22配方法(1)

合集下载

21-2 解一元二次方程 课件(共33张PPT)

21-2 解一元二次方程 课件(共33张PPT)
2×2 2
小练习
用公式法解下列一元二次方程:
(3)5x2-3x=x+1
(4)x2+17x=8x
解:方程化为5x2-4x-1=0
解:方程化为x2-8x+17=0
a=5,b=-4,c=-1.
a=1,b=-8,c=17.
Δ=b2-4ac=(-4)2-4×5×(-1)=36>0. Δ=b2-4ac=(-8)2-4×1×17=-4<0.
因式分解,可以考虑配方法;
(4)三项都有,且二次项系数不为1时的,一般可以用公式法。
小练习
例 3:解方程:x2-6x-16=0。
解:原方程变形为(x-8)(x+2)=0。
于是,得x-8=0或x+2=0
∴x1=8,x2=-2
解析:一元二次方程的解法有:配方法,公式法和因式分解法,解题时要
注意选择合适的解题方法。解此一元二次方程选择因式分解法最简单,因
(3)求解b2-4ac的值,如果b2-4ac≥0;
−± 2−4
(4)代入公式x=
,即可求出一元二次方程的根。
2
知识梳理
例 2:用公式法解方程x2-3x-1=0正确的解为( D )
−3± 13
A. x1,2=
2
3± 5
C.x1,2=
2
B.
D.
−3± 5
x1,2=
2
3± 13
x1,2=
2
解析:x2-3x-1=0。这里a=1,b=-3,c=-1。
Δ=b2-4ac=(-4)2-4×1×(-7)=44>0. Δ=b2-4ac=(-2 2)2-4×2×1=0.
−± 2−4
方程有两个不等的实数根x=
2

配方法说课稿[1]

配方法说课稿[1]

《配方法》说课稿今天我说课的题目是《配方法》(第一课时),内容选自人民教育出版社义务教育课程标准实验教科书,数学九年级(上册),第22章一元二次方程第2节。

下面我将从教学背景分析、教学策略及学法指导、教学过程设计、板书设计四个方面对本节课的教学作一个说明。

一、教材分析:一元二次方程是初中数学的主要内容之一,在初中数学中占有重要地位。

本节课是学习了直接开平方法后的一节新授课,配方的方法在以后的学习中经常用到,如在二次根式、代数式的变形及二次函数中有广泛应用。

二、学情分析在学习本节课内容之前,学生已经学习了完全平方公式2220++=,a ab b22-+=和直接开平方法解一元二次方20a ab b程,有了学习配方法的知识基础,另外,九年级的学生学习积极性高、求知欲望强,具有一定的自主探究和合作学习的能力。

在《新课程标准》中,对这部分内容的要求是:理解配方法,会用配方法解数字系数的一元二次方程。

下面我将从三个维度对其进行解读。

三、教学目标知识与技能目标:1、理解配方法的基本原理,体会转化思想;2、会用配方法解一元二次方程。

过程与方法目标:通过经历配方法解一元二次方程变形的过程,体会转化的数学思想。

情感态度价值观目标:通过配方法的探究过程,培养观察、比较、分析、概括、归纳的能力,培养学生勇于探索的良好学习习惯并使学生体会数学的逻辑之美。

四、教学重难点本节课是配方法的起始课,教学重点是用配方法解二次项系数是1的一元二次方程。

学生在前一节课已经掌握了直接开平方解一边是完全平方式的一元二次方程的方法,本节课中研究的方程不具备上述结构特点,需要合理添加条件进行转化,即“配方”,而学生在以前的学习中没有类似经验,因此对配方方法的探索是本节课的教学难点。

五、教学方式与教学手段的说明采取启发探究式教学,在教学中主要以启发学生进行探究的形式展开,利用学生已有的知识,让学生自主探索,通过对比,明晰方程结构特征,联想完全平方公式,对方程进行转化,发现、理解并初步掌握配方法。

22 一元二次方程同步练习

22 一元二次方程同步练习

22.1一元二次方程(第1课时)1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .22.1一元二次方程(第2课时)1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .22.2.1配方法(第1课时)1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,x1= ,x2= .3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得, .开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.课外补充作业:6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .8.用配方法解方程:x2-6x+7=0.22.2.1配方法(第2课时)1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .2.填空:(1)x2-2·x·13+ =(x- )2;(2)x2+5x+ =(x+ )2;(3)x2-32x+ =(x- )2;(4)x2+x+ =(x+ )2.3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方, .开平方,得,x1= ,x2= .4.完成下面的解题过程:用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.22.2.1配方法(第3课时)1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.22.2.2公式法(第1课时)1.完成下面的解题过程:利用求根公式解方程:x2+x-6=0.解:a= ,b= ,c= . b2-4ac== >0.=_________,1x=_________,1x=__________.2.利用求根公式解下列方程:(1)21x=04;(2)24x ;(3)3x 2-4x+2=0.22.2.2公式法(第2课时) 1.完成下面的解题过程: 用公式法解下列方程:(1)2x 2-3x-2=0.解:a= ,b= ,c= .b 2-4ac= = >0.=_________,1x =_________,1x =__________.解:整理,得 . a= ,b= ,c= .b 2-4ac= = .=_________,12x =x =_________.(3)(x-2)2=x-3.解:整理,得 . a= ,b= ,c= . b 2-4ac== <0.方程 实数根.2.利用判别式判断下列方程的根的情况:(1)x 2-5x=-7;(2)(x-1)(2x+3)=x ;(3)x 2x.22.2.3因式分解法(第1课时) 1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3)解:整理,得 . a= ,b= ,c= . b 2-4ac== >0.x=__________________=______, 1x =_________,2x =__________. 2.完成下面的解题过程:用因式分解法解方程:x 2解:移项,得 .因式分解,得 . 于是得 或 , x 1= ,x 2= .3.用因式分解法解下列方程:(1)x 2+x=0;(2)4x 2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2.22.2.3因式分解法(第2课时)1.填空:解一元二次方程的方法有四种,它们是直接开平方法、 、、 . 2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0; 解:原方程化成 .开平方,得 , x 1= ,x 2= .(2)用配方法解方程:3x 2-x-4=0;解:移项,得 . 二次项系数化为1,得.配方 , . 开平方,得 ,x 1= ,x 2= .(3)用公式法解方程:x(2x-4)=2.5-8x. 解:整理,得 . a= ,b= ,c= . b 2-4ac== >0.=_________,x 1= ,x 2= .(4)用因式分解法解方程:x(x+2)=3x+6. 解:移项,得 . 因式分解,得 . 于是得 或 ,x 1= ,x 2= .2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.22.3实际问题与一元二次方程(第1课时)1.完成下面的解题过程:一个直角三角形的两条直角边相差5cm,面积是7cm2,求两条直角边的长.解:设一条直角边的长为 cm,则另一条直角边的长为 cm.根据题意列方程,得.整理,得 .解方程,得x1= ,x2= (不合题意,舍去).答:一条直角边的长为 cm,则另一条直角边的长为 cm.2.一个菱形两条对角线长的和是10cm,面积是12cm2,(1)求菱形的两条对角线长;(2)求菱形的周长.(提示:菱形的面积=两条对角线积的一半)22.3实际问题与一元二次方程(第2课时)1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.2.完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得.提公因式,得( )2= .解方程,得 x1= ,x2= (不合题意,舍去).答:每轮传播中平均一个人传播了个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有人知道这个消息;(2)经过两轮传播后,共有人知道这个消息;(3)经过三轮传播后,共有人知道这个消息;(4)请猜想,经过十轮传播后,共有人知道这个消息.22.3实际问题与一元二次方程(第3课时)1.填空:(1)扎西家2006年收入是2万元,以后每年增长10%,则扎西家2007年的收入是万元,2008年的收入是万元;(2)扎西家2006年收入是2万元,以后每年的增长率为x,则扎西家2007年的收入是万元,2008年的收入是万元.2.完成下面的解题过程:某公司今年利润预计是300万元,后年利润要达到450万元,该公司利润的年平均增长率是多少?解:设该公司利润的年平均增长率是x.根据题意列方程,得.解方程,得x1≈,x2≈(不合题意,舍去).答:该公司利润的年平均增长率是 %.3.某公司今年利润预计是300万元,设该公司利润的年平均增长率是x,填空:(1)明年该公司年利润要达到万元;(2)后年该公司年利润要达到万元;(3)第三年该公司年利润要达到万元;(4)第十年该公司年利润要达到万元.第二十二章一元二次方程复习(第1、2、3课时)1.填空(以下内容是本章的基础知识,是需要你理解的,先直接用铅笔填,想不起来再在课本中找)(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程. (2)ax2+bx+c=0这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.(3)能使一元二次方程左右相等的未知数的值叫做一元二次方程的解,一元二次方程的解也叫一元二次方程的 .(4)一元二次方程的四种解法是:直接开平方法、、、.(5)一元二次方程ax2+bx+c=0,当b2-4ac 时,方程有两个不相等的实数根;当b2-4ac 时,方程有两个相等的实数根;当b2-4ac 时,方程没有实数根. (6)b2-4ac叫做一元二次方程ax2+bx+c=0根的,用来表示.(7)利用一元二次方程解决实际问题的步骤是:审题,,,, .2.填空:(1)把(x+2)(x-5)=1化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(2)把(x+3)(x-3)=5x2-2化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(3)已知一元二次方程x2-kx+2=0的一个根是-3,则k= .(4)一个长方形的长比宽多2,面积是100,求长方形的长x.根据这个问题,可以列出的方程是 .(5)x2+12x+ =(x+ )2,x2-43x+ =(x- )2.(6)在方程①3x2,②5x2,③8x2=3x-1中,没有实数根的是,有两个不相等的实数根是,有两个相等的实数根是 .(7)有一人得了流感,他把流感传染给了x个人,则经过两轮传染后,共有人得流感.(8)经过两年的努力,某村的青稞亩产由250千克达到300千克,求每年的平均增长率x.根据这个问题,可以列出的方程是.3.完成下面解题过程:(1)用直接开平方法解方程:4(x+2)2-9=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:x2+2x-4=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .(3)用公式法解下列方程:2x(x-1)=3(x+1);解:整理,得 .a= ,b= ,c= .b2-4ac= = >0.=_________,1x =_________,2x =__________. (4)用因式分解法解方程:(2x-3)2=x 2.解:移项,得 . 因式分解,得 . 于是得或 , x 1= ,x 2= .4.用适当的方法解下列方程:(1)196x 2-1=0;(2)x 2+8x=0;(3)x(2x-5)=4x-10;(4)x(x-7)=1;(5)2x 2+3x+3=0;(6)4x 2+12x+9=81.5.一元二次方程kx 2-2x+1=0,填空:(1)当k 时,方程有两个不相等的实数根;(2)当k 时,方程有两个相等的实数根;(3)当k 时,方程没有实数根. 6.把小圆形场地的半径增加5米得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.7.某银行经过最近的两次降息,使一年期存款的年利率由4%降至2%,平均每次降息的百分率是多少?8.一个直角梯形的下底比上底大2cm ,高比上底小1cm ,面积等于8cm 2,求这个直角梯形的周长.文档说明(Word 文档可以删除编辑)专注于可以编辑的精品文档:小学试卷教案合同协议施工组织设计、期中、期末等测试中考、高考、数学语文英语试卷、高中复习题目、本文档目的是为了节省读者的工作时间,提高读者的工作效率,读者可以放心下载文档进行编辑使用.由于文档太多,审核有可能疏忽,如果有错误或侵权,请联系本店马上删除。

1.1+一元二次方程的解法(2)-配方法(1)课件 2024—2025学年苏科版数学九年级上册

1.1+一元二次方程的解法(2)-配方法(1)课件 2024—2025学年苏科版数学九年级上册

讲授新知
x2 - 4x - 5 = 0的步骤
过程展示:
解:移项得:x2 - 4x = 5
配方得:x2 - 4x + 22 = 5 + 22
配方时注意:
两边同时加上
整理得:(x-2)2 = 9
一次项系数
开方得:(x-2 ±+2

x1 = 5
x2 = -1
点拨: 把一个一元二次方程变形为(x+h)2 =k (h、k为常数)的形式,当k
∵(x-2)2≥0
∴(x-2)2-12≥-12
∴(x2-4x-8)min= -12
牛刀小试
1、求代数式 x2+10x-13的最值.
2、求代数式 -x2+10x-13的最值.
课堂小结
通过本节课的学习你有哪些收获?
1、用配方法解一元二次方程
2、用配方法求代数式最值
课堂练习
1、若关于x 的一元二次方程x2-8x+m=0配方后得到方程(x--n)²=6,则关于x
(a2+b2)2-2(a2+b2)-15=0,则斜边c的长为
.
4、17.已知a,b,c是△ABC的三边,且a2+b2+c2-6a-8b-10c+50=0.
(1)求a,b,c的值;
(2)判断三角形的形状.
课堂练习
5、(1)求代数式 x2+8x-7的最值.
(2)求代数式 -x2+8x+7的最值.
6、用配方法解方程
(1)x2 - 2x - 3=0;
(2)x2 - 3x -1 = 0 .
过程展示:
过程展示:
解:移项得:x2
解:移项得:x2 - 3x = 1

2022年九年级数学上册第二章一元二次方程2.2用配方法求解一元二次方程第1课时直接开平方法与配方法

2022年九年级数学上册第二章一元二次方程2.2用配方法求解一元二次方程第1课时直接开平方法与配方法

0,
1 3
y
2
1
5,

1 y 1 5, ②
3
1 y 1 5, ③
3
y 3 5 1, ④
解:不对,从开始错,应改为
1 3
y
1
5,
y1 3 5 3, y2 3 5 3.
5.解下列方程:
1 x2 4x 4 5
x 22 解5, : x 2 5,
x 2 5, x 2 5,
第二章 一元二次方程
2.2用配方法求解一元二次方程
(第1课时 直接开平方法与配方法(1))
学习目标
1.会用直接开平方法解形如(x+m)2=n (n>0)的方程. (重点) 2.理解配方法的基本思路.(难点) 3.会用配方法解二次项系数为1的一元二次方程. (重点)
复习引入
导入新课
1.如果 x2=a,则x叫作a的 平方根 .
(B) (x-2)2=4,解方程,得x-2=2,x=4
(C)
4(x-1)2=9,解方程,得4(x-1)=
±3,
1
x1=4
;
x2=
7 4
(D) (2x+3)2=25,解方程,得2x+3=±5, x1= 1;x2=-4
2.填空:
(1)方程x2=0.25的根是 x1=0.5,x2=-0.5 . (2)方程2x2=18的根是x1=3,x2=-3 . (3)方程(2x-1)2=9的根是x1=2,x2=-1 .
的实数根 x1 p ,x2 p ;
(2)当p=0 时,方程(I)有两个相等的实数根 x1 x2 =0;
(3)当p<0 时,因为任何实数x,都有x2≥0 ,所以
方程(I)无实数根.

22第2课时用配方法求解较复杂的一元二次方程1

22第2课时用配方法求解较复杂的一元二次方程1

什么是学习力含义
管理知识的能力 (利用现有知识
解决问题)
学习知识的能力 (学习新知识
速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
案例式 学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必 备习惯
积极 主动
以终 为始
分清 主次
不断 更新
高效学习 模型
高效学习模型-学习的完 整过程
解:设总共有 x 只猴子,根据题意得
1 x 2 12 x. 即 x2 - 64x+768 =0. 8
解这个方程,得
x1 =48; x2 =16.
答:一共有猴子48只或16只.
课后练习
见章末练习
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个
是你
忙忙叨叨,起早贪黑,
上课认真,笔记认真, 就是成绩不咋地……
TIP1:NPC代入,把自己想成其中的人物,会让自己的记忆过程更加有趣 (比如你穿越回去,成为了岳飞的母亲,你会在什么背景下怀着怎样的心情 在 背上刺下“精忠报国”四个字);
TIP2:越夸张越搞笑,越有助于刺激我们的大脑,帮助我们记忆,所以不妨在 编故事时,让自己脑洞大开,尝试夸张怪诞些~
故事记忆法小妙招





费曼学习法--
简介 理查德·菲利普斯·费 曼 (Richard Phillips Feynman)
(图片来自网络)
费曼学习法出自著名物理学家费曼,他曾获 的 1965年诺贝尔物理学奖,费曼不仅是一 名杰出的 物理学家,并且是一位伟大的教 育家,他能用很 简单的语言解释很复杂的 概念,让其他人能够快 速理解,实际上, 他在学习新东西的时候,也会 不断的研究 思考,直到研究的概念能被自己直观 轻松 的理解,这也是这个学习法命名的由来!

新人教版数学22章一元二次方程导学案

新人教版数学22章一元二次方程导学案

第二十二章一元二次方程1、一元二次方程(1)学习目标:1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。

2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。

重点:由实际问题列出一元二次方程和一元二次方程的概念。

难点:由实际问题列出一元二次方程。

准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。

导学流程:自学课本导图,走进一元二次方程分析:现设雕像下部高x米,则度可列方程去括号得①你知道这是一个什么方程吗?你能求出它的解吗?想一想你以前学过什么方程,它的特点是什么?探究新知自学课本25页问题1、问题2(列方程、整理后与课本对照),并完成下列各题:问题1可列方程整理得②问题2可列方程整理得③1、一个正方形的面积的2倍等于50,这个正方形的边长是多少?2、一个数比另一个数大3,且这两个数之积为这个数,求这个数。

3、一块面积是150cm2长方形铁片,它的长比宽多5cm,则铁片的长是多少?观察上述三个方程以及①②两个方程的结构特征,类比一元一次方程的定义,自己试着归纳出一元二次方程的定义。

展示反馈【挑战自我】判断下列方程是否为一元二次方程。

其中为一元二次方程的是:【我学会了】1、只含有个未知数,并且未知数的最高次数是,这样的方程,叫做一元二次方程。

2、一元二次方程的一般形式: ,其中 二次项, 是一次项, 是常数项, 二次项系数 , 一次项系数。

自主探究:自主学习P26页例题,完成下列练习:将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。

(1)8142=x (2))2(5)1(3+=-x x x 【巩固练习】教材第27页练习 归纳小结1、本节课我们学习了哪些知识?2、学习过程中用了哪些数学方法?3、确定一元二次方程的项及系数时要注意什么? 作业(A )1、判断下列方程是否是一元二次方程; (1)0233122=--x x ( )(2)0522=+-y x ( ) (3) 02=++c bx ax ( ) (4)07142=+-xx ( ) 2、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x 2-x =2; (2)7x -3=2x 2;(3)(2x -1)-3x (x -2)=0 (4)2x (x -1)=3(x +5)-4. 3、判断下列方程后面所给出的数,那些是方程的解; (1))()(1412+=+x x x ±1 ±2;(2)0822=-+x x ±2, ±4(B )1、把方程p q nx mx nx mx -=++-22()0≠+n m 化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项。

22配方法(1)

22配方法(1)
做一做:填上适当的数,使下列等式成立。
独立思考
小组讨论
学生归纳
学生独立完成
回顾旧知
引入新课
通过层层铺垫,使学生发现题目间的联系,从而发现配方法的思路和步骤
为解方程做准备
教师活动
学生活动
设计意图
教学更新
归纳配完全平方式的方法。
例1、解方程x2+8x-9=0.
解:移项得x2+8x=9
配方得x2+8x+42=9+42
课题
2.2配方法(1)
授课教师




知识目标:1.会用配方法解简单的数字系数的一元二次方程.
2.了解用配方法解一元二次方程的基本步骤.
能力目标:1.理解配方法;知道“配方”是一种常用的数学方法.
2.会用配方法解简单的数字系数的一元二次方程.
3.能说出用配方法解一元二次方程的基本步骤.
情感目标:通过用配方法将一元二次方程变形的过程,让学生进一步体会转
化的思想方法,并增强他们的数学应用意识和能力.
教学重点
运用配方法解简单的数字系数的一元二次方程。
教学难点
配方过程中,对解一元二次方程的要点的理解。
教学方法
讲授练习法
教学用具
Байду номын сангаас教学过程
教师活动
学生活动
设计意图
教学更新
复习:
你能解下列方程吗?
新授:
你会解 吗?
你能将方程 转化成上面方程的形式吗?
基本思路:将方程转化成 的形式,而后应用开平方求解.
(x+4)2=25
开平方,得x+4=±5,
即x+4=5,或x+4=-5.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) x2 2x 4 0;
(2) x2 2x 2 8x 4.
范例讲解
例2、如图,在一块长35m、宽26m的矩形地面
上,修建同样宽的两条互相垂直的道路(两条道
路各与矩形的一条边平行),剩余部分栽种花草,
要使剩余部分的面积为850m2,道路的宽应为多
少?
解:设道路的宽为xm,根据题意,得
x2 2x 1 4
左边化成平方式,得
(x 1)2 4
开平方,得
x 1 2
∴方程有两个根:
x1 3, x2 1.
x2 4x 4 5
化成平方式 左边化成平方式,得
(x m)2 n (x 2)2 5 (n 0)
开平方,得
x2 5
∴方程有两个根:
x1 2 5, x2 2 5.
x2 8x 9
两边同时加上42,得
x2 8x 42 9 42
配方
整理,得
(x 4)2 25
开平方,得
x 4 5

x 4 5,或x 4 5
x1 1,x2 9.
新知归纳
配方法的定义:
通过配成完全平方式的方法得到了一元二次 方程的根,这种解一元二次方程的方法成为配方 法。
巩固练习 3、解下列方程:
)2;
5、 x2 6x 9 (
)2.
分解因式的完全平方公式:
a2 2ab b2 (a b)2
复习旧知 估算法求一元二次方程的解: (1)猜想未知数的取值范围; (2)通过列表,用“夹逼”法求出方程的解。
情景引入
梯子底端滑动距离x(m)满足方程:
x2 12x 15 0
我们已经求出方程的近似解,你能设法求出 它的精确解吗?
课堂小结
1、配完全平方式方法:
形如 x2+bx 的式子,加上一次项系数a的一
半的平方,则可配成完全平方式,即
x2 bx
1
b
2
2
x
1b 2
2
2、配方法的定义: 通过配成完全平方式的方法得到了一元二次
方程的根,这种解一元二次方程的方法成为配方 法。
bx
b
2
x
b
2
2 2
一半
(3) x2 8x 16 (x 4 )2.
一半的平方
新知归纳
配完全平方式方法:
形如 x2+bx 的式子,加上一次项系数b的一 半的平方,则可配成完全平方式,即
x2 bx
1
b
2
2
x
1b 2
2
合作交流
ⅱ、怎样将方程 x2 12x 15 0 化成 (x m)2 n 的形式?
巩固练习 1、将下列方程化成 (x m)2 n的形式:
(1) x2 10x 25 7;
(2) x2 6x 9 0.
合作交流
ⅰ、填上适当的数,使下列等式成立:
一半
(1) x2 12x 36 (x 6 )2;
一半的平方
(2)
一半
x2 4x 4 (x
一半的平方
2 )2;
x2
新知探究 Ⅰ、你会解下列方程吗?你是怎么做的?
x2 4x2 5开方,得x 2 (x 1)2 4
开平方,得
x 5 (x 2)2 5
开平方,得
x 1 2
∴方程有两个根:
x1 3, x2 1.
开平方,得
x2 5
∴方程有两个根:
x1 2 5, x2 2 5.
新知探究 Ⅱ、你会解下列方程吗?你是怎么做的?
(35 x)(26 x) 850
化成一般式,得
x2 61x 60 0
移项,得
x2 61x 60
配方,得
(x 61)2 870 1
开平方,2 得
4
x 61 29 1
x1 1, x2 60 (不合题意,舍去)
答:道路的宽为1m。
2
2
巩固练习
4、游行队伍有8行12列,后又增加了69人,使得 队伍增加的行、列数相同,你知道增加了多少行 或多少列吗?
左边配成完全平方式,得
x2 12x (1 12)2 15 0 (1 12)2
2
2
整理,得
(x 6)2 51
你会解这个方程吗?
巩固练习 2、将下列方程化成 (x m)2 n的形式:
(1) x2 14x 8; (2) x2 6x 1.
范例讲解
例1、解方程:x2 8x 9 0
解: 移项,得
北师大版九年级(上)
2.2 配方法(1)
诊断练习
1、如果一个数的平方等于4,则这个数为 ; 2、如果一个数的平方等于5,则这个数为 ;
如果 x2 a(a 0),那么 x a 。
3、如果一个数的平方等于-5,则这个数为 ; 一个正数有两个平方根,它们是互为相反数,
负数没有平方根。
诊断练习
4、 x2 12x 36 (
相关文档
最新文档