高中数学_三角函数公式大全全部覆盖

合集下载

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解三角函数公式1.正弦定理:$a/\sin A=b/\sin B=c/\sin C=2R$($R$为三角形外接圆半径)。

2.余弦定理:$a^2=b^2+c^2-2bc\cos A$。

$b^2=a^2+c^2-2ac\cos B$。

$c^2=a^2+b^2-2ab\cos C$。

3.海伦公式:$S_{\triangle}=\sqrt{p(p-a)(p-b)(p-c)}$。

其中$p=(a+b+c)/2$,$S_{\triangle}$为三角形面积。

4.诱导公式:奇变偶不变,符号看象限。

sin(-\alpha)=-\sin\alpha$,$\sin(\pi-\alpha)=\sin\alpha$,$\cos(-\alpha)=\cos\alpha$,$\cos(\pi-\alpha)=-\cos\alpha$,$\tan(-\alpha)=-\tan\alpha$,$\tan(\pi-\alpha)=\tan\alpha$,$\cot(-\alpha)=-\cot\alpha$,$\cot(\pi-\alpha)=-\cot\alpha$。

5.和差角公式:sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,$\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$,$\tan(\alpha\pm\beta)=(\tan\alpha\pm\tan\beta)/(1\mp\tan\alpha\tan \beta)$。

6.二倍角公式:(含万能公式)sin 2\theta=2\sin\theta\cos\theta=2\tan\theta/(1+\tan^2\theta)$,$\cos 2\theta=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta= (1-\tan^2\theta)/(1+\tan^2\theta)$,$\tan 2\theta=2\tan\theta/(1-\tan^2\theta)$。

2024高中三角函数公式大全

2024高中三角函数公式大全

2024高中三角函数公式大全
1、三角函数的定义
三角函数是建立在三角形中的特殊关系上,用于表示角度和边长之间的函数。

三角函数的基本定义如下:
(1)正弦函数sinθ:表示角θ的对边和斜边的比值,即sinθ = y/r。

(2)余弦函数cosθ:表示角θ的邻边和斜边的比值,即cosθ = x/r。

(3)正切函数tanθ:表示角θ的对边和邻边的比值,即tanθ = y/x。

(4)反正弦函数arcsinα:表示α对应的角度θ,即arcsinα = θ。

(5)反余弦函数arccosα:表示α对应的角度θ,即arccosα = θ。

(6)反正切函数arctanα:表示α对应的角度θ,即arctanα = θ。

2、三角函数的基本公式
(1)正弦定理:(a,b,C)为θ对应的三边,则
a/sinθ=b/sinθ=c/sinθ。

(2)余弦定理:(a,b,C)为θ对应的三边,则a^2=b^2+c^2-
2bc*cosθ。

(3)正切定理:(a,b,C)为θ对应的三边,则tanθ=b/a=c/b。

(4)反正弦定理:arcsinα=θ,其中θ的范围在(-π/2,π/2)
之间。

(5)反余弦定理:arccosα=θ,其中θ的范围在(0,π)之间。

(6)反正切定理:arctanα=θ,其中θ的范围在(-π/2,π/2)
之间。

3、三角函数的关系和性质
(1)正弦定理:sin2θ+cos2θ=1
(2)正弦定理的奇偶周期性:sin(-θ)= -sinθ;cos(-θ)= cosθ。

(完整版)三角函数公式大全

(完整版)三角函数公式大全

三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦函数:r y=αsin 余弦函数:r x =αcos 正切函数:x y =αtan余切函数:y x =αcot 正割函数:xr=αsec余割函数:yr=αcsc二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。

商数关系:x x x cos sin tan =,xxx sin cos cot =。

平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。

积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosαtan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin(απ-2)=cosα cos(απ-2)=sinα tan(απ-2)=cotα cot(απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin(απ+2)=cosα cos(απ+2)=-sinαtan(απ+2)=-cotα cot(απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系:sin(απ-23)=-cosα cos(απ-23)=-sinαtan(απ-23)=cotα cot(απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin(απ+23)=-cosα cos(απ+23)=sinαtan(απ+23)=-cotα cot(απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

高中数学_三角函数公式大全全部覆盖

高中数学_三角函数公式大全全部覆盖

三角函数常用公式一、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

二、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限) ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限) απαcos )2sin(=+ απαcos )2sin(-=- απαsin )2cos(-=+ απαsin )2cos(=-三、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=-四、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=-2 2五、辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a ()其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,22sin b a b +=ϕ,22cos b a a +=ϕ,a b =ϕtan 。

三角函数的全部公式整理高中

三角函数的全部公式整理高中

三角函数的全部公式整理高中一、正弦函数(Sine Function)正弦函数是最基本的三角函数之一,在数学中起着非常重要的作用。

它的定义如下:定义:设角θ的终边在单位圆上,点P(x,y)是单位圆上的点,则称y为角θ的正弦,记作sinθ。

1. 正弦函数的基本关系•sin(π/2 - θ) = cosθ•sin(π + θ) = -sinθ•sin(2π - θ) = -sinθ2. 正弦函数的等于关系•sin(0°) = 0•sin(30°) = 1/2•sin(45°) = √2/2•sin(60°) = √3/2•sin(90°) = 1二、余弦函数(Cosine Function)余弦函数也是常见的三角函数之一,定义如下:定义:设角θ的终边在单位圆上,点P(x,y)是单位圆上的点,则称x为角θ的余弦,记作cosθ。

1. 余弦函数的基本关系•cos(π/2 - θ) = sinθ•cos(π + θ) = -cosθ•cos(2π - θ) = cosθ2. 余弦函数的等于关系•cos(0°) = 1•cos(30°) = √3/2•cos(45°) = √2/2•cos(60°) = 1/2•cos(90°) = 0三、正切函数(Tangent Function)正切函数是正弦函数和余弦函数的比值,定义如下:定义:设角θ的终边在单位圆上,点P(x,y)是单位圆上的点,则称y/x为角θ的正切,记作tanθ。

1. 正切函数的基本关系•tanθ = sinθ / cosθ•tan(π/2 - θ) = 1 / tanθ2. 正切函数的等于关系•tan(0°) = 0•tan(30°) = √3/3•tan(45°) = 1•tan(60°) = √3•tan(90°) = 不存在四、三角函数间的基本关系1. 三角函数的互余关系•sinθ = cos(π/2 - θ)•cosθ = sin(π/2 - θ)•tanθ = 1 / cotθ•cotθ = 1 / tanθ2. 三角函数的倒数关系•sinθ = 1 / cscθ•cosθ = 1 / secθ•tanθ = 1 / cotθ五、和差化积公式1. 正弦和差化积公式sin(A ± B) = sinAcosB ± cosAsinB2. 余弦和差化积公式cos(A ± B) = cosAcosB ∓ sinAsinB六、倍角公式1. 正弦倍角公式sin2θ = 2sinθcosθ2. 余弦倍角公式cos2θ = cos²θ - sin²θ结语以上就是高中阶段关于三角函数的全部公式整理,这些公式在解决三角形问题、波动问题等数学中起着至关重要的作用。

高中三角函数公式大全

高中三角函数公式大全

高中三角函数公式大全sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cosasinbcos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)cot(a+b)=(cotacotb-1)/(cotb+cota)cot(a-b)=(cotacotb+1)/(cotb-cota)倍角公式tan2a=2tana/(1-tan^2a)sin2a=2sina•cosacos2a=cos^2asin^2a=2cos^2a—1=1—2sin^2a三倍角公式sin3a=3sina-4(sina)^3;cos3a=4(cosa)^3-3cosatan3a=tana•tan(π/3+a)•tan(π/3-a)半角公式sin(a/2)=√{(1cosa)/2}cos(a/2)=√{(1+cosa)/2}tan(a/2)=√{(1c osa)/(1+cosa)}cot(a/2)=√{(1+cosa)/(1-cosa)}tan(a/2)=(1cosa)/sina=sina/(1+cosa)和差化积sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]tana+tanb=sin(a+b)/cosacosb积化和差sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π/2-a)=cos(a)cos(π/2-a)=sin(a)sin(π/2+a)=cos(a)cos(π/2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tga=tana=sina/cosa万能公式sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2} 其它公式a•sin(a)+b•cos(a)=[√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]a•sin(a)-b•cos(a)=[√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]1+sin(a)=[sin(a/2)+cos(a/2)]^2;1-sin(a)=[sin(a/2)-cos(a/2)]^2;;其他非重点三角函数csc(a)=1/sin(a)sec(a)=1/cos(a)双曲函数sinh(a)=[e^a-e^(-a)]/2cosh(a)=[e^a+e^(-a)]/2tgh(a)=sinh(a)/cosh(a)sin30°=1/2sin37°=0。

高中数学-三角函数公式大全

高中数学-三角函数公式大全

高中数学-三角函数公式大全新课程高中数学三角公式汇总一、任意角的三角函数在角α的终边上任取一点P(x,y),记r=x²+y²。

正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数。

如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。

平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。

三、诱导公式⑴α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵π/3+α、-π/3+α、π-α、-π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(※)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(※)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/2tanα=sin2α/(1+cos2α)万能公式告诉我们,任何单角的三角函数都可以用半角的正切来表示。

(完整版)高中数学-三角函数公式大全

(完整版)高中数学-三角函数公式大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:xy=αtan 余切:y x =αcot正割:xr=αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限) 四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角公式汇总
一、任意角的三角函数
在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x
=αcos 正切:x
y =
αtan 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式
商数关系:α
α
αcos sin tan =
, 平方关系:1cos sin 22=+αα,
三、诱导公式
⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)

απ
+2、απ-2
、απ+23、απ
-23的三角函数值,等于α的异名函数值,
前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)
四、和角公式和差角公式
βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+
βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβ
αβαtan tan 1tan tan )tan(⋅-+=+
β
αβ
αβαtan tan 1tan tan )tan(⋅+-=
-
五、二倍角公式
αααcos sin 22sin =
ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*
α
α
α2tan 1tan 22tan -=
二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)
αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-
六、万能公式(可以理解为二倍角公式的另一种形式)
ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,α
α
α2
tan 1tan 22tan -=。

万能公式告诉我们,单角的三角函数都可以用半角的正切..
来表示。

七、辅助角公式
)sin(cos sin 22ϕ++=+x b a x b x a ()
其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,
2
2sin b a b +=
ϕ,2
2cos b a a +=
ϕ,a
b =
ϕtan 。

八、正弦定理
R C
c
B b A a 2sin sin sin ===(R 为AB
C ∆外接圆半径) 九、余弦定理
A bc c b a cos 2222⋅-+=
B ac c a b cos 2222⋅-+=
C ab b a c cos 2222⋅-+=
十、三角形的面积公式 高底⨯⨯=∆2
1ABC S
B ca A bc
C ab S ABC sin 2
1sin 2
1sin 2
1===∆(两边一夹角)
R abc
S ABC 4=
∆(R 为ABC ∆外接圆半径) r c
b a S ABC ⋅++=
∆2
(r 为ABC ∆内切圆半径) ))()((c p b p a p p S ABC ---=∆…海仑公式(其中2
c
b a p ++=

诱导公式
四、和角公式和差角公式
β
α
αsin
β
α
β

+
+
=
sin
cos
cos
)
sin(⋅
βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβ
αβαtan tan 1tan tan )tan(⋅-+=+
β
αβ
αβαtan tan 1tan tan )tan(⋅+-=
-
五、二倍角公式
αααcos sin 22sin =
ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*
α
α
α2
tan 1tan 22tan -=
二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)
αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-。

相关文档
最新文档