e33-1DNA拓扑异构酶的亚类及性质比较
拓扑异构酶功能-概述说明以及解释

拓扑异构酶功能-概述说明以及解释1.引言1.1 概述拓扑异构酶是一类具有重要生物功能的酶。
拓扑异构酶的功能主要涉及DNA的拓扑结构调控,它们以调节DNA的旋转、环化和切割等方式对DNA分子进行拓扑学的调整和重排。
通过这些拓扑结构的调控,拓扑异构酶在维持DNA的结构完整性、保证DNA复制和转录等关键生物过程的进行中起着重要作用。
拓扑异构酶的重要性可以从多个方面来说明。
首先,它们参与了DNA 复制、转录和重组等基本生物学过程,在维持基因组的稳定性和一致性方面具有关键作用。
其次,拓扑异构酶还参与了细胞的调控和应激响应等生命活动,对于细胞的正常生理状态至关重要。
此外,一些拓扑异构酶还在细胞凋亡、肿瘤发生等疾病过程中发挥了重要作用,因此对拓扑异构酶的研究也具有重要的临床意义。
在最新的研究中,拓扑异构酶的调控机制和作用方式也得到了深入的研究和探索。
通过对拓扑异构酶的结构和功能的分析,科学家们发现了多种拓扑异构酶的亚型和亚基,揭示了它们在结构、催化机制和调节路径中的差异和相似之处。
这些发现不仅拓宽了我们对拓扑异构酶的认识,也为相关疾病的诊断和治疗提供了新的思路。
综上所述,拓扑异构酶作为一类具有重要生物功能的酶,在生物学和医学研究领域具有重要的地位和广阔的应用前景。
对于拓扑异构酶的进一步研究和理解,将有助于我们深入了解基因组的结构和功能,并为相关疾病的治疗提供新的策略和方法。
1.2 文章结构1.3 目的本文的目的是探讨拓扑异构酶的功能以及其在细胞生物学和生物化学领域中的重要作用。
通过对拓扑异构酶的定义、分类和作用机制的详细介绍,我们希望能够帮助读者深入了解这一特殊类酶的独特性质。
首先,我们将提供关于拓扑异构酶的概述,介绍其与其他酶的区别,以及其在生物体内的普遍存在。
通过这一部分的内容,读者将对这一领域有一个整体的认识。
接下来,我们将详细探讨拓扑异构酶的功能。
我将介绍拓扑异构酶在DNA拓扑结构的调控中扮演的角色,包括在DNA重组、染色质重塑、DNA复制和DNA修复过程中的作用。
某大学生物工程学院《生物化学》考试试卷(225)

某大学生物工程学院《生物化学》课程试卷(含答案)__________学年第___学期考试类型:(闭卷)考试考试时间:90 分钟年级专业_____________学号_____________ 姓名_____________1、判断题(95分,每题5分)1. DNA复制时,前导链按5′→3′合成,滞后链则按3′→5′合成。
()[厦门大学2015研]答案:错误解析:DNA复制时,以5′→3′走向为模板的一条链合成方向为5′→3′,与复制叉方向一致,称为前导链;另一条以5′→3′走向为模板链的合成链走向与复制叉移动的方向相反,称为滞后链,其合成是不连续的,先形成许多不连续的片段(冈崎片段),最后连成一条完整的DNA链,前导链与滞后链的合成方向都是5′→3′。
2. 细胞水平的调控是一种最原始、最基础的调控机制。
()答案:错误解析:3. 酮体包括丙酮,β羟丁酸和乙酰乙酸,前两种都衍生于乙酰乙酸,分别由乙酰乙酸脱羧酶和β羟丁酸脱氢酶催化。
()答案:正确解析:乙酰乙酸、β羟丁酸和丙酮,统称为酮体。
乙酰乙酸在肝线粒体β羟丁酸脱氢酶催化下可还原生成β羟丁酸;由乙酰乙酸脱羧生成丙酮。
4. 用烟草花叶病毒构建植物表达载体时,外源基因可直接插入其基因组中,然后感染植物细胞,并在植物细胞中高水平表达。
()答案:错误解析:因烟草花叶病毒为单链RNA病毒,应首先将其RNA逆转录成cDNA。
5. 载脂蛋白不仅具有结合和转运脂质的作用,同时还具有调节脂蛋白代谢关键酶活性和参与脂蛋白受体的识别的主要作用。
()答案:正确解析:6. 琥珀酸脱氢酶是三羧酸循环中唯一掺入线粒体内膜的酶。
()答案:正确解析:7. DNA重组修复可将DNA损伤部位彻底修复。
()答案:错误解析:8. 原核细胞中,构成RNA聚合酶的σ因子的浓度低于核心酶的浓度。
()答案:正确解析:原核细胞RNA聚合酶全酶中的σ因子只参与转录的起始,当起始完成以后即与核心酶解离,并可以重新利用参与新一轮的转录起始,因此它的浓度不需要与核心酶一样。
拓扑异构酶I和拓扑异构酶II(攻略)

一、DNA的化学组成DNA的组成单位是脱氧核苷酸(nucleotide)。
核苷酸有三个组成成分:一个磷酸基团(phosphate),一个2’-脱氧核糖(2’-deoxyribose)和一个碱基(base)。
之所以叫做2’-脱氧核糖是因为戊糖的第二位碳原子没有羟基,而是两个氢。
为了区别于碱基上原子的位臵,核糖上原子的位臵在右上角都标以“ ’ ”。
第一节DNA的结构构成DNA的碱基可以分为两类,嘌呤(purine)和嘧啶(pyrimidine)。
嘌呤为双环结构(Bicyclic),包括腺嘌呤(adenine)和鸟嘌呤(guanine),这两种嘌呤有着相同的基本结构,只是附着的基团不同。
而嘧啶为单环结构(monocyclic),包括胞嘧啶(cytosine)和胸腺嘧啶(thymine),它们同样有着相同的基本结构。
我们可以用数字表示嘌呤和嘧啶环上的原子位臵。
1、碱基嘌呤的N9和嘧啶的N1通过糖苷键与脱氧核糖结合形成核苷,分别称为2’-脱氧腺苷,2’-脱氧胸苷等。
2、脱氧核苷(deoxynucleosides)磷酸基团通过酯键(ester)与2’-脱氧核糖的5’-碳原子相连形成脱氧核糖核苷酸。
3、脱氧核苷酸(Nucleotides)核苷中戊糖C2、C3、C5羟基被磷酸酯化。
Deoxynucleotides(containing deoxyribose)Ribonucleotides(containing ribose)Phosphate ester bonds核苷酸依次以磷酸二酯键相连形成多核苷酸链(polynucleotide),即一个核苷酸的脱氧核糖上的3’-羟基与另一核苷酸上的5’-磷酸基形成磷酸二酯键(phosphodiester)。
也就是一个核苷的3’-羟基和另一核苷的5’-羟基与同一个磷酸分子形成两个酯键。
核苷酸链的一个末端有一个游离的5’基团,另一端的核苷酸有一游离的3’基团。
人们习惯于从5’→3’方向书写核苷酸系列,即从左侧的5’端到右侧的3’端书写二、DNA double helix生物化学家Erwin Chargaff用纸层析技术分析了DNA的核苷酸组成。
三种环形DNA的拓扑学特征 2

梁梦晓 翁柳丽 梁梦晓
DNA的三级结构是指DNA分子 (双螺旋)通过扭曲和折叠 所形成的特定构象,包括不 同二级结构单元间的相互作 用、单链与二级结构单元间 的相互作用以及DNA的拓扑特 征。
许多DNA是双链环状分子,如 细菌染色体DNA、质粒DNA、细 胞器DNA、某些病毒DNA等。通 常可以观察到3种形式的DNA。 共价闭环DNA:常呈超螺旋型 开环DNA:双链环状DNA的一条链 断裂,分子呈松弛状 线型DNA:环状DNA双链断裂
,
在闭环状双链DNA的拓扑学转变
一个封闭的环状双链DNA分子
拓扑异构酶有两种类型。
I类能使双链超螺旋DNA转变成松弛型环 状DNA,每一次催化作用可消除一个负超 螺旋,即使L值增加1。 II类酶刚好相反,可使松弛型环状DNA 转变成负超螺旋DNA,每次催化作用,使L 值减少2。拓扑异构酶II也称促旋酶。
天然环状DNA一般都以负超螺旋构象存在, 负超螺旋DNA易于解链。DNA的复制、重组 和转录等过程都需将两条链解开,因此负 超螺旋有利于这些功能的进行。但是这些 生物学过程需要的负超螺旋程度是各不相 同的,可以通过DNA的拓扑结构来调节其功 能。
DNA的拓扑异构体之间的转变是通过拓扑 异构酶来实现的。这种酶可以改变DNA的拓 扑异构体的L值。
这两种拓扑异构酶的作用刚好相反,所 以细胞内两种酶的含量受严格的控制,使 细胞内DNA保持在一定的超螺旋水平。
(1)连环数 在双螺旋DNA中,一条链以右手螺旋绕 另一条链缠绕的次数,以字母L表示,在 松弛环状DNA中,L=25,在解链环状DNA 中及超螺旋分子中L值皆为23。 三种环状DNA分子具有相同的结构,但 L值不同,所以称它们为拓扑异构体。 拓扑异构酶可以催化拓扑异构体之间 的转换。
不同类型dna聚合酶的特点及其应用范围

不同类型dna聚合酶的特点及其应用范围DNA聚合酶是一类关键酶,在细胞中起着合成DNA的重要作用。
根据功能和结构的差异,DNA聚合酶被分为多个类型。
本文将重点介绍不同类型DNA聚合酶的特点及其应用范围。
一、DNA聚合酶α(Pol α)DNA聚合酶α是一种多亚基酶,包括两个亚基:Pol1和Pol2。
Pol1亚基具有DNA聚合酶活性,而Pol2亚基则负责DNA的5'-3'外切割活性。
Pol α在DNA复制的起始阶段起着重要作用,它能够合成短片段的RNA-DNA杂交物,即RNA引物。
这些RNA引物能够为DNA聚合酶δ(Pol δ)提供3'-OH端,从而使其能够继续合成DNA链。
因此,Pol α在DNA复制的起始阶段起到了关键的协调作用。
二、DNA聚合酶δ(Pol δ)DNA聚合酶δ是一种高度保守的酶,广泛存在于真核生物中。
它是DNA复制过程中主要的DNA聚合酶之一。
Pol δ具有较高的拷贝精度和较强的DNA链延伸能力。
此外,Pol δ还具有3'-5'外切割活性,能够修复DNA链上的错误碱基。
Pol δ在DNA复制的中后期起着关键作用,能够合成长链DNA,填补Okazaki片段,并进行DNA修复。
三、DNA聚合酶ε(Pol ε)DNA聚合酶ε是真核生物中的另一种重要DNA聚合酶。
它与Pol δ具有相似的功能,但在某些方面有所不同。
Pol ε具有较高的拷贝精度和较强的DNA链延伸能力。
与Pol δ相比,Pol ε更加适合合成长链DNA。
此外,Pol ε还参与了DNA修复和基因组稳定性的维护。
四、DNA聚合酶ζ(Pol ζ)DNA聚合酶ζ是一种特殊的DNA聚合酶,它在DNA损伤修复和突变的形成中发挥重要作用。
Pol ζ能够在DNA复制过程中绕过DNA损伤位点,从而避免DNA复制的中断。
虽然Pol ζ的拷贝精度较低,但它能够容忍某些DNA损伤,从而保证了DNA复制的完成。
DNA拓扑异构酶概述

DNA拓扑异构酶综述摘要:DNA拓扑异构酶为催化DNA拓扑学异构体相互转变的酶之总称,是一种见于真核细胞和原核细胞中的重要生物酶,其对DNA转录、复制、染色体分离及基因表达等过程中的DNA 拓扑结构起着重要的调控作用。
研究发现,与正常细胞不同,DNA 拓扑异构酶在肿瘤细胞中表现出不受其他因素影响的高水平表达,而许多抗肿瘤药物的作用机制也与DNA拓扑异构酶密切相关,因此它作为抗肿瘤药物的重要靶点引起了研究者的广泛关注。
此外,科学家们还发现拓扑异构酶在神经发育调节上也起着一定的作用,虽然机制还需要进一步研究,但这一发现就有着重要意义。
本文对DNA拓扑异构酶的反应、结构、分类及生物功能进行了简要的归纳,介绍了DNA拓扑异构酶抑制剂的研究及分类,并对拓扑异构酶在其他方面上的进展进行了简单的介绍。
关键词:DNA拓扑异构酶拓扑异构酶抑制剂抗肿瘤药物生物功能DNA拓扑异构酶(topoisomerase)调控DNA超螺旋状态,它是存在于细胞核内的一类酶,参与DNA复制、重组、转录、修复等核内关键作用,它们能够催化DNA链的断裂和结合,从而影响DNA的拓扑状态。
真核细胞的拓扑结构由两种关键拓扑异构酶拓扑异构酶I和拓扑异构酶II调节,拓扑异构酶I通过形成短暂的单链裂解-结合循环,催化DNA复制的拓扑异构状态的变化;相反,拓扑异构酶II通过引起瞬间双链酶桥的断裂,然后打通和再封闭,以改变DNA的拓扑状态。
哺乳动物中,拓扑异构酶II又可以分为αII型和βII型。
拓扑异构酶的应用也很广泛,如现已知这些酶是很多抗肿瘤药物的细胞内靶酶,在肿瘤细胞中,拓扑异构酶的含量高于正常细胞,所以以其为靶点的抑制具有一定特异性,因此对它的研究也越来越重视。
1、DNA拓扑异构酶 I拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接,它们不需要能量辅因子如ATP或NAD。
E.coliDNA拓扑异构酶I又称ω蛋白,大白鼠肝DNA拓扑异构酶I又称切刻-封闭酶(nicking-closing enzyme )。
王镜岩(第三版)生物化学下册课后习题答案

第19章代谢总论⒈怎样理解新陈代谢?答:新陈代谢是生物体内一切化学变化的总称,是生物体表现其生命活动的重要特征之一。
它是由多酶体系协同作用的化学反应网络。
新陈代谢包括分解代谢和合成代谢两个方面。
新陈代谢的功能可概括为五个方而:①从周围环境中获得营养物质。
②将外界引入的营养物质转变为自身需要的结构元件。
③将结构元件装配成自身的大分子。
④形成或分解生物体特殊功能所需的生物分子。
⑤提供机体生命活动所需的一切能量。
⒉能量代谢在新陈代谢中占何等地位?答:生物体的一切生命活动都需要能量。
生物体的生长、发育,包括核酸、蛋白质的生物合成,机体运动,包括肌肉的收缩以及生物膜的传递、运输功能等等,都需要消耗能量。
如果没有能量来源生命活动也就无法进行.生命也就停止。
⒊在能量储存和传递中,哪些物质起着重要作用?答:在能量储存和传递中,ATP(腺苷三磷酸)、GTP(鸟苷三磷酸)、UTP(尿苷三磷酸)以及CTP(胞苷三磷酸)等起着重要作用。
⒋新陈代谢有哪些调节机制?代谢调节有何生物意义?答:新陈代谢的调节可慨括地划分为三个不同水平:分子水平、细胞水平和整体水平。
分子水平的调节包括反应物和产物的调节(主要是浓度的调节和酶的调节)。
酶的调节是最基本的代谢调节,包括酶的数量调节以及酶活性的调节等。
酶的数量不只受到合成速率的调节,也受到降解速率的调节。
合成速率和降解速率都备有一系列的调节机制。
在酶的活性调节机制中,比较普遍的调节机制是可逆的变构调节和共价修饰两种形式。
细胞的特殊结构与酶结合在一起,使酶的作用具有严格的定位条理性,从而使代谢途径得到分隔控制。
多细胞生物还受到在整体水平上的调节。
这主要包括激素的调节和神经的调节。
高等真核生物由于分化出执行不同功能的各种器官,而使新陈代谢受到合理的分工安排。
人类还受到高级神经活动的调节。
除上述各方面的调节作用外,还有来自基因表达的调节作用。
代谢调节的生物学意义在于代谢调节使生物机体能够适应其内、外复杂的变化环境,从而得以生存。
DNA拓扑异构酶概述

DNA拓扑异构酶综述摘要:DNA拓扑异构酶为催化DNA拓扑学异构体相互转变的酶之总称,是一种见于真核细胞和原核细胞中的重要生物酶,其对DNA转录、复制、染色体分离及基因表达等过程中的DNA 拓扑结构起着重要的调控作用。
研究发现,与正常细胞不同,DNA 拓扑异构酶在肿瘤细胞中表现出不受其他因素影响的高水平表达,而许多抗肿瘤药物的作用机制也与DNA拓扑异构酶密切相关,因此它作为抗肿瘤药物的重要靶点引起了研究者的广泛关注。
此外,科学家们还发现拓扑异构酶在神经发育调节上也起着一定的作用,虽然机制还需要进一步研究,但这一发现就有着重要意义。
本文对DNA拓扑异构酶的反应、结构、分类及生物功能进行了简要的归纳,介绍了DNA拓扑异构酶抑制剂的研究及分类,并对拓扑异构酶在其他方面上的进展进行了简单的介绍。
关键词:DNA拓扑异构酶拓扑异构酶抑制剂抗肿瘤药物生物功能DNA拓扑异构酶(topoisomerase)调控DNA超螺旋状态,它是存在于细胞核内的一类酶,参与DNA复制、重组、转录、修复等核内关键作用,它们能够催化DNA链的断裂和结合,从而影响DNA的拓扑状态。
真核细胞的拓扑结构由两种关键拓扑异构酶拓扑异构酶I和拓扑异构酶II调节,拓扑异构酶I通过形成短暂的单链裂解-结合循环,催化DNA复制的拓扑异构状态的变化;相反,拓扑异构酶II通过引起瞬间双链酶桥的断裂,然后打通和再封闭,以改变DNA的拓扑状态。
哺乳动物中,拓扑异构酶II又可以分为αII型和βII型。
拓扑异构酶的应用也很广泛,如现已知这些酶是很多抗肿瘤药物的细胞内靶酶,在肿瘤细胞中,拓扑异构酶的含量高于正常细胞,所以以其为靶点的抑制具有一定特异性,因此对它的研究也越来越重视。
1、DNA拓扑异构酶 I拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接,它们不需要能量辅因子如ATP或NAD。
E.coliDNA拓扑异构酶I又称ω蛋白,大白鼠肝DNA拓扑异构酶I又称切刻-封闭酶(nicking-closing enzyme )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
亚类
IA
IB
IIA
IIB
Mg2+的依赖性
√
×
√
√
ATP的依赖性
×
×
√
√
切开DNA的几条链
1
1
2
2
切口与酶的连接方式
5′-磷酸酪氨酸酯键
3′-磷酸酪氨酸酯键
5′-磷酸酪氨酸酯键
5′-磷酸酪氨酸酯键
连环数的变化
±1
任何整数
±2
±2
e33-1 DNA拓扑异构酶的亚类及性质比较
DNA拓扑异构酶的I型又分为IA型和IB型两个亚类,其中IA型产生以5′-磷酸酪氨酸酯键相连的酶与DNA共价中间复合物,IB型产生的则是以3′-磷酸酪氨酸酯键相连的酶与DNA共价中间复合物。II型也可分为IIA和IIB两个亚类,但是,这两亚类的催化机理十分接近,都是形成以5′-磷酸酪氨酸酯键相连的酶与DNA共价中间复合物,只是结构上差别较大(表e33-1)。