DNA拓扑异构酶概述

合集下载

拓扑异构酶功能-概述说明以及解释

拓扑异构酶功能-概述说明以及解释

拓扑异构酶功能-概述说明以及解释1.引言1.1 概述拓扑异构酶是一类具有重要生物功能的酶。

拓扑异构酶的功能主要涉及DNA的拓扑结构调控,它们以调节DNA的旋转、环化和切割等方式对DNA分子进行拓扑学的调整和重排。

通过这些拓扑结构的调控,拓扑异构酶在维持DNA的结构完整性、保证DNA复制和转录等关键生物过程的进行中起着重要作用。

拓扑异构酶的重要性可以从多个方面来说明。

首先,它们参与了DNA 复制、转录和重组等基本生物学过程,在维持基因组的稳定性和一致性方面具有关键作用。

其次,拓扑异构酶还参与了细胞的调控和应激响应等生命活动,对于细胞的正常生理状态至关重要。

此外,一些拓扑异构酶还在细胞凋亡、肿瘤发生等疾病过程中发挥了重要作用,因此对拓扑异构酶的研究也具有重要的临床意义。

在最新的研究中,拓扑异构酶的调控机制和作用方式也得到了深入的研究和探索。

通过对拓扑异构酶的结构和功能的分析,科学家们发现了多种拓扑异构酶的亚型和亚基,揭示了它们在结构、催化机制和调节路径中的差异和相似之处。

这些发现不仅拓宽了我们对拓扑异构酶的认识,也为相关疾病的诊断和治疗提供了新的思路。

综上所述,拓扑异构酶作为一类具有重要生物功能的酶,在生物学和医学研究领域具有重要的地位和广阔的应用前景。

对于拓扑异构酶的进一步研究和理解,将有助于我们深入了解基因组的结构和功能,并为相关疾病的治疗提供新的策略和方法。

1.2 文章结构1.3 目的本文的目的是探讨拓扑异构酶的功能以及其在细胞生物学和生物化学领域中的重要作用。

通过对拓扑异构酶的定义、分类和作用机制的详细介绍,我们希望能够帮助读者深入了解这一特殊类酶的独特性质。

首先,我们将提供关于拓扑异构酶的概述,介绍其与其他酶的区别,以及其在生物体内的普遍存在。

通过这一部分的内容,读者将对这一领域有一个整体的认识。

接下来,我们将详细探讨拓扑异构酶的功能。

我将介绍拓扑异构酶在DNA拓扑结构的调控中扮演的角色,包括在DNA重组、染色质重塑、DNA复制和DNA修复过程中的作用。

拓扑异构酶名词解释

拓扑异构酶名词解释

拓扑异构酶名词解释拓扑异构酶的化学结构是由两个异构体的环状单元组成,由两个各具特征的基团分别置于两侧形成两个较大的相互垂直的α螺旋。

一般将其结构示意图称为异构酶二。

在生物膜内这种活性中心处有一种特殊的酶--拓扑异构酶,它专门识别和切断β-位上连接糖的多糖链,而不是通常意义上连接核酸链或蛋白质的糖链。

糖苷键的形成就是这样通过与异构酶二中的磷酸的交换反应来完成的。

拓扑异构酶主要参与对糖苷键的识别和连接,从而可以使各种生物膜达到最佳的流动性。

但是这类酶也存在一些不足之处。

例如有的多糖链很长,经过一次交换以后只能切断部分,甚至整个链都要被切断。

另外一种情况是蛋白质一般也是不溶性的,如果用浓度很低的异构酶溶液切割,就不能彻底,而只能切断某一段。

在这种情况下,酶需要适当的浓度范围才能取得良好效果。

在糖化学中,根据生物膜中所含有的酶的特点,把糖类分成酶抑制剂、酶促剂和非酶抑制剂三大类。

糖苷键又称为次级键,其水解产物主要是由氨基酸组成的,所以糖苷键可以作为识别多糖链的标志。

在这类多糖链中,经过一次交换后往往有10-20%的多糖链保留了下来,这样的多糖链对分子量的测定带来一定困难,因此多糖链上总是带有糖的一级结构,糖的一级结构的改变对确定它的分子量也十分重要。

1)不稳定的糖苷键:发生翻转而导致构象发生变化,产生1个以上的新的构型; 2)稳定的糖苷键:发生构象的变化,形成更稳定的构型。

糖苷键对生物膜的功能是极为重要的,其对细胞的功能意义如下: (1)分隔不同的膜系统;(2)将一个多糖链卷曲成一个特定的形式,以便进行更有效的蛋白质-蛋白质的相互作用;(3)改变某些膜蛋白的空间构象,控制膜蛋白的运动;(4)控制与膜结合的离子或分子的离子化程度;(5)识别受体分子的配体。

除此之外,糖链的糖苷键还与抗原物质的免疫识别有关,识别抗原时糖的替换,可引起免疫复合物的凝集,使免疫原抗体所含的糖类按特定比例排列。

也有的学者认为糖苷键在糖类的折叠中,也起着一定的作用。

拓扑异构酶I和拓扑异构酶II(攻略)

拓扑异构酶I和拓扑异构酶II(攻略)

一、DNA的化学组成DNA的组成单位是脱氧核苷酸(nucleotide)。

核苷酸有三个组成成分:一个磷酸基团(phosphate),一个2’-脱氧核糖(2’-deoxyribose)和一个碱基(base)。

之所以叫做2’-脱氧核糖是因为戊糖的第二位碳原子没有羟基,而是两个氢。

为了区别于碱基上原子的位臵,核糖上原子的位臵在右上角都标以“ ’ ”。

第一节DNA的结构构成DNA的碱基可以分为两类,嘌呤(purine)和嘧啶(pyrimidine)。

嘌呤为双环结构(Bicyclic),包括腺嘌呤(adenine)和鸟嘌呤(guanine),这两种嘌呤有着相同的基本结构,只是附着的基团不同。

而嘧啶为单环结构(monocyclic),包括胞嘧啶(cytosine)和胸腺嘧啶(thymine),它们同样有着相同的基本结构。

我们可以用数字表示嘌呤和嘧啶环上的原子位臵。

1、碱基嘌呤的N9和嘧啶的N1通过糖苷键与脱氧核糖结合形成核苷,分别称为2’-脱氧腺苷,2’-脱氧胸苷等。

2、脱氧核苷(deoxynucleosides)磷酸基团通过酯键(ester)与2’-脱氧核糖的5’-碳原子相连形成脱氧核糖核苷酸。

3、脱氧核苷酸(Nucleotides)核苷中戊糖C2、C3、C5羟基被磷酸酯化。

Deoxynucleotides(containing deoxyribose)Ribonucleotides(containing ribose)Phosphate ester bonds核苷酸依次以磷酸二酯键相连形成多核苷酸链(polynucleotide),即一个核苷酸的脱氧核糖上的3’-羟基与另一核苷酸上的5’-磷酸基形成磷酸二酯键(phosphodiester)。

也就是一个核苷的3’-羟基和另一核苷的5’-羟基与同一个磷酸分子形成两个酯键。

核苷酸链的一个末端有一个游离的5’基团,另一端的核苷酸有一游离的3’基团。

人们习惯于从5’→3’方向书写核苷酸系列,即从左侧的5’端到右侧的3’端书写二、DNA double helix生物化学家Erwin Chargaff用纸层析技术分析了DNA的核苷酸组成。

DNA拓扑异构酶的研究进展

DNA拓扑异构酶的研究进展

均位于 T p 的核心结构域 ,Tr 2 o oI y 7 3位 于羧基端结构域 。核 心 结构域和 羧基端结构域重组后可 以得到接近全酶 的活性。 Tp o oI的结构域还有连接子区域和 N端域, 前者与催化活性无
结构动态变化, 是控制核酸生理功能 的关键酶。 扑酶 的生物 拓 学作用可通过两种方式实现 ,一是调节控制 D A 的超螺旋状 N 态及打结或解结 D A 的环连体状态,从而间接地影响细胞 内 N 核酸代谢过程:二是直接参与那些需打断并重新连接 D A分 N
30 0 30 6)
文 章编 号 :17 — 0 5 (0 8 . 2 70 2 5 8 2 0 )30 5 . 3 6
D A 拓 扑 酶 广 泛存 在于 生物 体 细 胞核 内 , 调 节 核酸 空 间 N 能 结 构 动 态变 化 , 是控 制 核 酸 生 理 功 能 的关 键 酶 。 参与 D A 的 其 N
为 3k , 通 常 I B型 酶相 对 分 子 量在 8 ~ 1 Ou之 间 。因 6u 而 O lk 此它 已成 为 研 究 该类 酶 的结 构 功 能 的重 要 模 型分 子 。
构 :双螺旋结构构成其二级结构;真核生物 D A 分子很大 , N
D A 很 长 ,但 却要 存 在 于 小 小 的细 胞 核 内 ,因 此 D A必 须 在 N链 N 二 级 结 构 的基 础 上 紧密 折 叠 ,这 就形 成 了三 级 结 构 :DA分 子 N
人 T p I为单体酶,相对分子量为 9 u oo 1k ,共含 7 5个 6 氨基酸 ,由位于染色体 2 1 ̄1.2上 的单拷贝基 因编码 。 0q 2 3 最早 发现 的 T p 个关 键功 能活 性位 点为 : h g8 , o oI 4 r 4 8

拓 扑 异 构 酶 - 天津科技大学

拓 扑 异 构 酶 - 天津科技大学

在Ⅱ型拓扑异构酶中,DNA促旋 酶可单独催化闭环状DNA产生超螺旋, 这是独特的。其它二个型的酶,除可 使超螺旋松弛也需要ATP的能量外,松弛DNA
Ⅰ型拓扑异构酶解决了DNA在螺旋化以 及解螺旋的过程中所引起的张力问题。这里 给出了一个例子,蛋白质编号为1a36。它包 裹在DNA外围,并将双链DNA中的一条链切 开,然后固定住切开的一端,使DNA沿螺旋 轴向着解开超螺旋的方向旋转,在此过程中 消除了任何的正超螺旋或负超螺旋。一旦 DNA变得松弛以后,此酶将切开的链重新连 接,并再一次使DNA的双螺旋结构得到恢复。
(三)毒素与治疗
拓扑异构酶在维持DNA空间构象 及保证其行使功能方面都起着举足轻 重的作用,因此它也成为了一些毒素 进攻的敏感靶点。如果拓扑异构酶的 功能受到抑制,那么将会直接影响到 DNA转录以及细胞的分裂过程。癌症 的化疗正是利用了这一点,在治疗过 程中利用一些药物将此酶的功能抑制, 以达到杀死正处于迅速分裂状态的癌 细胞的目的。
(二)解开DNA
Ⅱ型拓扑异构酶,专门负责解开核内相 互缠绕在一起的DNA链。例如:当细胞进行 分裂时,染色体的两个拷贝相互分开,在此 过程中,两姐妹染色单体的一部分很可能相 互环绕在一起,这使二者的分离受到阻碍。 在二型拓扑异构酶的作用下,上述问题得以 解决。它切开一个双螺旋DNA的两条链,然 后让另一个双链DNA从切断处穿过,从而解 决了相互缠绕的问题。最后它将切开的DNA 链末端重新连接并将其修复。
专业:生物技术 姓名:黄琳
拓扑异构酶
定义:为催化DNA拓扑学异构体相互 转变的 酶之总称。 分类:切断一个链而改变拓扑结构的 称为Ⅰ型拓扑异构酶(topoisomeraseⅠ)。 通过切断二个链来进行的称为 Ⅱ型拓扑异构酶(topoisomeraseⅡ)

现代分子生物学复习题

现代分子生物学复习题

一名词解释1缺口(gap):DNA分子中,一条链上失去一段单链,称为gap。

切口(nick):DNA分子中,一条链上失去一个磷酸二酯键称为nick。

DNA hellicase (DNA解链酶):也叫DNA解螺旋酶,其通过水解ATP获得能量来解开双链DNA,每解开一对碱基,需水解2分子A TP→ADP+Pi(磷酸盐)拓扑异构酶:细胞内一类催化DNA拓扑异构体(topoisomerase)相互转化的酶,其为topoisomerase,其与DNA双条链形成共价结合的Pr-DNA中间体,在DNA双链骨架的3’,5’-磷酸二酯键处造成暂时的切口,使DNA的多聚核苷酸链得以穿越,通过改变DNA的连接数,而改变的分子拓扑结构。

3 无义突变(nonsense mutation):DNA序列三联体密码子发生突变,导致AA密码子变为终止密码子,称为无义突变,其导致翻译提前结束而常使产物失活错义突变(missense mutation):DNA序列三联体密码子发生突变导致pr中原来的AA被另一种AA取代。

4 转座子:是存在于染色体DNA上可自主复制和位移的基本单位。

DNA的转座:或称移位,是由可移位因子介导的遗传物质重排现象。

5转录单位:RNA链的转录起始于DNA模板的一个特定起点(启动子),并在一终点处(终止子)终止,此转录区域称为转录单位。

一个转录单位可是一个基因,也可是多个基因。

转录因子:RNA聚合酶起始转录需要的辅助因子称为转录因子。

其作用或是认别DNA的顺式作用位点,或是识别其他因子,或是识别RNA聚合酶。

6 复制子:DNA的复制单位。

终止子(Terminator):模板DNA上提供转录停止信号得DNA序列。

7. 单顺反子mRNA:编码1条多肽链的mRNARNA编辑:是某些RNA,特别是mRNA的一种加工方式,其改变RNA的序列,而导致DNA所编辑的遗传信息改变。

8 起始tRNA:有一类能特异的识别MRNA摸板上起始密码子的tRNA多顺反子mRNA:编码多条多肽链的mRNA。

DNA拓扑异构酶概述

DNA拓扑异构酶概述

DNA拓扑异构酶综述摘要:DNA拓扑异构酶为催化DNA拓扑学异构体相互转变的酶之总称,是一种见于真核细胞和原核细胞中的重要生物酶,其对DNA转录、复制、染色体分离及基因表达等过程中的DNA 拓扑结构起着重要的调控作用。

研究发现,与正常细胞不同,DNA 拓扑异构酶在肿瘤细胞中表现出不受其他因素影响的高水平表达,而许多抗肿瘤药物的作用机制也与DNA拓扑异构酶密切相关,因此它作为抗肿瘤药物的重要靶点引起了研究者的广泛关注。

此外,科学家们还发现拓扑异构酶在神经发育调节上也起着一定的作用,虽然机制还需要进一步研究,但这一发现就有着重要意义。

本文对DNA拓扑异构酶的反应、结构、分类及生物功能进行了简要的归纳,介绍了DNA拓扑异构酶抑制剂的研究及分类,并对拓扑异构酶在其他方面上的进展进行了简单的介绍。

关键词:DNA拓扑异构酶拓扑异构酶抑制剂抗肿瘤药物生物功能DNA拓扑异构酶(topoisomerase)调控DNA超螺旋状态,它是存在于细胞核内的一类酶,参与DNA复制、重组、转录、修复等核内关键作用,它们能够催化DNA链的断裂和结合,从而影响DNA的拓扑状态。

真核细胞的拓扑结构由两种关键拓扑异构酶拓扑异构酶I和拓扑异构酶II调节,拓扑异构酶I通过形成短暂的单链裂解-结合循环,催化DNA复制的拓扑异构状态的变化;相反,拓扑异构酶II通过引起瞬间双链酶桥的断裂,然后打通和再封闭,以改变DNA的拓扑状态。

哺乳动物中,拓扑异构酶II又可以分为αII型和βII型。

拓扑异构酶的应用也很广泛,如现已知这些酶是很多抗肿瘤药物的细胞内靶酶,在肿瘤细胞中,拓扑异构酶的含量高于正常细胞,所以以其为靶点的抑制具有一定特异性,因此对它的研究也越来越重视。

1、DNA拓扑异构酶 I拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接,它们不需要能量辅因子如ATP或NAD。

E.coliDNA拓扑异构酶I又称ω蛋白,大白鼠肝DNA拓扑异构酶I又称切刻-封闭酶(nicking-closing enzyme )。

原核生物dna复制酶的作用

原核生物dna复制酶的作用

原核生物dna复制酶的作用
原核生物的DNA复制涉及到多种酶的作用,这些酶包括DNA聚合酶、解
螺旋酶、拓扑异构酶和引物酶。

1. DNA聚合酶:在DNA复制过程中,DNA聚合酶负责合成新的DNA链。

它能够识别DNA模板链上的碱基,并在合成链上以互补碱基的顺序将新的
核苷酸添加进去,从而形成新的DNA链。

原核生物有至少三种DNA聚合酶:DNA聚合酶I、II和III。

2. 解螺旋酶:也被称为DnaB,它的功能是解开DNA双链,帮助复制过程
中的DNA链的展开。

3. 拓扑异构酶:这种酶可以切断DNA链,防止在解链过程中DNA链打结
或缠绕在一起。

拓扑酶分为I型和II型两种。

4. 引物酶:也被称为DnaG,它在复制起始时催化生成RNA引物。

引物是DNA合成的起点,帮助DNA聚合酶找到正确的复制起点。

5. DNA连接酶:这是一种能够催化两条DNA链连接的酶,将DNA片段连接起来形成完整的DNA分子。

在原核生物中,DNA连接酶利用NAD+作
为供能物质,将DNA链的3'-OH末端和另一DNA链的5'-P末端连接起来,形成磷酸二酯键,从而完成相邻DNA链的连接。

这些酶协同作用,确保了原核生物DNA复制的准确性和高效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DNA拓扑异构酶综述摘要:DNA拓扑异构酶为催化DNA拓扑学异构体相互转变的酶之总称,是一种见于真核细胞和原核细胞中的重要生物酶,其对DNA转录、复制、染色体分离及基因表达等过程中的DNA 拓扑结构起着重要的调控作用。

研究发现,与正常细胞不同,DNA 拓扑异构酶在肿瘤细胞中表现出不受其他因素影响的高水平表达,而许多抗肿瘤药物的作用机制也与DNA拓扑异构酶密切相关,因此它作为抗肿瘤药物的重要靶点引起了研究者的广泛关注。

此外,科学家们还发现拓扑异构酶在神经发育调节上也起着一定的作用,虽然机制还需要进一步研究,但这一发现就有着重要意义。

本文对DNA拓扑异构酶的反应、结构、分类及生物功能进行了简要的归纳,介绍了DNA拓扑异构酶抑制剂的研究及分类,并对拓扑异构酶在其他方面上的进展进行了简单的介绍。

关键词:DNA拓扑异构酶拓扑异构酶抑制剂抗肿瘤药物生物功能DNA拓扑异构酶(topoisomerase)调控DNA超螺旋状态,它是存在于细胞核内的一类酶,参与DNA复制、重组、转录、修复等核内关键作用,它们能够催化DNA链的断裂和结合,从而影响DNA的拓扑状态。

真核细胞的拓扑结构由两种关键拓扑异构酶拓扑异构酶I和拓扑异构酶II调节,拓扑异构酶I通过形成短暂的单链裂解-结合循环,催化DNA复制的拓扑异构状态的变化;相反,拓扑异构酶II通过引起瞬间双链酶桥的断裂,然后打通和再封闭,以改变DNA的拓扑状态。

哺乳动物中,拓扑异构酶II又可以分为αII型和βII型。

拓扑异构酶的应用也很广泛,如现已知这些酶是很多抗肿瘤药物的细胞内靶酶,在肿瘤细胞中,拓扑异构酶的含量高于正常细胞,所以以其为靶点的抑制具有一定特异性,因此对它的研究也越来越重视。

1、DNA拓扑异构酶 I拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接,它们不需要能量辅因子如ATP或NAD。

E.coliDNA拓扑异构酶I又称ω蛋白,大白鼠肝DNA拓扑异构酶I又称切刻-封闭酶(nicking-closing enzyme )。

DNA拓扑异构酶能催化的反应很多,如DNA拓扑异构酶I对单链DNA的亲和力要比双链高得多,这正是它识别负超螺旋DNA的分子基础,因为负超螺旋DNA常常会有一定程度的单链区。

负超螺旋越高,DNA拓扑异构酶I作用越快。

现已知道,生物体内负超螺旋稳定在5%左右,低了不行,高了也不行。

生物体通过拓扑异构酶I和II的相反作用而使负超螺旋达到一个稳定状态。

现已发现,编码E.coli拓扑异构酶I的基因topA发生突变,则会引起旋转酶基因的代偿性突变;否则,负超螺旋增高,细胞生活能力降低。

拓扑异构酶I作用的碱基序列特异性不高,但切点一定在C的下游方向4个碱基(包括C本身)的位置。

在将DNA 单链切断后,拓扑异构酶I连接于切口的5端,并贮藏了水解磷酸二脂键的能量用以连接切口,因而拓扑异构酶I的作用不需能量供应。

此外.拓扑异构酶I还能促进两个单链环的复性,其作用是解除复性过程所产生的链环数的负值压力,以使复性过程进行到底。

如果在一个单链环上一个部位切断,而使另一部位绕过切口.则可产生三叶形结构分子 (trefoil knot)。

如果有两个双链环,其中一个有一个切刻,拓扑异构酶I则可以将切刻对面的一条链切断,使完整的双链环套进去,再连接起来而成为环连体分子(catenane)。

拓扑异构酶Ⅰ最早是1971 年在大肠杆菌中被发现的,均为单体酶。

拓扑异构酶Ⅰ根据其结构域功能可以划分为 4 个域:C端结构域(C terminal domain)、核心结构域(core domain)、连接子区域(linker domain)和N端域(N-terminal domain),其中C端结构域、核心结构域在催化活性中起主要作用。

在拓扑异构酶Ⅰ的多个活性位点中,Arg488、Arg590、His632和Tyr723为研究比较明确的4个活性位点[7,8]。

除Tyr723位于羧基端结构域外,其余三个均位于拓扑异构酶Ⅰ的核心结构域,如下图所示。

(左a:TOPOⅠ晶体结构;右b:TOPOⅠ活性位点)2、DNA拓扑异构酶II拓扑异构酶II能同时断裂并连接双股DNA链.它们通常需要能量辅因子ATP。

在拓扑异构酶II中又可以分为两个亚类:一个亚类是DNA旋转酶(DNA gyrase ),其主要功能为引入负超螺旋,在DNA复制中起十分重要的作用。

迄今为止,只有在原核生物中才发现DNA 旋转酶,另一个亚类是转变超螺旋DNA(包括正超螺旋和负超螺旋)成为没有超螺旋的松弛形式(relaxed form )。

这一反应虽然是热力学上有利的方向,但不知道为什么它们仍然像DNA 旋转酶一样需要ATP,这可能与恢复酶的构象有关。

这一类酶在原核生物和真核生物中都有发现。

大肠杆菌的拓扑异构酶II除了引入负超螺旋以外.还具有形成或拆开双链DNA环连体和成结分子的能力。

II类拓扑异构酶没有碱基序列特异性,它们可以和任何相交的两对双链DNA结合。

DNA旋转酶有两个α亚基和两个β亚基。

α亚基约105KD,为gyrA基因所编码,具有磷酸二脂酶活性,可为萘啶酮酸(nalidixic acid )所抑制。

β亚基约95KD,为graB 基因所编码,具有ATP酶活性,可为新生霉素(novobiocin )所抑制。

这两种药物均可抑制野生型大肠杆菌的DNA复制。

可见DNA旋转酶为E.coli的复制所不可缺少的。

在切断一条DNA双链后,两个a亚基各结合于切口的一个5'端,并贮藏了水解磷酸二酯键而获得的能量,由于该酶的整体性,因而DNA链的四个断头并无任意旋转的可能性。

由于酶的别构效应,使完整的双链穿过切口,然后再重新形成磷酸二酯键。

β亚基的功能在于水解ATP以使酶分子恢复原来的构象,以便进行下一轮反应。

这一点可以用ATP的同系物β,γ-亚氨基ATP代替ATP而得到证实。

因为这一同系物不能被DNA旋转酶所水解,但它确能促进第一轮拓扑异构反应,使负超螺旋增加,而妨碍以后进一步的拓扑异构反应。

真核生物拓扑异构酶Ⅱ为同源二聚体,包括的两个亚型拓扑异构酶Ⅱα和拓扑异构酶Ⅱβ分别定位于染色体17q21—22[10]和3p24[11]单拷贝基因编码的二聚体蛋白。

拓扑异构酶Ⅱ可划分为三个不同区域:C端域、N 端域(ATP结合域)以及中部功能域(如下图右)。

DNA拓扑异构酶的C端域在其对DNA的构象识别方面起主要作用,N端域和中部功能域则为拓扑异构酶的主要活性域,如下图所示。

(左上a:TOPOⅡ结构;右上b:TOPOⅡ活性域)3、应用(DNA 拓扑异构酶抑制剂---抗肿瘤药物的研究)3.1 作用原理对于DNA 拓扑异构酶抑制剂的作用原理,我们可以通过影响拓扑异构酶作用过程的各个阶段来破坏酶的活性。

既可以直接作用于DNA,也可以作用于拓扑异构酶,还可以作用于DNA 拓扑异构酶-DNA 断裂复合物,来完成对拓扑异构酶活性的抑制,并最终导致细胞凋亡。

抑制剂的作用实际上是使细胞内功能正常的拓扑异构酶转变为导致DNA链断裂的致伤物,而细胞死亡的最终原因可能是由于DNA 链断裂的错误修复或是由于可断裂复合物的形成及稳定存在,激活了细胞内一系列导致细胞程序性死亡的过程。

大体上来说,DNA 拓扑异构酶抑制剂的抑制机理可以分为两种,一种是毒性机理,一种是催化抑制机理。

毒性机理是指抑制剂与Topo-DNA 共价复合物形成三元复合物,通过提高Topo-DNA 共价复合物的稳态浓度使拓扑异构酶“中毒”。

而催化机理是指抑制剂通过阻滞拓扑异构酶的某一特定功能或催化反应中的某一步骤,进而抑制拓扑异构酶总的催化活性。

3.2 抑制剂类型而对于拓扑异构酶抑制剂的类型,常用的有:有机小分子作为DNA 拓扑异构酶抑制剂,因其作用的底物不同,可以分为TopoⅠ抑制剂、TopoⅡ抑制剂和TopoⅠ/Ⅱ双重抑制剂,而以TopoⅠ为靶点的抑制剂主要是喜树碱及其衍生物;以TopoⅡ为靶点的抑制剂则较多,根据与底物的作用方式不同,将拓扑异构酶Ⅱ抑制剂分为TopoⅡ毒剂和TopoⅡ催化抑制剂,但迄今发现的TopoⅡ抑制剂大部分为TopoⅡ毒剂,常见的有阿霉素( Doxorubicin) ,VP-16( Etoposide) ,沙尔威辛等;大部分TopoⅠ/TopoⅡ双重抑制剂是TopoⅠ和TopoⅡ的双重毒剂,能同时稳定两种拓扑酶与DNA形成的可断裂复合物,从而抑制拓扑酶的活性。

还有金属配合物作为DNA 拓扑异构酶抑制剂,与有机化合物相比,金属配合物分子结构具有更好的可塑性,容易在配体上引入其他分子活性基团,可以针对不同的底物结合环境进行相应的结构修饰; 而且其丰富的光电磁性质将有助于探索某些复杂的生命过程。

然而,虽然发现不少金属配合物具有识别和断裂DNA 功能,但真正在DNA 拓扑异构酶抑制方面的具体应用还非常少,至今仅有为数不多的关于金属配合物抑制DNA拓扑异构酶的研究报道,主要集中在铂类、钌类、金类等金属配合物方面。

其次便是一些铂类配合物作为拓扑异构酶抑制剂,铂类配合物作为研究最早的抗肿瘤药物,一直备受研究者关注。

钌类配合物作为拓扑异构酶抑制剂,钌多吡啶配合物具有既为刚性又带手性的八面体构型,水溶性比较好,热力学性质稳定,不易发生配体取代,易于在近生理条件下开展研究,光化学、光物理信息丰富,毒性低,细胞膜透性较好,但目前钌类配合物作为拓扑异构酶抑制剂的抗肿瘤,活性研究仅限于体外研究阶段,需要更进一步对其作用机理等进行详细的研究,以确定其作为抗肿瘤药物的临床可能性。

当然,还有其他一些金属配合物作为拓扑异构酶抑制剂,除了铂、钌类金属配合物以外,常见的已用于抗肿瘤药物研究的还有金、镉、钴、镍等金属配合物,但是关于它们作为拓扑异构酶的抑制剂的报道则很少。

4、展望从20世纪70年代发现DNA拓扑异构酶晶体结构至今,经过几十年的努力,人们已经研制出一系列的拓扑异构酶抑制剂作为有效的抗肿瘤药物应用于临床,并对其作用机理做了大量研究。

随着肿瘤生物学及相关学科的发展,人们逐渐认识到细胞癌变的本质是细胞信号转导通路的失调导致的细胞无限增殖。

研发的重点正在从传统的细胞毒药物转移到针对肿瘤细胞内异常信号系统靶点的特异性新一代抗肿瘤药物。

而DNA 拓扑异构酶作为抗肿瘤药物设计的重要靶标,便受到了许多研究者的关注。

近年来以拓扑异构酶为靶点的抗癌药物如阿霉素、表阿霉素、VP16、VM26、喜树碱及其衍生物等,已成为临床化疗方案中的重要药物。

但目前仍有许多问题尚待深入研究和探讨,比如多数拓扑异构酶有机抑制剂存在结构复杂、特异性不高、溶解性差、毒性较大等缺点; 有关各类抑制剂与拓扑异构酶或(和)DNA 的作用机制尚不明确; 拓扑异构酶的某些生理功能还不是太确切; 拓扑异构酶引起细胞凋亡过程中相关信号分子的作用、信号转导途径的调控机制及Topo 抑制剂与信号网络的特异性等,抑制所完成的仅是全部过程中的一个必要起始步骤。

相关文档
最新文档