-2π5 =23,则2sin 19π10-θ +cos θ+13π5=()A.-2B.2C.-23D.2330(23-24高一上·江苏无锡·阶段练习)已知sin α+cos α=-12,则cos π2+α 1-tan -α 的值为()A.-34B.34C.-316D.31631(23-24高一下·湖南株洲·开学考试)已知sin π3-x =13,且0<x <π2,则tan 2π3+x =.32(2023高三·全国·专题练习)已知sin 3π+θ =13,则cos π+θ cos θcos π+θ -1+cos θ-2πsin θ-3π2 cos θ-π -sin 3π2+θ的值为.07三角函数的概念诱导公式难点分析33(23-24高一上·山西运城·期末)若α,β∈0,π2 ,且4sin 2α-sin 2β+23=0,则当2sin α+cos β取最大值时,sin β的值为()A.66B.306C.33D.2634(22-23高三上·山东枣庄·阶段练习)若0<θ<π,且点P cos θ,sin θ 与点Q cos θ+π6 ,sin θ+π6关于x 轴对称,则cos θ=.35(20-21高二上·贵州铜仁·阶段练习)已知sin 5θ-cos 5θ<3cos 3θ-sin 3θ 恒成立,则θ取值范围是.36(2022·上海黄浦·二模)设a ,b ∈R ,c ∈0,4π .若对任意实数x 都有sin 2x -π3=a sin bx +c ,则满足条件的有序实数组a ,b ,c 的组数为.一、单选题1(2023·安徽·模拟预测)已知角α终边上有一点P sin 2π3,cos 2π3,则π-α为()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2(2024·黑龙江·二模)已知角α的终边与单位圆的交点P 35,-45 ,则sin α-π2=()A.-45B.-35C.35D.453(2024·辽宁·三模)已知tan α=12,则sin α+π2 -cos 3π2-α cos -α -sin π-α=()A.-1 B.1 C.-3D.34(2023·海南·模拟预测)若α∈0,π ,且cos α-sin α=12,则tan α=()A.4+75B.4-75C.4+73D.4-735(2024·全国·模拟预测)石雕、木雕、砖雕被称为建筑三雕.源远流长的砖雕,由东周瓦当、汉代画像砖等发展而来,明清时代进入巅峰,形成北京、天津、山西、徽州、广东、临夏以及苏派砖雕七大主要流派.苏派砖雕被称为“南方之秀”,是南方地区砖雕艺术的典型代表,被广泛运用到墙壁、门窗、檐廊、栏槛等建筑中.图(1)是一个梅花砖雕,其正面是一个扇环ABCD ,如图(2),砖雕厚度为6cm ,AD =80cm ,CD=3AB,CD所对的圆心角为直角,则该梅花砖雕的表面积为(单位:cm 2)()A.3200πB.480π+960C.6880π+960D.3680π+9606(2023·贵州遵义·三模)已知a =sin0.1,b =10-1,c =tan0.1,则()A.c >b >aB.b >c >aC.b >a >cD.a >c >b7(2023·山西·模拟预测)已知α,β,γ均是锐角,设sin αcos β+sin βcos γ+sin γcos α的最大值为tan θ,则sin θsin θ+cos θ =()A.3B.1513C.1D.5138(2024·浙江·二模)古人把正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数、正矢函数、余矢函数这八种三角函数的函数线合称为八线.其中余切函数cot θ=1tan θ,正割函数sec θ=1cos θ,余割函数csc θ=1sin θ,正矢函数ver sin θ=1-cos θ,余矢函数ver cos θ=1-sin θ.如图角θ始边为x 轴的非负半轴,其终边与单位圆交点P ,A 、B 分别是单位圆与x 轴和y 轴正半轴的交点,过点P 作PM 垂直x 轴,作PN 垂直y 轴,垂足分别为M 、N ,过点A 作x 轴的垂线,过点B 作y 轴的垂线分别交θ的终边于T 、S ,其中AM、PS、BS、NB为有向线段,下列表示正确的是()A.ver sinθ=AMB.cscθ=PSC.cotθ=BSD.secθ=NB二、多选题9(2023·贵州遵义·模拟预测)下列说法正确的是()A.若sinα=sinβ,则α与β是终边相同的角B.若角α的终边过点P3k,4kk≠0,则sinα=4 5C.若扇形的周长为3,半径为1,则其圆心角的大小为1弧度D.若sinα⋅cosα>0,则角α的终边在第一象限或第三象限10(2023·辽宁·模拟预测)设α为第一象限角,cosα-π8=13,则()A.sin5π8-α=-13 B.cosα+7π8=-13C.sin13π8-α=-223 D.tanπ8-α=-2211(2024·全国·模拟预测)质点A和B在以坐标原点O为圆心,半径为1的圆O上逆时针做匀速圆周运动,同时出发,A的起点在射线y=3x x≥0和圆O的交点处,A的角速度为2rad/s,B的起点为圆O与x轴正半轴的交点,B的角速度为3rad/s,则下列说法正确的是()A.在1s末时,点A的坐标为cos2,sin2B.在2s 末时,点B的坐标为cos6,-sin6C.在2s末时,劣弧AB的长为2-π3D.当A与B重合时,点A的坐标可以为-1,0三、填空题12(2023·江苏苏州·模拟预测)已知x∈(0,π),若sin x1-cos x=3,则1+cos xsin x=.13(2023·四川成都·一模)函数f x =tanπ32x-1,x>012x,x≤0,则f f-3=.14(2023·江西景德镇·三模)已知直线x=a0<a<π2与函数f x =sin x和函数g x =cos x的图象分别交于P,Q两点,若PQ=14,则线段PQ中点的纵坐标为.。
三角函数的图象与性质(高三一轮复习)

数学 N 必备知识 自主学习 关键能力 互动探究
— 27 —
(4)三角函数型函数奇偶性的判断除可以借助定义外,还可以借助其图象与性 质,如在y=Asin(ωx+φ)中代入x=0,若y=0,则为奇函数,若y为最大或最小值, 则为偶函数.若y=Asin(ωx+φ)为奇函数,则φ=kπ(k∈Z),若y=Asin(ωx+φ)为偶函 数,则φ=2π+kπ(k∈Z).
A.y=fx-π4为奇函数 B.y=fx-4π为偶函数 C.y=fx+4π-1为奇函数 D.y=fx+π4-1为偶函数
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
(2)(2022·新高考Ⅰ卷)记函数f(x)=sin
ωx+π4
+b(ω>0)的最小正周期为T.若
2π 3
<T<π,且y=f(x)的图象关于点32π,2中心对称,则fπ2=( A )
— 10 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 11 —
2.(易错题)(2023·宜昌检测)下列函数中,在其定义域上是偶函数的是( B )
A.y=sin x
B.y=sin x
C.y=tan x
D.y=cosx-π2
解析 对于A,∵y=sin x的定义域为R,sin(-x)=-sin x,∴y=sin x为奇函
数,A错误;对于B,∵y=
sin
x
的定义域为R,
sin-x
=
-sin
x
=
sin
x
,∴y=
sin x为偶函数,B正确;对于C,∵y=tan x的定义域为kπ-π2,kπ+2π(k∈Z),即定 义域关于原点对称,tan(-x)=-tan x,∴y=tan x为奇函数,C错误;对于D,∵y=
2024届高三数学一轮复习--三角函数与解三角形第3练 两角和与差的正弦、余弦和正切公式(解析版)

【详解】因为
cos
4
5 ,所以 5
2 cos 2
2 sin 2
5 ,平方后可得 5
1 cos2 sin2 sin cos 1 ,整理得 1 1 sin 2 1 ,所以 sin 2 3 .
2
5
22
5
5
故选:D.
2.B
【分析】运用两角和与差的正弦公式和同角的商数关系,计算即可得到所求值
6
,则
tan
(
)
A. 3
B. 2 3
C. 6
D. 6 3
3.(2023·全国·高三专题练习)若
1 1
tan tan
π 4 π 4
1 2
,则
cos
2
的值为(
)
A.- 3 5
B. 3 5
C. 4 5
D. 4 5
4.(2023
秋·江苏泰州·高三泰州中学校考开学考试)已知
cos
12
【详解】因为
sin
3
sin
6
,所以
1 2
sin
3 cos 2
3 sin 1 cos ,
2
2
所以 3 1 cos 3 1 sin ,所以 tan 3 1 2 3 . 3 1
故选:B
3.A
【分析】由已知可得
tan
π 4
1 3
,进而求出
四个命题:
甲: tan 1 ;
2 乙: tan tan 7 : 3 ;
丙:
sin cos
5 4
;
丁: tan tan tan tan 5 : 3 .
如果其中只有一个假命题,则该命题是( )
A.甲
2024届高三数学一轮复习-三角函数与解三角形 第4练 二倍角公式及应用(解析版)

B. cos A cos B
C. sin 2A sin 2B
D. cos 2A cos 2B
12.(2023·全国·高三专题练习)给出下列说法,其中正确的是( )
A.若 cos 1 ,则 cos 2 7
3
9
C.若 x 1 ,则 x 1 的最小值为 2
2
x
B.若 tan 2 4 ,则 tan 1
D. 5 或
5
5
)
D. 24 25
7.(2023·全国·高三专题练习)下列四个函数中,最小正周期与其余三个函数不同的是( )
A. f x cos2 x sin x cos x
B. f x 1 cos 2 x
2sin x cos x
C.
f
x
cos
x
π 3
cos
x
π 3
D.
f
x
sin
D
不
正确,
故选:BC.
10.AD
【分析】根据二倍角正弦公式、辅助角公式,结合正弦型函数的单调性、平移的性质、对称
性、换元法逐一判断即可.
【详解】 f (x) sin x cos x 1 sin 2x, g(x) sin x cos x 2 sin(x π ) ,
2
4
当
x
0,
π 4
时,
3 5 8
2
5 1 5 1.
16
4
故选:D.
2.B 【分析】根据三角恒等变换公式求解.
【详解】
sin
π 6
cos
3 sin 1 cos cos 3 ,
2
2
5
所以 3 sin 1 cos 3 ,
【高考第一轮复习数学】三角函数专题

专题一:三角函数一、三角函数1、同角三角函数的基本关系:22sin cos 1αα+= sin tan cos ααα=2、诱导公式(一) tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k诱导公式(二) tan )tan(cos )cos( sin )sin(αααααα-=-=--=- 诱导公式(三)sin(180)=-sin ;cos(180)cos ;tan(180)tan αααααα++=+=。
tan )180tan(cos )180cos( sin )180sin(αααααα-=-︒-=-︒=-︒诱导公式(四)sin )2cos( cos )2sin(ααπααπ=-=-sin )2cos(cos )2sin(ααπααπ-=+=+3、两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i nαβαβαβ+=-两角和与差的正弦公式:()sin sin cos cos sin αβαβαβ+=+ ()s i n s i n c o s c o s s i nαβαβαβ-=-两角和与差的正切公式:()tan tan tan 1tan tan αβαβαβ++=-; ()tan tan tan 1tan tan αβαβαβ--=+注意:,,()222k k k k z πππαβπαπβπ±≠+≠+≠+∈4、辅助角公式:sin cos ))a x b x x x x ϕ+=+=+其中辅助角ϕ由cos sin ϕϕ⎧=⎪⎪⎨⎪=⎪⎩确定,即辅助角ϕ的终边经过点(,)a b5、二倍角正弦、余弦和正切公式:sin 22sin cos ααα=2222c o s 2c o s s i n 12s i n2c o s 1ααααα=-=-=- 22t a n t a n 21t a n ααα=-注意:2,22k k ππαπαπ≠+≠+ ()k z ∈升幂公式:221cos 21cos 2cos ;sin 22αααα+-==降幂公式:221cos22cos;1cos22sinαααα+=-=7、正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x kππ=+()k∈Z时,m ax1y=;当22x kππ=-()k∈Z时,m in1y=-.当()2x k kπ=∈Z时,m ax1y=;当2x kππ=+()k∈Z时,m in1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦在[]()2,2k k kπππ-∈Z上是增函数;在在,22k kππππ⎛⎫-+⎪⎝⎭函数性质()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数. []2,2k k πππ+ ()k ∈Z 上是减函数.()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴8、常用特殊角的三角函数值表:二、解三角形1、正弦定理:在C ∆A B 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆A B 的外接圆的半径,则有2sin sin sin a b c R C===AB .2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a RA =,sin 2b RB =,sin 2cC R=;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c CC++===A +B +AB.3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆A B 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c abc+-A =,222cos 2a c bac+-B =,222cos 2a b cC ab+-=.6、设a 、b 、c 是C ∆A B 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C > .。
三角函数的综合应用+课件-2025届高三数学一轮复习

(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
高三一轮复习三角函数专题及答案解析

三角函数典型习题 1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.2 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++C B A . (I )试判断△ABC 的形状;(II )若△ABC 的周长为16,求面积的最大值.3 .已知在ABC ∆中,A B >,且A tan 与B tan 是方程0652=+-x x 的两个根.(Ⅰ)(Ⅱ)4.在∆(1)求(2)若5(1(26(I)(II)若7(Ⅰ)(Ⅱ)当0,2x ∈⎢⎥⎣⎦时,求函数()f x 的最大值,并写出x 相应的取值.8.在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。答案解析1【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin AC A A π⎛⎫+=+π-- ⎪6⎝⎭===22∴C II.163∴ (Ⅱ)∵由(Ⅰ)∵C 2∵tan 3A =,A 为三角形的内角,∴sin A = 由正弦定理得:sin sin AB BC C A= ∴BC ==8【解析】:(1) //m n ⇒ 2sinB(2cos 2B 2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,已知b=2,由余弦定理,得: 4=a 2+c 2-ac≥2ac -ac=ac(当且仅当a=c=2时等号成立)∵△∴△②4=a 2∴∵△∴△42sin (2)a 2+故S 5π12sin 23x ⎛⎫=+- ⎪⎝⎭. 又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤, 即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴. (Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,, max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 6【解析】:(I)由已知得3sin 3sin 222A A a c b ⇒=⋅-+(II)而b 又S 所以7 =所以(Ⅱ)1-所以此时444428。
高三高考数学第一轮复习课件三角函数复习

]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2
。
(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数 2018年6月考纲要求:基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制 (1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化. 2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义. (2)能利用单位圆中的三角函数线推导出2π±α,π±α的正弦、余弦、正切的诱导公式,能画出y =s i n x ,y =c o s x , y = t a n x 的图象,了解三角函数的周期性.(3)理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、 最大值和最小值、以及与x 轴的交点等),理解正切函数在,22ππ⎛⎫-⎪⎝⎭内的单调性. (4)理解同角三角函数的基本关系式:sin 2x +cos 2x = 1,sin tan .cos xx x= (5)了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图象,了解参数,,A ωϕ对函数图象变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.对于三角函数与三角恒等变换的考查:1.涉及本专题的选择题、填空题一般考查三角函数的基本概念、三角恒等变换及相关计算,同时也考查三角函数的图象与性质的应用等,解答题的考查则重点在于三角函数的图象与性质的应用.2.从考查难度来看,本专题试题的难度相对不高,以三角计算及图象与性质的应用为主,高考中通常考查对三角的计算及结合图象考查性质等.3.从考查热点来看,三角恒等变换、三角函数的图象与性质是高考命题的热点,要能够熟练应用三角公式进行三角计算,能够结合正弦曲线、余弦曲线,利用整体代换去分析问题、解决问题.同时要注意两者之间的综合.对于解三角形的考查:1.涉及本专题的选择题、填空题一般利用正弦定理、余弦定理及三角形的面积公式,考查三角形边、角、面积等的相关计算,同时注重与三角函数的图象与性质、基本不等式等的综合.2.从考查难度来看,本专题试题的难度中等,主要考查正弦定理、余弦定理及三角形的面积公式的应用,高考中主要以三角形的方式来呈现,解决三角形中相关边、角的问题. 3.从考查热点来看,正弦定理、余弦定理及三角形的面积公式的应用是高考命题的热点,要能够熟练应用公式进行三角形的边、角求值,三角形形状的判断及面积的相关计算等.注意三角形本身具有的性质的应用.考向一三角恒等变换样题1 (2017年高考北京卷)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若1sin3α=,则cos()αβ-=___________.【答案】7 9 -样题2 已知324βαπ<<<π,12cos()13αβ-=,3sin(),5αβ+=-则sin 2α=ABCD 【答案】B解给值求值型问题的一般思路是:先看公式中的量,哪些是已知的,哪些是待求的,再利用已知条件结合同角三角函数的基本关系求出待求值,注意根据角的象限确定符号. 这类求值问题关键在于结合条件和结论中的角,合理拆、配角.考向二 三角函数的图象和性质样题3 (2017年高考新课标Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D样题4(2017年高考新课标Ⅲ卷)设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D样题5 (2017年高考浙江卷)已知函数22sin cos cos ()()x x x f x x x =--∈R .(1)求2()3f π的值. (2)求()f x 的最小正周期及单调递增区间.考向三 利用正、余弦定理解三角形样题6 (2017浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是______,cos ∠BDC =_______.样题7 (2017新课标全国Ⅰ理科)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin B.sin C ;(2)若6cos B.cos C =1,a =3,求ABC △的周长.样题8 (2017新课标全国Ⅱ理科)ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .考向四解三角形的应用样题9 宇宙飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱B C D).当返回舱距地预计到达的区域安排了同一条直线上的三个救援中心(记为,,面1万米的P点时(假定以后垂直下落,并在A点着陆),C救援中心测得返回舱位于其南偏东60°方向,仰角为60°,B救援中心测得返回舱位于其南偏西30°方向,仰角为30°,D救援中心测得着陆点A位于其正东方向.(1)求,B C两救援中心间的距离;(2)求D救援中心与着陆点A间的距离.三角函数本省历年高考题总结2011年(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45-(B )35- (C )35 (D )45(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 2012年(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2](17)(本小题满分12分)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A (2)若2a =,ABC ∆的面积为3;求,b c 。
2013年15.设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=__________.17.(本小题满分12分)如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA .2014年 8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=16. 已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .2015年(2)sin 20°cos 10°-cos 160°sin 10°=(A ) (B (C )12- (D )12(8)函数f (x )=错误!未找到引用源。
的部分图像如图所示,则f (x )的单调递减区间为(A )(错误!未找到引用源。
),k 错误!未找到引用源。
(b )(错误!未找到引用源。
),k 错误!未找到引用源。
(C )(错误!未找到引用源。
),k 错误!未找到引用源。
(D )(错误!未找到引用源。
),k 错误!未找到引用源。
(16)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 2016年12.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5 (17)(本题满分为12分)ABC 的内角A ,B ,C 的对边分别别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ; (II )若7,c ABC =的面积为332,求ABC 的周长.2018年各省三角函数高考题总结北京卷:(7)在平面直角坐标系中,记d 为点到直线x的距离,当m 变化时,d 的最大值为(A )1(B )2(C )3(D )4 (11)设函数f (x )= ,若f对任意的实数x 都成立,则的最小值为______(15)(本小题13分)在△ABC 中,a =7,b =8,cos B =-,(Ⅰ)求∠A :(Ⅱ)求AC 边上的高。
江苏卷:7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 . 13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为 . 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=.(1)求cos2α的值;(2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.全国卷2:6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.215.已知sin α+cos β=1,cos α+sin β=0,则sin (α+β)=________。