22配方法(三)

合集下载

华东师大版九年级数学上册《22章 一元二次方程 22.2 一元二次方程的解法 配方法》公开课课件_11

华东师大版九年级数学上册《22章 一元二次方程  22.2 一元二次方程的解法  配方法》公开课课件_11

一元二次方程的解法
例2 用配方法解下列方你程知:道用配方法解一
(1) x2 -4x +1 = 0
元二次方程的步骤了
解: 移项,得 x2 - 4x =-1
吗?
1、移项:常数项 移到方程右
方程左边配方,得
边.
x2 –2·x·2 + 22 = -1+ 22 2、配方:将方程左边配成一个
完全平方式。(两边都加上一次
例1. 解下列方程:
一元二次方程的解法
x2 + 2x = 5
思考:能否经过适当变形,将它们转化为 2 a
的形式,用直接开平方法求解?
解: 原方程两边都加上1,得
x2 + 2x +1 = 6 _(x__+_1_)_2 = __6__
即: __x_+_1_ = ±__√_6_ ∴ _x_1____6__1_ , _x_2 ____6__1
xΒιβλιοθήκη 52

41
2 4
x 5 41
2
2
x1

5 2
41
,
x2

5 2
41
课堂
演练三
一元二次方程的解法
试讨论关于x的一元二次方程 x2 -2x -m = 0的解的情况
小结
请你和同桌讨论一下: 1、配方 法的步骤?2、我们在配方的过程中 应该注意什么问题?
课堂作业:
一元二次方程的解法
演练二
用配方法解下列方程:
(1) x2 -2x -1 = 0 (2) x2–4 = 5x
解: x2 2x 1
3 x2 2x 111
解: x2 5x 4

22。3-4二次函数配方法专项练习试题

22。3-4二次函数配方法专项练习试题

图象。
2
配方可得 y 1 x2 6x21 1 x 62 3
2
2
由此可知,抛物线 y 1 x2 6x21 的顶点是(6,3),对称轴 2
是直线 x = 6
接下来,利用图象的对称性列表(请填表)
7.5 x
y1x2 6x21 2
·· ·
··
3
·y
10
4
5
6
7
8
9
·· ·
y 1x2 3x4 2
yx2 5x-3
x25x ( -5) 2( - -5) 2-3 22
(x25x25) -25-3 44
(x5)2 - 37 24
y-x212x9
( -x21x 2) 9
( -x2 1x2 3-6 3) 69 ( -x2 1x2 3) 6 ( 3 6 9 )
求下列抛物线的开口方向,顶点坐标,对称轴,增减性, 最值
yx22x2
y2x24x8
y2x2 8x
y 3x2 2x
yx22x
y

1x2 2
-2
x3
y1x24x3 2
2 抛物线如何 y2x24x5平移得到 y 2x2
范例
例2、画出 y1x2 6x21二次函数的
b 4ac b2


2a
,
4a

的对称轴是 x b 顶点 2a
1、二次函数 y = ax2 + bx + c (a、b、c为常数,a≠0)的图象是一条抛
物线,它的表达式也可以是 yaxh2 k ,
其中 h b ,k4acb2
2a
4a
2、二次函数 yax2bxc 的性质:

人教版数学九年级上册22.2.2《配方法》教学设计1

人教版数学九年级上册22.2.2《配方法》教学设计1

人教版数学九年级上册22.2.2《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的内容,这部分内容是在学生已经掌握了整式的加减、乘除,以及完全平方公式的基础上进行学习的。

配方法是一种解决问题的方法,通过构造完全平方公式,将问题转化为学生已经掌握的知识点,从而解决问题。

配方法在解决二次方程、二次不等式以及函数图像的平移等问题中有着广泛的应用。

二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和运用整式的加减、乘除以及完全平方公式。

但是,对于配方法的原理和应用,他们可能还不太清楚。

因此,在教学过程中,需要通过具体例子让学生理解配方法的原理,并通过练习让学生掌握配方法的应用。

三. 教学目标1.知识与技能:让学生掌握配方法的原理,并能够运用配方法解决相关问题。

2.过程与方法:通过具体例子,让学生理解配方法的过程,并能够独立完成配方法的操作。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。

四. 教学重难点1.配方法的原理理解2.配方法在解决实际问题中的应用五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过具体例子引导学生理解配方法,并通过练习让学生巩固所学知识。

六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这类问题。

例如,解决方程x^2 -5x + 6 = 0。

2.呈现(15分钟)讲解配方法的原理,并通过PPT展示配方法的具体步骤。

配方法的步骤如下:(1)将方程写成完全平方的形式;(2)根据完全平方公式,构造出两个相同的因式;(3)将方程转化为两个因式的乘积等于0的形式;(4)根据乘积等于0的性质,解出方程的解。

3.操练(15分钟)让学生独立完成配方法的操作,教师巡回指导。

4.巩固(10分钟)让学生解答一些相关的练习题,检验学生对配方法的理解和掌握程度。

5.拓展(10分钟)讲解配方法在解决二次方程、二次不等式以及函数图像的平移等问题中的应用。

22第2课时用配方法求解较复杂的一元二次方程1

22第2课时用配方法求解较复杂的一元二次方程1

什么是学习力含义
管理知识的能力 (利用现有知识
解决问题)
学习知识的能力 (学习新知识
速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
案例式 学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必 备习惯
积极 主动
以终 为始
分清 主次
不断 更新
高效学习 模型
高效学习模型-学习的完 整过程
解:设总共有 x 只猴子,根据题意得
1 x 2 12 x. 即 x2 - 64x+768 =0. 8
解这个方程,得
x1 =48; x2 =16.
答:一共有猴子48只或16只.
课后练习
见章末练习
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个
是你
忙忙叨叨,起早贪黑,
上课认真,笔记认真, 就是成绩不咋地……
TIP1:NPC代入,把自己想成其中的人物,会让自己的记忆过程更加有趣 (比如你穿越回去,成为了岳飞的母亲,你会在什么背景下怀着怎样的心情 在 背上刺下“精忠报国”四个字);
TIP2:越夸张越搞笑,越有助于刺激我们的大脑,帮助我们记忆,所以不妨在 编故事时,让自己脑洞大开,尝试夸张怪诞些~
故事记忆法小妙招





费曼学习法--
简介 理查德·菲利普斯·费 曼 (Richard Phillips Feynman)
(图片来自网络)
费曼学习法出自著名物理学家费曼,他曾获 的 1965年诺贝尔物理学奖,费曼不仅是一 名杰出的 物理学家,并且是一位伟大的教 育家,他能用很 简单的语言解释很复杂的 概念,让其他人能够快 速理解,实际上, 他在学习新东西的时候,也会 不断的研究 思考,直到研究的概念能被自己直观 轻松 的理解,这也是这个学习法命名的由来!

初中数学北师大版九年级上册《22用配方法求解一元二次方程(1)》教学设计

初中数学北师大版九年级上册《22用配方法求解一元二次方程(1)》教学设计
即x-3= ,或x-3=- .
所以x1=3+ ,x2=3- .
学生认真读题,思考并根据老师的提高,探究用配方的形式来解一元二次方程.
学生对两个根是否符合原题题意进行讨论.
学生观察后完成填空,并主动探究常数项与一次项系数之间的关系.
学生独立完成例题后,认真听老师的讲解.
学生独立完成后,班内交流.
探索配方法解一元二次方程
指出:我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.
练习:用配方法解一元二次方程.x2+2x+2=8x+4.
解:移项,得
x2+2x-8x=4-2.
即x2-6x=2.
两边都加(-3)2,得
x2-6x+(-3)2=2+(-3)2,
即(x-3)2=11.
两边开平方,得x-3=± ,
A.(x-2)2=1B.(x-2)2=5
C.(x+2)2=3D.(x-2)2=3
解:x2-4x+1=0,
移项:x2-4x=-1,
配方:x2-4x+4=-1+4,
即:(x-2)2=3.
故选:D.
Байду номын сангаас在师的引导下完成中考题.
体会所学知识在中考试题运用.
课堂总结
在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:
认识到方程的根不一定都符合实际题意.
体会完全平方式中常数项与一次项系数之间的关系
掌握用配方法解一元二次方程的过程,并理解配方法的概念.
巩固学生用配方法解一元二次方程的解方程能力
课堂练习
1.一元二次方程x2-6x-5=0配方后可变形为()

九年级数学上册第22章一元二次方程的解法2配方法pptx课件新版华东师大版

九年级数学上册第22章一元二次方程的解法2配方法pptx课件新版华东师大版
【点拨】由已知得x2-2x=3 599,配方得x2-2x+1 =3 600,即(x-1)2=3 600,开方得x-1=±60,所 以x1=61,x2=-59.因为a>b,所以a(-59)=181.
16 . 将 代 数 式 x2 - 10x + 5 配 方 后 , 发 现 它 的 最 小 值 为 __-__2_0___.
第22章 一元二次方程
2.配方法
提示:点击 进入习题
新知笔记
1 见习题
2 完全平方式; 非负常数
1D 2B 3A
4C
5 见习题
答案显示
6 见习题 7A 8C 9D 10 见习题
11 见习题 12 D 13 A 14 A 15 181
答案显示
16 -20 17 1或-3
18 见习题
19 见习题
1.一元二次方程配方的方法:(1)当二次项系数为1时,方 程两边都加上___一__次__项__系__数__一__半_______的平方;(2)当二 次项系数不为1时,方程两边同时除以 ____二__次__项__系__数____,将二次项系数化为1后再配方.
4.用配方法解下列方程,其中应在左右两边同时加上4的 是( C ) A.x2-2x=5 B.x2-8x=4 C.x2-4x=3 D.x2+2x=5
5.【教材改编题】将下列各式配方:
(1)x2-4x+___4___=(x-__2____)2;
(2)x2+12x+__3_6___=(x+___6___)2;
(3)x2-
3 2
9
3
x+___16___=(x-___4___)2;
(4)x2+2 2 x+___2___=(x+____2__)2.
6.用配方法解方程: (1)【2021·厦门期末】x2-2x-5=0;

22配方法教案改好

22配方法教案改好
通过例题的学习让学生仔细体会用配方法解方程的一般步骤。
四、课堂练习:
1、教材P34练习1(做在课本上,学生口答)
2、教材P34练习2
对于第二题根据时间可以分两组完成,学生板演,教师点评。
通过练习加深学生用配方法解一元二次方程的方法。
五、布置作业
1、教材P42习题22.2第5题
六、本课小结:让学生反思本节课的解题过程,归纳小结出配方法解一元二次方程的步骤:1、把常数项移到方程右边,用二次项系数除方程的两边使新方程的二次项系数为1;2、在方程的两边各加上一次项系数的一半的平方,使左边成为完全平方;如果方程的右边整理后是非负数,用直接开平方法解之,如果右边是个负数,则指出原方程无实根。
幻灯片
教学过程:问题与情境师活动设计意图一、复习巩固:
我们已经学习过形如x2=p与
(mx+n)2=p的一元二次方程,解为
你能解出方程(1)x2-81=0
(2)4x2-4x2+1=5的解吗?
学生独立解答,教师巡视指导,并请两位学生写在黑板上。
巩固加深上节课学习的内容。
二、学习新知:
1、方程x2-4x+1=0,x2-4x+1不能转化成完全平方公式时怎样解呢?从而引出课题。
教师:哪不一样?
学生:二次项系数不为1
教师:怎么办呢?
学生:化二次项系数为1。
教师:如何化二次项系数为1呢?
同桌讨论后教师指出。
在这我和教材例题有所不同,目的是把系数为1与系数不为1时的一元二次方程分类,这样利于学生的掌握。让学生能牢牢把握通过配方将原方程变为(x+k)2=a的形式解一元二次方程的方法。
22.2.1配方法――降次解一元二次方程
汉渠学校肖慧芳

22.2.2 配方法 课件 2024-2025学年数学华东师大版九年级上册

22.2.2 配方法  课件 2024-2025学年数学华东师大版九年级上册
0,配方后得到的方程是( D )


A. + =28
B. − =28


C. + =1
D. − =1
典例导思
2. 一元二次方程 x2-2 x + m =0配方后得( x -1)2=
n ,则 m + n 的值是 1 .

典例导思
题型二 用配方法解一元二次方程
用配方法解下列方程:
C )
典例导思
4. 解下列方程:
(1) x2-4 x +1=0;
解: x1=2+ ,
x2=2- .
(2)2 x2+ x =5 x +5;
解: x1=1+
x2=1-

.




典例导思
(3)3 x2-6 x -2=0;
解: x1=1+




x2=1-
.

2


(4)- x + x - =0.
=1+






即 −
= .





直接开平方,得 x - =± .∴ x1=3, x2=- .



典例导思
3. 一元二次方程 x2+4 x +1=0配方后可化为(
2
2
A. ( x +2) =5
B. ( x -2) -5=0
2
2
C. ( x +2) =3
D. ( x -2) -3=0



2
2
2
2
配方,得 x -4 x +2 = +2 ,即( x -2) = .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题**、配方法(三) 课型新授课
教学目标1.利用方程解决实际问题.2.训练用配方法解题的技能.
教学重点利用方程解决实际问题
教学难点对于开放性问题的解决,即如何设计方案
教学方法分组讨论法教具三角尺
教学内容及过程学生活动
一、复习:
1、配方:
(1)x2―3x+ =(x―)2
(2)x2―5x+ =(x―)2
2、用配方法解一元二次方程的步骤是什么?
3、用配方法解下列一元二次方程?
(1)3x2―1=2x (2)x2―5x+4=0
二、引入课题:
我们已经学习了用配方法解一元二次方程,在生产生活中常遇到一些问题,需要用一元二次方程来解答,请同学们将课本翻到54页,阅读课本,并思考:
三、出示思考题:
1、
如图所示:
(1)设花园四周小路的宽度均为x m,可列怎样的一元二次方程?
(2)一元二次方程的解是什么?
(3)这两个解都合要求吗?为什么?
1、2学生口答
学生演板
阅读课本
观察与思考
(16-2x) (12-2x)=
1
2×16×12
x1=2 x2=12
x1=2合要求,x2=12不合要求,因荒地的宽为12m,小路的宽不可能为12m,它必须小于荒地宽的一半。

x2π=
1
2×12×16
2、设花园四角的扇形半径均为x m,可列怎样的一元二次方程?
(2)一元二次方程的解是什么?
(3)合符条件的解是多少?
3、你还有其他设计方案吗?请设计出来与同伴交流。

四、练习:P56随堂练习
看课本P53~P54,然后小结
五、小结:
1、本节内容的设计方案不只一种,只要合符条件即可。

2、设计方案时,关键是列一元二次方程。

3、一元二次方程的解一般有两个,要根据实际情况舍去不合题意的解。

六、作业:
(一)P56,习题2.5,1、2
(二)预习内容:P56~P57
板书设计:
课后反思:X1=
96
π≈5.5
X2≈-5.5
X1=5.5
1)花园为菱形(2)花园为圆形?(3)花园为三角形(4)花园为梯形
本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性。

另外,还应注意用配方法解题的技能
一、设计方案
二、练习
三、小结。

相关文档
最新文档