高中数学必修4112弧度制和弧度制与角度制的换算

合集下载

弧度与角度的转换公式是怎样的

弧度与角度的转换公式是怎样的

弧度与角度的转换公式是怎样的弧度与角度的转换公式是怎样的呢?有同学了解过吗?没有的话,快到小编这里来瞧瞧。

下面是由小编为大家整理的“弧度与角度的转换公式是怎样的”,仅供参考,欢迎大家阅读。

弧度与角度的转换公式是怎样的弧度和角度的换算公式为:1弧度=(180/π)°,根据定义,一周的弧度数为2πr/r=2π,360°角=2π弧度,1弧度约为57.3°。

弧度是角的度量单位,1周角为2π弧度,1平角为π弧度,1直角为π/2弧度。

拓展阅读:扇形的周长公式是什么扇形的周长:C=2R+2πR×n/360°,(n为圆心角,R为半径),扇形的周长由两部分构成,第一部分是圆的半径的两倍,即2R。

还有一部分是弧长,即2πR×n/360°,(n为圆心角)。

一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

显然,它是由圆周的一部分与它所对应的圆心角围成。

《几何原本》中这样定义扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形。

扇形的周长和面积公式是什么扇形周长公式为:扇形周长=扇形半径×2+弧长,即C=2r+ (n÷360) πd=2r+(n÷180)πr。

扇形面积公式是S=(lR)/2 或S=(1/2)θR²,R是底圆的半径,l为扇形弧长,θ为圆心角。

一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

扇形周长公式是:扇形周长=扇形半径×2+弧长,即C=2r+ (n÷360) πd=2r+(n÷180)πr。

扇形面积公式描述了扇形面积和圆心角(顶角)、半径、所对弧长的关系。

数学公式表示为:S扇=(lR)/2 (l为扇形弧长) =(1/2)θR²(θ为以弧度表示的圆心角)。

扇形(符号:⌔),是圆的一部分,由两个半径和和一段弧围成,在较小的区域被称为小扇形,较大的区域被称为大扇形。

弧度与角度的相互关系

弧度与角度的相互关系

弧度与角度的相互关系1、弧度的定义:圆心角的弧度等于该角所对的弧长与半径之比。

2、一个弧度的定义:通常把弧长等于半径R的圆弧所对的圆心角称为一个弧度。

由定义知:360°π*Dρ° D/2一个弧度ρ°=(360°*D/2)/πD=180°/π=57. 2958°即1弧度ρ°等于57. 295 8°(角度)(用度分秒形式表达就是:57° 17 ′44.88″) 1弧度(ρ°)=180°/π×60=3438′(分)1弧度(ρ°)=180°/π×60×60=206265″(秒)3、角度与弧度的换算关系:(1)Θ0(度)=1800/π·Θ=ρ0·ω=ρ′·ω(弧度)=ρ″″·ω其中ρ″=206 265″(2)弧度转换为角度有两种:(a)弧度*180/PI();(b)利用函数命令“=degrees()”。

4、角度误差与边长的横向影响:ω=Θ″/ρ″=L/R例如:某角度测量的误差为±10″,估计它对边长2km的点位有多大的影响?ω=Θ″/ρ″=L/R=10″/206 265″=L/2000 ,故 L=0.1m5、在弧度和角度转换中用到一个参数命令“PI()”,换句话说PI()就是圆周率π的别名。

1)正算三角函数(即角度已知)是“函数命令()×PI()/180”(或写成“函数命令()×π/180)。

(例题参见“坐标正算表”)2)在反算三角函数中,单位是弧度,转换成角度时是“函数命令()×180/PI()”(或写成“函数命令()×180/π”)。

(例题参见“由两组坐标值解算平距和方位角的计算表”)6、在小数形式的角度中用“度分秒”来表示时,有两种形式:第一种:六十制法:分三步走:(1)“度”是小数形式的整数部分;(2) “分”是(1)中小数点后数值(包括小数点)×60后得的整数部分. (3)“秒”是在(2)步骤中的小数部分(包括小数点)×60后得的数值。

弧度制及弧度制和角度制的换算

弧度制及弧度制和角度制的换算

弧度制的概念和换算总结要点1. 角度制与弧度制:这是两种不同的度量角的制度.角度制是以“度”为单位;弧度制是以“弧度”为单位.2. 度与弧度的相互换算:10≈0.01745弧度, 1弧度≈57018/.3. 在同一个式子中,两种制度不能混用.如:与600终边相同的角的集合不能表示为{x|x=2k π+600,k ∈Z},正确的表示方法是x|x=2k π+3π,k ∈Z }或{ x|x=k ·3600 +600,k ∈Z } 同步练习1. 若α=-3.2,则角α的终边在 ( ) (A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限2.①4π, ② -45π,③419π,④-43π,其中终边相同的角是 ( )(A) ①和② (B) ②和③ (C) ③和④ (D) ①和④ 3. 若4π<α<6π,且与-32π角的终边相同,则α=_________. 4.正三角形,正四边形,正五边形, 正六边形, 正八边形, 正十边形, 正n 边形的一个内角的大小分别_____,____ ,_____,_____,_____,_____, ______.(用弧度表示) 5.把下列各角用另一种度量制表示. ⑴1350⑵ -67030/⑶2 ⑷-67π1. 将下列各数按从小到大的顺序排列.Sin40, sin21, sin300, sin12. 把下列各角化成2k π+α(0≤α<2π,)的形式, 并求出在(-2π,4π)内和它终边相同的角.(1)-316π; (2)-6750.3. 若角θ的终边与1680角的终边相同,求在[0,2π]内终边与3θ角的终边相同的角.练习四 弧度制(二)要点1. 弧长公式和扇形面积公式:弧长公式 L=|α|r 扇形面积公式 S=21Lr=21|α|r 2 其中α是圆心角的弧度数,L 为圆心角α所对的弧长,r 为圆半径.2. 无论是角度制还是用弧度制,都能在角的集合与实数集之间建立起一一对应的关系,但用弧度制表示角时,容易找出与角对应的实数. 同步练习1.半径为5 cm 的圆中,弧长为415cm 的圆弧所对的圆心角等于 ( ) (A)145(B) 1350(C)π135 (D)π1452.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C) 6π (D)-6π 3. 半径为 4 的扇形,基它的周长等于弧所在的半圆周的长,则这个扇形的面积是_________.4. 已知一弧所对的圆周角为600,圆的半径为10cm,则此弧所在的弓形的面积等于___________.5. 已知扇形的周长为6cm,面积为2cm 2,求扇形圆心角的弧度数.6. 2弧度的圆心角所对的弦长为2,求这个圆心角所夹扇形的面积.7. 一条弦的长度等于其所在圆的半径r.(1) 求这条弦所在的劣弧长;(2) 求这条弦和劣弧所组成的弓形的面积.【数学2】二、弧度制第一课时教学要求:1.理解弧度制的意义,熟练掌握弧度制与角度制的互换. 教学过程:1.为什么要引入新的角的单位弧度制.(1)为了计算的方便,角度制单位、度、分、秒是60进制,计算不方便; (2)为了让角的度量结果与实数一一对应. 2.弧度制的定义先复习角度制,即1度的角的大小是怎样定义的. 1弧度角的规定.把等于半径长的圆弧所对的圆心角叫做1弧度的角. 弧度的单位符号是rad ,读作弧度.如上图,AB 的长等于半径r ,∠AOB 的大小就是1弧度的角.弧AC 的长度等于2r,则∠AOC=2rad.问半圆所对的圆心角是多少弧度,圆周所对的圆心角是多少弧度?答:半圆弧长是∴=,,πππrrr 半圆所对的圆心角是π弧度.同样道理,圆周所对的圆心角(称谓周角)的大小是2π弧度.角的概念推广后,弧的概念也随之推广.所以任意一正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.3.弧度制与角度制的互化因为周角的弧度数是2π,角度是360°,所以有 radrad radrad 01745.018011802360≈===ππποοοοο1803602==rad rad ππ815730.57)180(1'=≈=οοοrad rad π例1:把.0367化成弧度'ο解:.835.671805.670367rad rad ππ=⨯=='οο例2:把rad 53π化成角度. οο1081805353=⨯=rad π 今后用弧度制表示角时,把“弧度”二字或“rad ”通常省略不写,比如66ππ就表示 rad ,角.2,2rad 等于就是角αα= rad 33sinππ表示角的正弦.οο360~0之间的一些特殊角的度数与弧度数的互化必需熟练掌握.例3:用弧度制表示 (1)与π32终边相同的角; (2)第四象限的角的集合. 解:(1)与.,32232Z k k ∈+πππ终边也相同的角是 (2)第四象限的角的集合是},22223|{Z k k k ∈+<<+ππαππα 也可能写成},222|{Z k k k ∈<<-παππα注意两种角度制不准混合用,如写成.,2120是不对的Z k k ∈+=παο布置作业,课本P 12,1~5题.第二课时教学要求:1.熟练弧度制与角度制的互化,理解角的集合与实数集R 的一一对应. 2.会用弧长公式,扇形面积公式,解决一些实际问题. 教学过程:复习角的弧度制与角度制的转化公式.017453.01801,81.573.573.57)180(1rad rad rad ≈='==≈=πποοοο1.学生先练习,老师再总结.(1)10 rad 角是第几象限的角? (2)求sin1.5的值.解:(1)有两种方法. 第一种方法οοο21336057310+==rad ,是第三象限的角第二种方法πππππ23210),210(210<-<-+=而 ∴10 rad 的角是第三象限的角. (2)9975.07585sin 5.1sin 75855.1='=∴'=οο也可以直接在计算器上求得,先把角的单位转至RAD ,再求sin1.5即可得. 2.总结角的集合与实数集R 之间的一一对应关系. 正角的弧度数是一个正数,负的弧度数是一个负数, 零角的弧度是零.反过来,每个实数都对应唯一的角(角 的弧度数等于这个实数)这样就在角的集合(元素是角)与实数集R (元素是数) 之间建立了一一对应的关系.3.弧长公式,扇形面积公式的应用由弧度制的定义||αr l rld ==得弧长 例1:利用弧度制证明扇形面积公式l lR S 其中,21=是扇形弧长,R 是圆的半径. 证明:因为圆心角为1 rad 的扇形的面积是ππ22R ,而弧长为l 的扇形的圆心角为rad Rl,所以它的面积 lR R R l S 2122=⋅=ππ.若已知扇形的半径和圆心角,则它的面积又可以写成||21||21212ααR R R lR S =⋅==例2:半径R 的扇形的周长是4R ,求面积和圆心角. 解:扇形弧长为4R-2R=2R ,圆心角)(22rad RR==α 面积2221R R S ==θ. 例3:在扇形AOB 中,∠AOB=90°,弧长为l , 求它的内切圆的面积. 解:先求得扇形的半径ππllr 22==设圆的半径为x ,圆心为C ,x OC 2||=由πlx x 22=+解得ππll x )12(2)12(2-=+=lS ⊙C ππ22)223(4l x -==4.学生课堂阅读课本P 10~11 例5、例6 并作P 11练习7、8两题.布置作业,课本P 12—13,习题4.2 6、8、9、10、11§4.2弧度制[教学目标](1)通过本小节的学习,要使学生理解弧度的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数;(2)了解角的集合与实数集R 之间可以建立起一一对应的关系;(3)掌握弧度制下的弧长公式,会利用弧度解决某些简单的实际问题。

课件6:1.1.2 弧度制和弧度制与角度制的换算

课件6:1.1.2 弧度制和弧度制与角度制的换算

跟踪训练 2.用弧度表示终边落在如图所示阴影部分内(不包括边界) 的角θ的集合.
解:因为 30°=π6 rad,210°=76π rad,
这两个角的终边所在的直线相同,因为终边在直线 AB 上
的角为 α=kπ+π6,k∈Z,而终边在 y 轴上的角为 β=kπ+π2,
k∈Z,从而终边落在阴影部分内的角的集合为
②以“弧度”为单位度量角时,常常把弧度数写成多 少π的形式,如无特别要求,不必把π写成小数. ③度化弧度时,应先将分、秒化成度,再化成弧度.
跟踪训练
1.把 56°15′化为弧度是( )


A. 8
B. 4


C. 6
D.16
【解析】 56°15′=56.25°=2425×1π80=51π6. 【答案】 D
(2)35π rad=35×180°=108°.
【答案】
3 (1)8π
(2)108°
教材整理3 扇形的弧长与面积公式 设扇形的半径为r,弧长为l,α为其圆心角,则
α 为度数
α 为弧度数
扇形的弧长 l= απr l= αr
180°
扇形的面积
S= απr2 S= 360°
12lr=
12αr2
预习自测
5.一个扇形的面积为1,周长为4,求该扇形圆心角的 弧度数.
解:设扇形的半径为 R,弧长为 l,圆心角为 α, 则 2R+l=4.① 由扇形的面积公式 S=12 lR,得12lR=1.② 由①②得 R=1,l=2,∴α=Rl =2 rad. ∴扇形的圆心角为 2 rad.

【解析】 根据弧度制的定义知(4)正确. 【答案】 (1)× (2)× (3)× (4)√

高中数学人教B版必修4教案:1.1.2 弧度制和弧度制与角度制的换算 Word版含答案

高中数学人教B版必修4教案:1.1.2 弧度制和弧度制与角度制的换算 Word版含答案

1.1.2 弧度制和弧度制与角度制的换算一、教学目标1.知识目标:①了解弧度制,能进行弧度与角度的换算.②认识弧长公式,能进行简单应用. 对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.2. 能力目标:①了解弧度制引入的必要性及弧度制与角度制的区别与联系.②了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题.③通过角度制与弧度制的换算,对学生进行算法训练,提高学生的计算能力.3.情感目标:使学生认识到角度制、弧度制都是角的度量制度,二者虽单位不同,但是二者相互联系、辩证统一. 进一步加强学生对辩证统一思想的理解.二、教学重点、难点重点:了解弧度制,并能进行弧度与角度的换算.难点:弧度的概念及其与角度的关系.三、教学方法自学—讨论—讲授—练习先由学生自学,而后教师设置一些问题供学生思考,在此基础上,可以通过讲授再现概念,通过练习理解概念,完成教学.其中l是扇形弧长,R是圆的半径5.角度制与弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系5.角度制、弧度制是度量角的两种不同的方法,虽然单位、进制不同,但反映了事物的本质属性不变,改变的是不同的观察、处理方法,因此结果就有所不同教学环节教学内容师生互动设计意图应用举例例1:(1)把'3067 化成弧度(精确到0.001)(2)把'3067 化成弧度(用π表示)解:(1)n='3067 ,π=3.1416;(2)n=603067=67.5;(3)a=180π≈0.0175;(4)α=na=1.18125∴α≈1.18125 rad例2:把radπ53化成度解:1081805353=⨯=radπ例3:填写下表:角度0°30°45°60°90°120°弧度1.例1的第(1)问由老师板书,并归纳出算法步骤。

把角度值n换算为弧度制的算法步骤如下:①给变量n和圆周率π的近似值赋值;②如果角度值n是以“度、分、秒”形式给出的,先把n化为以“度”为单位的10进制表示;③计算180π(把1°换算为弧度值),得出的结果赋给变量a;④计算na,赋值给变量α.α就是这个角的弧度值.2.例1的第(2)问由一个学生板书,教师及时指出解题过程中出现的问题.3.例2由学生回答,老师板书。

高中数学 112弧度制和弧度制与角度制的换算1教案 新人教A版必修4 教案

高中数学 112弧度制和弧度制与角度制的换算1教案 新人教A版必修4 教案

弧度制和弧度制与角度制的换算
一、教学目标:
1.知识目标:
(1)1弧度的角的定义;(2)弧度制的定义;(3)弧度与角度的换算;(4)角的集合与实数集R之间建立的一一对应关系;(5)弧度制下的弧长公式、扇形面积公式。

2.能力目标:
(1)理解弧度的意义,能正确地进行角度与弧度的换算,熟记特殊角的弧度数;(2)了解角的集合与实数集R之间可以建立起一一对应关系;(3)掌握弧度制下的弧长公式,扇形的面积公式;(4)会利用弧度解决某些实际问题。

3.情感目标:
(1)使学生认识到角度制、弧度制都是度量角的制度,二者虽然单位不同,但是互相联系的、辩证统一的,进一步加强对辩证统一思想的理解;(2)使学生通过总结引入弧度制的好处,学会归纳、整理并认识到任何新知识的学习都会为我们解决实际问题带来方便,从而激发学生的学习兴趣。

二、教学重点、难点:
重点:弧度的意义,弧度与角度的换算方法;
难点:理解弧度制与角度制的区别。

三、教学方法:
通过几何画板多媒体课件的演示,给学生以直观的形象,使学生进一步理解弧度作为角的度量单位的可靠性和可行性。

从特殊到一般,是人类认识事物的一般规律,让学生从某一个简单的、特殊的情况开始着手,更利于教学的开展和学生思维的拓展,共同找出弧度与角度换算的方法。

通过设置问题启发引导学生观察、分析、归纳,使学生在独立思考的基础上更好地进行合作交流。

四、教学过程:
=定
定义:长度等于半径长的圆弧所对的圆心角叫做1
角,又是角,同一个非零角
= rad 180π
换算公式:
180α

60,半径AB的长
附录(表格和图):
B
B
l
O。

高中数学新人教版B版精品教案《人教版B高中数学必修4 1.1.2 弧度制和弧度制与角度制的换算》

高中数学新人教版B版精品教案《人教版B高中数学必修4 1.1.2 弧度制和弧度制与角度制的换算》

弧度制和弧度制与角度制的换算一、目标分析充分的小组探究、合作、展示以及对角度制、弧度制各有优点的诠释,培养学生直观想象、数学运算、数据分析的学科核心素养以及理性思维、批判质疑、勇于探究的文化基础的学生发展核心素养。

1、知识与技能(1)理解1弧度的角及弧度的定义。

(2)掌握角度与弧度的换算公式。

(3)理解角的集合与实数集R之间的一一对应关系。

(4)理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。

2、过程与方法通过不同圆中相等圆心角对应的弧长与半径的比值的关系引入弧度的概念;比较两种度量角的制度探究角度制与弧度制之间的互化;小组内充分的开放式问题的讨论使学生掌握扇形的面积公式;通过自主学习和合作学习,树立学生正确的学习态度。

3、情感态度与价值观通过弧度制的学习,使学生认识到角度制与弧度制都是度量角制度,二者虽单位不同,但却是相互联系、辩证统一的;在弧度制下,角的加、减运算可以像十进制一样进行,而不需要进行角度制与十进制之间的互化,化简了六十进制给角的加、减运算带来的诸多不便,体现了弧度制的简捷美;通过弧度制与角度制的比较,使学生认识到引入弧度制的优越性,激发学生的学习兴趣和求知欲望,养成良好的学习品质。

二、教材及内容分析本节课是普通高中课程标准实验教科书人教B版必修4第一章第一单元第二节内容。

学生在初中已经学过角的度量单位“度”,且在上节课学习了任意角的概念,已掌握了一些基本单位转换方法,并能体会不同的单位制能给解决不同的问题带来方便;该课的知识还为之后学习任意角的三角函数等知识埋下了铺垫,因此本节课起着承上启下的作用。

通过本节课的学习,我们很容易找出与角对应的实数,且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。

同时,通过本节课的学习,学生可以认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是是互相联系的、辩证统一的,从而进一步加强学生对辩证统一思想的理解。

三、重难点分析根据新课程标准及对教材的分析,确定本节课重难点如下:重点:1、理解并掌握弧度制的定义。

弧度与角度的转换公式是怎样的

弧度与角度的转换公式是怎样的

弧度与角度的转换公式是怎样的弧度与角度的转换公式是怎样的呢?有同学了解过吗?没有的话,快到小编这里来瞧瞧。

下面是由小编为大家整理的“弧度与角度的转换公式是怎样的”,仅供参考,欢迎大家阅读。

弧度与角度的转换公式是怎样的弧度和角度的换算公式为:1弧度=(180/π)°,根据定义,一周的弧度数为2πr/r=2π,360°角=2π弧度,1弧度约为57.3°。

弧度是角的度量单位,1周角为2π弧度,1平角为π弧度,1直角为π/2弧度。

拓展阅读:扇形的周长公式是什么扇形的周长:C=2R+2πR×n/360°,(n为圆心角,R为半径),扇形的周长由两部分构成,第一部分是圆的半径的两倍,即2R。

还有一部分是弧长,即2πR×n/360°,(n为圆心角)。

一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

显然,它是由圆周的一部分与它所对应的圆心角围成。

《几何原本》中这样定义扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形。

扇形的周长和面积公式是什么扇形周长公式为:扇形周长=扇形半径×2+弧长,即C=2r+ (n÷360) πd=2r+(n÷180)πr。

扇形面积公式是S=(lR)/2 或S=(1/2)θR²,R是底圆的半径,l为扇形弧长,θ为圆心角。

一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

扇形周长公式是:扇形周长=扇形半径×2+弧长,即C=2r+ (n÷360) πd=2r+(n÷180)πr。

扇形面积公式描述了扇形面积和圆心角(顶角)、半径、所对弧长的关系。

数学公式表示为:S扇=(lR)/2 (l为扇形弧长) =(1/2)θR²(θ为以弧度表示的圆心角)。

扇形(符号:⌔),是圆的一部分,由两个半径和和一段弧围成,在较小的区域被称为小扇形,较大的区域被称为大扇形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人大附中分校高一数学导学学案
一.学生自学课本第7、8页.通过自学回答老师提出的以下问题:
① 角的弧度制是如何引入的?
② 为什么要引入弧度制?好处是什么? ③ 1弧度是如何定义的?
④ 角度制与弧度制的区别与联系。

1.弧度角的定义:长度等于半径长的弧所对的圆心角称为1弧度的角,它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.
2.平角、周角的弧度数:平角= rad 、周角=2 rad
3.正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0. 4.角的弧度数的绝对值 r
l
=α(l 为弧长,r 为半径) 二.角度制与弧度制的换算: 1.∵ 360
=2
rad ∴180= rad ; ∴ 1=
rad rad 01745.0180
≈π
'185730.571801
=≈⎪⎭
⎫ ⎝⎛=πrad
2.用弧度制表示弧长及扇形面积,公式: ① 弧长公式:α⋅=r l ,由公式:⇒=
r l α α⋅=r l 比公式180
r n l π=简单 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积。

②扇形面积公式 lR S 2
1
=,其中l 是扇形弧长,R 是圆的半径。

o R S
l
1.1.2 弧度制与角度值的换算参考答案
例题
例1:(1)把11230'化成弧度(精确到0.001);(2)把11230'化成弧度(用π表示) 解:(1)α=1.969 rad (2)58
π; 例2: 把3 rad 5
π化成度 解:33
rad 18010855
π=
⨯=
例4:直径为20cm 的圆中,求下列各圆心所对的弧长 ⑴3

165 解: cm r 10= ⑴ )(3
401034cm r l ππα=⨯=⋅=; ⑵ rad rad 12
11)(165180
165π
π
=
⨯=
例5: 已知扇形周长为10cm ,面积为6cm 2
,求扇形中心角的弧度数.
解:设扇形中心角的弧度数为α(0<α<2π),弧长为l ,半径为r ,
由题意:⎪⎩⎪⎨⎧=⋅=+62
1102r l r l ⇒0652
=+-r r ∴
⎩⎨⎧==62l r 或⎩⎨
⎧==4
3l r ∴ r l =α=3 或34
随堂练习
1.下列命题中,真命题是( )
A .1弧度是一度的圆心角所对的弧
B .1弧度是长度为半径的弧
C .1弧度是一度的弧与一度的角之和
D .1弧度是长度等于半径长的弧所对的圆心角的大小 解析:选D.根据1弧度的定义,对照各选项,可知D 为真命题. 2.把-8π
3
化成角度是( )
A .-960°
B .-480°
C .-120°
D .-60°
解析:选B.-8π3=-8
3
×180°=-480°.
3.把-300°化为弧度是( )
A .-4π3
B .-5π3
C .-7π4
D .-7π6
解析:选B.-300°=-300×π180=-5
3π.
4.圆的半径是6 cm ,则圆心角为π
12
的扇形面积是________ cm 2.
解析:S =12|α|r 2=12×π12×62=32π. 答案:3
2π。

相关文档
最新文档