九年级数学上册 一元二次方程解法 配方法 专题练习含答案
初中数学计算配方法解一元二次方程专项练习111题(有答案22页

配方法解一元二次方程专项练习1.x2﹣2x=4.2.3x2=5x+2 3.2x2﹣4x+1=0.4. x2+2x=2;5.x2﹣2x﹣4=0.6..7.x2+4x﹣1=0.8.2x2+x﹣30=09.x2﹣28x﹣4=010.x2﹣8x﹣1=0.11.x2+2x=5.12.2x2+6=7x13.2x2+1=8x14.3x2﹣2x﹣6=015..16.x2+2x﹣15=0.17.x2+6x﹣16=018.2x2﹣5x﹣3=019.x2﹣4x+2=0 20.(x+3)(x﹣1)=12 21.2x2﹣12x+6=0 22.2x2﹣3x﹣2=0.23.x(x+2)﹣5=0.24.x2﹣6x+2=0 25.3x2﹣6x﹣1=026.2x2+4x﹣1=027.x2﹣4x+3=0.28.x2﹣6x﹣3=029.2x2﹣8x+3=0.30.3x2﹣4x+1=0;31.x2﹣6x+1=0.32.2x2﹣4x+1=033.x2+5x﹣3=0.34.x2+2x﹣4=035.2x2﹣4x+1=0.36..37.5(x2+17)=6(x2+2x)38.4x2﹣8x+1=039.2x2+1=3x.40.x2+x﹣2=0.41.x2﹣6x+1=042.x2﹣8x+5=0 43.x2+3x﹣4=0.44.3x2+8x﹣3=045.x2+8x=2.46.x2+3x+1=047. 2x2﹣3x+1=048.x2﹣4x﹣6=049. x2﹣8x+1=050.x2+4x+1=051.x2﹣4x+1=052.x2﹣6x﹣7=054. x2﹣6x﹣5=0.55.2x2+1=3x56. x2+3x+1=0 57.x2﹣8x+1=0.58. x2﹣8x﹣16=0 59..60.6x2﹣7x﹣3=0 61. x2﹣6x=﹣8;62. 2x2﹣5x+1=0.63.3x2+8x﹣3=064.3x2﹣4x+1=065.2x2+3x﹣1=0.66.2x2﹣5x﹣1=067.4x2﹣8x﹣1=068.3x2+4x﹣7=069.3移项得3x2﹣10x=﹣6.70.3x2﹣10x﹣5=071.2x2+3=7x72.x2+2x﹣224=073.x2﹣5x﹣14=074..75.x 2+8x ﹣20=076.x 2﹣x+.77.2t 2﹣6t+3=0.78.3x 2﹣6x ﹣12=0.79.x 2﹣4x+1=0 80. 3x 2﹣3=2x .81.2x 2﹣5x+1=0.82.2y 2+8y ﹣1=083.x 2﹣6x ﹣18=084.x 2﹣2x ﹣1=0.85. x 2﹣4x ﹣1=0;86. 2x 2+3x+1=0.87.2x 2﹣6x ﹣7=088.ax 2+bx+c=0(a ≠0).89.4x 2﹣4ax+a 2﹣b 2=0.90. x 2﹣4x ﹣2=091. x (x+4)=6x+1292. 2x2+7x﹣4=093. 3(x﹣1)(x+2)=x+494. 3x2﹣6x=895. 2x2﹣x﹣30=0,96. x2+2=2x,97.x2+px+q=O(p2﹣4q≥O),98. m2x2﹣28=3mx(m≠O),99. x2﹣6x+7=0;100. 2x2+6=7x;101. ﹣5x2+10x+15=0.102. x2+6x+8=0;103. x2=6x+16;104.2x2+3=7x;105. (2x﹣1)(x+3)=4.106. x2+4x=﹣3;107. 2x2+x=0.108.x2+4x﹣3=0;110. x2﹣x+=0;109.x2+3x﹣2=0;111. x2+2x﹣4=0.配方法解一元二次方程111题参考答案:1.x2﹣2x=4.配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.2. 3x2=5x+2x2﹣x+=+=x=2,x=﹣3.2x2﹣4x+1=0.由原方程,得2(x﹣1)2=1,∴x=1±,∴原方程的根是:x1=1+,x2=1﹣.4.x2+2x=2;原式可化为x2+2x﹣2=0即x2+2x+1﹣3=0(x+1)2=3x=1.5.x2﹣2x﹣4=0.由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+x2=1﹣.6..,移项得:x2﹣2x=,配方得:x2﹣2x+1=+1,(x﹣1)2=,x﹣1=,解得x1=1+,x2=1﹣.7.x2+4x﹣1=0.解:移项得:x2+4x=1,配方得:x2+4x+4=1+4,即(x+2)2=5,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣.8.2x2+x﹣30=0原方程变形为x2+x=15∴x2+x+()2=15+()2.∴(x+)2=,∴x1=﹣3,x2=.9.x2﹣28x﹣4=0原方程可化为x2﹣28x+142=4+142(x﹣14)2=200x﹣14=∴x1=14+,x2=14﹣.10.原方程移项得,x2﹣8x=1,⇒x2﹣8x+16=1+16,(x﹣4)2=17,⇒解得11.x2+2x=5.x2+2x+1=5+1,即(x+1)2=6,所以x+1=±,解得:x1=﹣1+,x2=﹣1﹣.12.2x2+6=7x移项得:2x2﹣7x=﹣6,二次项的系数化为1得:,解得:x1=2,.13.2x2+1=8x∵2x2+1=8x,∴2x2﹣8x=﹣1,∴x2﹣4x=﹣,即(x﹣2)2=,∴x﹣2=,∴x1=2+,x2=2﹣14.3x2﹣2x﹣6=0系数化1得,x2﹣x﹣2=0方程两边加上一次项系数一半的平方即得:∴(x ﹣)2=∴x1=,x2=15..配方得:x2﹣2x+3=12,即(x ﹣)2=12,开方得:x ﹣=±2,则x1=3,x2=﹣.16.x2+2x﹣15=0.x2+2x=15,x2+2x+1=15+1.(x+1)2=42.x+1=±4.∴x1=3,x2=﹣5.17.(1)x2+6x﹣16=0 由原方程,得x2+6x=16,等式的两边同时加上一次项系数6的一半的平方,得x2+6x+9=25,即(x+3)2=25,直接开平方,得x+3=±5,∴x1=2,x2=﹣8;18.2x2﹣5x﹣3=0(用配方法)∴∴;19. x2﹣4x+2=0x2﹣4x+4=﹣2+4(x﹣2)2=2,,∴;20.(x+3)(x﹣1)=12(用配方法)将原方程整理,得x2+2x=15两边都加上12,得x2+2x+12=15+12即(x+1)2=16开平方,得x+1=±4,即x+1=4,或x+1=﹣4∴x1=3,x2=﹣521.2x2﹣12x+6=0 (配方法).把方程2x2﹣12x+6=0的常数项移到等号的右边,得到2x2﹣12x=﹣6,把二次项的系数化为1得:x2﹣6x=﹣3,程两边同时加上一次项系数一半的平方,得到x2﹣6x+9=﹣3+9即(x﹣3)2=6,∴x﹣3=±,∴x=3±,∴x1=3+,x2=3﹣.22.2x2﹣3x﹣2=0.移项得:2x2﹣3x=2化二次项系数为1,得:x2﹣x=1,配方得:x2﹣x+=1+,即=,∴x ﹣=或x ﹣=﹣,∴x1=2,x2=﹣.23.x(x+2)﹣5=0.x(x+2)﹣5=0,去括号得:x2+2x﹣5=0,移项得:x2+2x=5,左右两边加上1,变形得:(x+1)2=6,开方得:x+1=±,即x=﹣1±,∴x1=﹣1+,x2=﹣1﹣24.x2﹣6x+2=0x2﹣6x+2=0移项,得x2﹣6x=﹣2,即x2﹣6x+9=﹣2+9,∴(x﹣3)2=7,解得x﹣3=±,即x=3±.∴x1=3+,x2=3﹣.25.把方程x2﹣2x ﹣=0的常数项移到等号的右边,得到x2﹣2x=方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=+1配方得(x﹣1)2=开方得x﹣1=移项得x=+126.2x2+4x﹣1=0原方程变形为2x2+4x=1即x2+2x=∴x2+2x+1=1+即(x+1)2=∴∴,27.x2﹣4x+3=0.∵x2﹣4x+3=0∴x2﹣4x=﹣3∴x2﹣4x+4=﹣3+4∴(x﹣2)2=1∴x=2±1∴x1=3,x2=128.x2﹣6x﹣3=0x2﹣6x=3,(x﹣3)2=12,x﹣3=.∴x1=3+,x2=3﹣29.2x2﹣8x+3=0.原方程变形为∴∴∴x﹣2=.∴x1=2+,x2=2﹣.30.3x2﹣4x+1=0;3(x2﹣x)+1=0(x ﹣)2=∴x ﹣=±∴x1=1,x2=31.x2﹣6x+1=0.x2﹣6x=﹣1.x2﹣6x+9=﹣1+9,(x﹣3)2=8,.,32.2x2﹣4x+1=0原方程化为配方得即开方得∴,33.x2+5x﹣3=0.由原方程移项,得x2+5x=3,等式两边同时加上一次项系数一半的平方,得,∴∴解得,∴,.34.x2+2x﹣4=0移项得x2+2x=4,配方得x2+2x+1=4+1,即(x+1)2=5,开方得x+1=±,∴x1=,x2=﹣35.2x2﹣4x+1=0.由原方程,得x2﹣2x=﹣,等式的两边同时加上一次项系数一半的平方,得x2﹣2x+1=,配方,得(x﹣1)2=,直接开平方,得x﹣1=±,x1=1+,x2=1﹣.36..∵x2﹣x+=0∴x2﹣x=﹣∴x2﹣x+=﹣+∴(x ﹣)2=0解得x1=x2=.37.5(x2+17)=6(x2+2x)5(x2+17)=6(x2+2x),整理得:5x2+85=6x2+12x,x2+12x﹣85=0,x2+12x=85,x2+12x+36=85+36,(x+6)2=121,x+6=±11,x1=5,x2=﹣1738.4x2﹣8x+1=0方程4x2﹣8x+1=0同除以4,得x2﹣2x+=0,把方程4x2﹣8x+1=0的常数项移到等于号的右边,得x2﹣2x=﹣,方程两边同时加上一次项一半的平方,得到,x2﹣2x+1=,∴x﹣1=±,解得x1=,x2=.39.2x2+1=3x.由原方程,移项得2x2﹣3x=﹣1,化二次项系数为1,得x2﹣x=﹣,等式的两边同时加上一次项系数一半的平方,得x2﹣x+=﹣+,配方,得(x ﹣)2=,开平方,得x ﹣=±,解得,x1=1,x2=.40.x2+x﹣2=0.配方,得x2+x ﹣=2+,即=,所以x+=或x+=﹣.解得 x1=1,x2=﹣2.41.x2﹣6x+1=0移项,得x2﹣6x=﹣1,配方,得x2﹣6x+9=﹣1+9,即(x﹣3)2=8,解得x﹣3=±2,∴x1=3+2,x2=3﹣2.42.x2﹣8x+5=0原方程可变为,x2﹣8x=﹣5,方程两边同时加上一次项系数一半的平方得,到x2﹣8x+16=11,配方得,(x﹣4)2=11,直接开平方得,x﹣4=±,解得x=4+或4﹣.43.x2+3x﹣4=0.x2+3x﹣4=0x2+3x=4x2+3x+=4+=∴x+=±所以x1=1,x2=﹣4.44.3x2+8x﹣3=0∵3x2+8x﹣3=0,∴3x2+8x=3,∴x2+x=1,∴x2+x+=1+,∴(x+)2=,⇒x=,解得x1=,x2=﹣345.移项,得x2+8x=2.两边同加上42,得x2+8x+16=2+16,即(x+4)2=18.利用开平方法,得x+4=或x+4=﹣.解得x=﹣4+或x=﹣4﹣3.所以,原方程的根是x1=﹣4+,x2=﹣4﹣.46.x2+3x+1=0∵x2+3x+1=0∴x2+3x=﹣1∴x2+3x+=﹣1+∴(x+)2=∴x=∴x1=,x2=.47. 2x2﹣3x+1=0∵2x2﹣3x+1=0∴x2﹣x=﹣∴x2﹣x+=﹣+∴(x ﹣)2=∴x=∴x1=,x2=48.x2﹣4x﹣6=0x2﹣4x﹣6=0x2﹣4x=6x2﹣4x+4=4+6(x﹣2)2=10x﹣2=±∴49. x2﹣8x+1=0∵x2﹣8x+1=0,∴x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,∴(x﹣4)2=15,解得50.x2+4x+1=0移项得,x2+4x=﹣1,配方得,x2+4x+22=﹣1+4,(x+2)2=3,,解得,51.x2﹣4x+1=0∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴x2﹣4x+4=4﹣1,⇒(x﹣2)2=3,⇒,∴,解得,.52.x2﹣6x﹣7=0x2﹣6x+9=7+9(x﹣3)2=16开方得x﹣3=±4,∴x1=7,x2=﹣1 53..由原方程,得x2﹣2x=3,等上的两边同时乘以2,得x2﹣4x=6,方程两边同时加上一次项系数一半的平方,得x2﹣4x+4=10,配方得(x﹣2)2=10.∴,∴,54. x2﹣6x﹣5=0.移项得x2﹣6x=5,方程两边都加上9得 x2﹣6x+9=5+9,即(x﹣3)2=14,则x﹣3=±,所以x1=3+,x2=3﹣55.2x2+1=3x移项,得2x2﹣3x=﹣1,二次项系数化为1,得x2﹣x=﹣,配方,得x2﹣x+()2=﹣+()2,即(x ﹣)2=,开方,得x ﹣=±,∴x1=1,x2=.56. x2+3x+1=0移项,得x2+3x=﹣1,配方得x2+3x+=﹣1+,即(x+)2=,开方,得x+=±,∴x1=﹣+,x2=﹣﹣57.x2﹣8x+1=0.配方得,(x﹣4)2=15,开方得,x﹣4=±,x1=4+,x2=4﹣58. x2﹣8x﹣16=0(x﹣4)2﹣16﹣16=0,(x﹣4)2=32,即或,解得:,.59..移项得:x2﹣x=﹣3,配方得:x2﹣x+()2=﹣3+()2,即(x ﹣)2=,开方得:x ﹣=或x ﹣=﹣,解得:x1=2,x2=.60.6x2﹣7x﹣3=0解:6x2﹣7x﹣3=0,b2﹣4ac=(﹣7)2﹣4×6×(﹣3)=121,∴x=,∴x1=,x2=﹣.61. x2﹣6x=﹣8;配方得x2﹣6x+9=﹣8+9,即(x﹣3)2=1,开方得x﹣3=±1,∴x1=4,x2=262. 2x2﹣5x+1=0.移项得2x2﹣5x=﹣1,二次项系数化为1,得x2﹣x=﹣.配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=,x2=63.3x2+8x﹣3=0∵3x2+8x﹣3=0∴3x2+8x=3∴x2+x=1∴x2+x+=1+∴(x+)2=∴x=∴x1=,x2=﹣3.64.3x2﹣4x+1=0x2﹣x=﹣,x2﹣x+=﹣,即(x ﹣)2=,x ﹣=±;解得:x1=1,.65.2x2+3x﹣1=0.x2+(1分)x2+(3分)(4分)x+(6分)x1=66.2x2﹣5x﹣1=0(限用配方法);原方程化为2x2﹣5x=1,x2﹣x=,x2﹣x+()2=+()2,(x ﹣)2=,即x ﹣=±,x1=+,x2=﹣67.4x2﹣8x﹣1=0移项得:4x2﹣8x=1,二次项系数化1:x2﹣2x=,x2﹣2x+1=+1,(x﹣1)2=,x﹣1=±,x1=1+,x2=1﹣.68.3x2+4x﹣7=0移项,得3x2+4x=7,把二次项的系数化为1,得x2+x=,等式两边同时加上一次项系数一半的平方,得x2+x+=,∴=,∴x=±,∴x1=1,x2=﹣.69.3移项得3x2﹣10x=﹣6.二次项系数化为1,得x2﹣x=﹣2;配方得x2﹣x+(﹣)2=﹣2+,即(x ﹣)2=,开方得:x ﹣=±,∴x1=,x2=x2﹣10x+6=070.3x2﹣10x﹣5=0∵3x2﹣10x﹣5=0,∴3x2﹣10x=5,∴x2﹣x=,∴x2﹣x+=+,∴(x ﹣)2=,∴x=,∴x1=,x2=71.2x2+3=7x移项,得2x2﹣7x=﹣3,二次项系数化为1,得x2﹣x=﹣,配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=3,x2=.72.x2+2x﹣224=0移项,得x2+2x=224,在方程两边分别加上1,得x2+2x+1=225,配方,得(x+1)2=225,∴x+1=±15,∴x1=14,x2=﹣16;73.x2﹣5x﹣14=0x2﹣5x﹣14=0,x2﹣5x=14,x2﹣5x+=14+,(x ﹣)2=,x ﹣=±,∴x1=7,x2=﹣2.74..把二次项系数化为1,得x2﹣x ﹣=0,将常数项﹣移项,得x2﹣x=,两边同时加上一次项系数﹣的一半的平方,得x2﹣x+=+,配方得,(x ﹣)2=,∴x ﹣=∴x1=1,x2=﹣.75.x2+8x﹣20=0∵x2+8x﹣20=0∴x2+x=20∴x2+x+=20+∴(x+)2=∴x+=±,∴x=﹣,即x1=4,x2=﹣5.76.x2﹣x+.配方得(x ﹣)2=0,解得x1=x2=.77.2t2﹣6t+3=0.移项、系数化为1得,t2﹣3t=﹣配方得t2﹣3t+=﹣,即(t ﹣)2=,开方得t ﹣=±,∴x1=,x2=78.3x2﹣6x﹣12=0.3x2﹣6x﹣12=0,移项,得3x2﹣6x=12,把二次项的系数化为1,得x2﹣2x=4,等式两边同时加上一次项系数﹣2一半的平方1,得x2﹣2x+1=5,∴(x﹣1)2=5,∴79.x2﹣4x+1=0∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴(x﹣2)2=﹣1+4,∴(x﹣2)2=3,∴x﹣2=±,∴x1=2+;x2=2﹣;80. 3x2﹣3=2x.移项,得3x2﹣2x=3,二次项系数化为1,得x2﹣x=1,配方,得(x ﹣)2=1+,x ﹣=±,解得x1=;x2=81.2x2﹣5x+1=0.移项,得2x2﹣5x=﹣1,化二次项系数为1,得x2﹣x=﹣,方程的两边同时加上,得(x ﹣)2=,直接开平方,得x ﹣=±,∴x1=,x2=82.2y2+8y﹣1=0方程两边同时除以2得:y2+4y ﹣=0,移项得:y2+4y=,左右两边加上4,变形得:(y+2)2=,开方得:y+2=±,∴y1=﹣2+,y2=﹣2﹣.83.x2﹣6x﹣18=0 由原方程移项,得x2﹣6x=18,方程两边同时加上一次项系数一半的平方,得x2﹣6x+9=27,配方,得(x﹣3)2=27,开方,得x﹣3=±3,解得,x1=3+3,x2=3﹣384.x2﹣2x﹣1=0.由原方程,得x2﹣2x=1,等式的两边同时加上一次项系数﹣2的一半的平方,得x2﹣2x+1=2,即(x﹣1)2=2,直接开平方,得x﹣1=±,∴x1=1+,x2=1﹣.85. x2﹣4x﹣1=0;移项,得x2﹣4x=1,等式两边同时加上一次项系数一半的平方4,得x2﹣4x+4=1+4,∴(x﹣2)2=5(1分)∴x﹣2=±(1分)∴x=2±,解得,x1=2+,x2=2﹣86. 2x2+3x+1=0.移项,得2x2+3x=﹣1,把二次项的系数化为1,得x2+x=﹣,等式两边同时加上一次项系数一半的平方,得x2+x+=﹣+∴(x+)2=(1分)∴x+=±(1分)∴x=﹣±解得,x1=﹣,x2=﹣187.2x2﹣6x﹣7=0x2﹣3x ﹣=0,x2﹣3x=,x2﹣3x+=,=,x ﹣=±,x=±,∴x1=,x2=.88.ax2+bx+c=0(a≠0).∵a≠0,∴两边同时除以a得:x2+x+=0,x2+x=﹣,x2+x+=﹣,=,∵a≠0,∴4a2>0,当b2﹣4ac≥0时,两边直接开平方有:x+=±,x=﹣±,∴x1=,x2=89.4x2﹣4ax+a2﹣b2=0.原式可化为:x2﹣ax+=0,整理得,x2﹣ax+()2﹣()2=﹣即:(x ﹣)2=,解得x1=或x2=.90. x2﹣4x﹣2=0,配方,得x2﹣4x+4﹣4﹣2=0,则x2﹣4x+4=6,所以(x﹣2)2=6,即x﹣2=±.所以x1=+2,x2=﹣+2.91. 原方程变形得x2﹣2x=12,配方得x2﹣2x+()2﹣()2=12,即(x﹣1)2=13,所以x﹣1=±.x1=1+,x2=1﹣.(运用配方法解形如x2+bx+c=0的方程的规律是把原方程化为一般式即为x2+bx+c=0形式,再配方得x2+bx+()2﹣()2+c=0,(x+)2=,再两边开平方,得其解.)92. 2x2+7x﹣4=0,两边除以2,得x2+x﹣2=0,配方,得x2+x+()2=2+()2,(x+)2=,则x+=±.所以x1=,x2=﹣4.93. 原方程变形为3x2+2x﹣10=0.两边除以3得x2+x ﹣=0,配方得x2+x+()2=+.即(x+)2=,则x+=±.所以x1=﹣,x2=.94. 方程两边除以3得x2﹣2x=.配方得x2﹣2x+1=+1.⇒(x﹣1)2=.所以x﹣1=±,解得x1=+1,x2=1﹣95. 2x2﹣x﹣30=0,2x2﹣x=30,x2﹣x=15,x2﹣x+=15,(x ﹣)2=;x ﹣=±,x1==3,x2=﹣=﹣;96. x2+2=2x,x2﹣2x=﹣2,x2﹣2x+3=﹣2+3;(x ﹣)2=1,x ﹣=±1,x1=1+,x2=﹣1+;97.x2+px+q=O(p2﹣4q≥O),x2+px=﹣q,x2+px+=﹣q+,(x+)2=,∵p2﹣4q≥O,∴x+=±,∴x1=,x2=;98. m2x2﹣28=3mx(m≠O),(mx)2﹣3mx﹣28=0,(mx﹣7)(mx+4)=0,mx=7或mx=﹣4,∵m≠0,∴x1=,x2=.99. x2﹣6x+7=0;移项得x2﹣6x=﹣7,配方得x2﹣6x+9=﹣7+9,即(x﹣3)2=2,开方得x﹣3=±,∴x1=3+,x2=3﹣.100. 2x2+6=7x;移项得2x2﹣7x=﹣6,二次项系数化为1,得x2﹣x=﹣3.配方,得x2﹣x+()2=﹣3+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=2,x2=.101. ﹣5x2+10x+15=0.移项得﹣5x2+10x=﹣15.二次项系数化为1,得x2﹣2x=3;配方得x2﹣2x+1=3+1,即(x﹣1)2=4,开方得:x﹣1=±2,∴x1=3,x2=﹣1.102. 移项得x2+6x=﹣8,配方得x2+6x+9=﹣8+9,即(x+3)2=1,开方得x+3=±1,∴x1=﹣2,x2=﹣4.103. 移项得x2﹣6x=16,配方得x2﹣6x+9=16+9,即(x﹣3)2=25,开方得x﹣3=±5,∴x1=8,x2=﹣2.104. 移项得2x2﹣7x=﹣3,二次项系数化为1,得x2﹣x=﹣.配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=3,x2=.105. 整理得2x2+5x=7.二次项系数化为1,得x2+x=;配方得x2+x+()2=+()2,即(x+)2=,开方得:x+=±,∴x1=1,x2=﹣.106. x2+4x=﹣3;方程化为:x2+4x+4=﹣3+4,(x+2)2=l,x+2=±1,x=﹣2±1,∴x1=﹣l,x2=﹣3;107. 2x2+x=0.方程化为:x2+x=0,x2+x+=,=,x+=±,x=﹣±,∴x1=0,x2=﹣.108. ∵x2+4x﹣3=0∴x2+4x=3∴x2+4x+4=3+4∴(x+2)2=7∴x1=﹣2,x2=﹣﹣2.109. 移项得x2+3x=2,配方得x2+3x+=2+,即(x+)2=,开方得x+=±,∴x1=,x2=.110. 移项得x2﹣x=﹣,配方得x2﹣x+=﹣+,即(x﹣)2=,开方得x﹣=±,∴x1=,x2=.111. 移项得,x2+2x=4配方得,x2+2x+2=4+2,即(x+)2=6,开方得x+=,∴x1=,x2=﹣.。
九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
人教版初中数学《一元二次方程解法之配方法题型汇总》专题突破含答案解析

专题01 一元二次方程解法之配方法题型汇总一、单选题1.(2021·长沙麓山国际实验学校九年级开学考试)用配方法解一元二次方程2241x x -=,配方后的结果是( ) A .23(1)2x -= B .2(21)0x -=C .()2211x -=D .()2322x +=【答案】A 【分析】将二次项系数化为1,两边都加上一次项系数一半的平方配成完全平方式后即可. 【详解】 解:∵2x 2-4x =1,∵2122x x -=, 则212112x x -+=+,即23(1)2x -=,故选:A . 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 2.(2020·珠海市九洲中学)用配方法解方程2220x x +-=,原方程应变形为( ) A .()213x += B .()2-13x =C .()211x +=D .()2-11x =【答案】A 【分析】把常数项-2移项后,应该在左右两边同时加上一次项系数2的一半的平方. 【详解】 解:由原方程,得 x 2+2x =2, x 2+2x +1=2+1, (x +1)2=3. 故选:A . 【点睛】本题考查了配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.(2021·安徽八年级期末)利用配方法解方程x2﹣23x﹣1=0时,应先将其变形为()A.(x+13)2=109B.(x﹣13)2=109C.(x﹣13)2=89D.(x+13)2=89【答案】B【分析】移项,配方,再变形即可得出选项.【详解】解:x2﹣23x﹣1=0,移项,得x2﹣23x=1,配方,得x2﹣23x+(13)2=1+(13)2,即(x﹣13)2=109,故选:B.【点睛】本题主要考查了利用配方法解方程,解题的关键是熟练掌握配方法的步骤,特别注意配方时是若二次项系数为1时方程两边直接同时加上一次项系数一半的平方,若二次项的系数不为1,应先把二次项系数化为1.4.(2021·江苏南通田家炳中学八年级期末)将方程x2﹣6x+6=0变形为(x+m)2=n的形式,结果正确的是()A.(x﹣3)2=15B.(x﹣3)2=﹣3C.(x﹣3)2=0D.(x﹣3)2=3【答案】D【分析】利用配方法求解即可.【详解】解:x2-6x+6=0,x2-6x+9-3=0,(x-3)2=3,故选:D . 【点睛】此题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程常数项移到右边,二次项系数化为1,然后两边加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负数,开方即可求出解.5.(2021·全国九年级课时练习)利用配方法解方程242203x x --=时,应先将其变形为( ) A .21839x ⎛⎫+= ⎪⎝⎭B .211039x ⎛⎫-= ⎪⎝⎭C .21839x ⎛⎫-= ⎪⎝⎭D .21839x ⎛⎫+= ⎪⎝⎭【答案】B 【分析】先把方程两边都除以2,再配方即可. 【详解】原方程可化为:22103x x --=配方得:211103992x x -+--=即211039x ⎛⎫-= ⎪⎝⎭故选:B 【点睛】本题考查了配方法,一般配方的步骤是:先化成一般式,把二次项系数化为1;加上一次项系数一半的平方,并减去这个数.6.(2021·广西八年级期中)如果用配方法解方程2250x x --=,则配方后方程可化为( ) A .2(1)6x -= B .2(1)6x +=C .2(1)5x -=D .2(1)5x +=【答案】A 【分析】把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式. 【详解】解:x 2﹣2x ﹣5=0, x 2﹣2x =5, x 2﹣2x +1=5+1,(x ﹣1)2=6. 故选:A . 【点睛】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.7.(2021·全国九年级课时练习)若1x =-是关于x 的一元二次方程2220x kx k -+=的一个根,则k 的值为( ) A .1- B .0 C .1 D .2【答案】A 【分析】把x =-1代入已知方程可得关于k 的方程,解方程即可求出k ,进而可得答案. 【详解】解:∵方程2220x kx k -+=的一根为-1, ∵2120k k ++=,解得121k k ==-,当k =﹣1时,原方程为2210x x -+=,有实数根x =-1. 故选A . 【点睛】本题考查了一元二次方程的解和解一元二次方程,属于基本题型,熟练掌握基本知识是解题的关键.8.(2021·浙江八年级期末)用配方法解方程2x 2﹣4x ﹣1=0时,需要先将此方程化成形如(x +m )2=n (n ≥0)的形式,则下列配方正确的是( ) A .(x ﹣2)2=5 B .(x ﹣1)2=32C .(x ﹣1)2=2D .(x ﹣1)2=114【答案】B 【分析】利用配方法解一元二次方程的方法配方即可. 【详解】解:∵2x 2﹣4x ﹣1=0, ∵2x 2﹣4x =1, ∵x 2﹣2x =12, 则x 2﹣2x+1=12+1,即(x ﹣1)2=32,故选:B . 【点睛】此题考查配方法解一元二次方程的方法,按照移项,二次项系数化为1,方程两边同时加上一次项系数一半的平方的方法配方即可.9.(2021·浙江八年级期中)已知实数,x y 满足()()22222248x y x y +-+=,且2xy =,则下列结论正确的是( ).A .228x y +=或226x y +=-B .2x y -=C .23x y +=D .23x y +=±【答案】D 【分析】根据()()22222248x y x y +-+=,利用完全平方公式把式子变形,然后进行判断即可.【详解】解:∵()()22222248x y x y +-+=∵()()222222149x y x y +-++=()222149xy -=+∵2217x y -=±+∵228x y +=或226x y +=-(舍去) ∵228x y +=,2xy = ∵()222212x y x y xy =+=++ ∵23x y +=±∵()22224x y x y xy =-+-= ∵2x y -=± 故选D. 【点睛】本题主要考查了完全平方公式和平方的非负性,解题的关键在于会利用完全平方公式进行变形判断求解. 10.(2021·潍坊市寒亭区教学研究室九年级一模)已知2732,55M t N t t =-=-(t 为任意实数),则,M N 的大小关系为( ) A .M N > B .M N < C .M N D .不能确定【答案】B 【分析】利用作差法比较即可. 【详解】 根据题意,得237255N M t t t -=--+=2222(1)1t t t -+=-+, ∵2(1)0t -≥ ∵2(1)110t -+≥> ∵M N <, 故选B . 【点睛】本题考查了代数式的大小比较,熟练作差法,灵活运用完全平方公式,配方法的应用,使用实数的非负性是解题的关键.11.(2021·四川凉山·)已知x 是方程2220x x +-=的根,那么代数式253222x x x x x -⎛⎫--÷ ⎪--⎝⎭的值是( ) A .31- B .31+ C .31-或31-+ D .31-或31--【答案】D 【分析】先解方程2220x x +-=,得出31x =±-,再根据分式加减乘除的法则进行化简,再代入x 即可 【详解】解:由题意知,222x x +=,解得31x =()()22225322254(2)23(3)(3)(2)2332(2)x x x x x x x x x x x x x x x x x x x x x x -⎛⎫∴--÷⎪--⎝⎭-+-=⨯--+--=⨯--=-+=-++=-+ 当31x =±-时,原式(231)=-±- ∵原式31=-或31--. 故选D . 【点睛】本题考查了分式的化简求值以及解一元二次方程,熟练掌握法则是解题的关键12.(2021·安庆市石化第一中学八年级期中)用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为()21100x -= B .2890x x +-=化为2(4)25x += C .2240t t --=化为2781()416t -=D .23420x x --=化为2210()39x -=【答案】C 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.据此进行判断即可. 【详解】解:A 、由原方程,得x 2-2x =99,等式的两边同时加上一次项系数-2的一半的平方1,得 (x -1)2=100;故本选项正确,不符合题意; B 、由原方程,得x 2+8x =9,等式的两边同时加上一次项系数8的一半的平方16,得 2(+4)25m =;故本选项正确,不符合题意;C 、由原方程,得 2122t t -=,等式的两边同时加上一次项系数12-的一半的平方116 ,得2133()416t -=;故本选项错误,符合题意; D 、由原方程,得 3x 2-4x =2,化二次项系数为1,得24233x x -= 等式的两边同时加上一次项系数-43的一半的平方49,得2210()39x -=;故本选项正确,不符合题意. 故选:C . 【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·北京八年级期中)方程x 2﹣2x ﹣5=0配方后可化为___. 【答案】(x -1)2=6 【分析】根据配方法即可求出答案. 【详解】 解:∵x 2-2x -5=0, ∵x 2-2x +1=6, ∵(x -1)2=6, 故答案为:(x -1)2=6.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型. 14.(2021·浙江八年级期中)用配方法解方程2610x x -+=,则方程可配方为__________. 【答案】(x -3)2=8 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案. 【详解】 解:∵x 2-6x +1=0, ∵x 2-6x =-1,则x 2-6x +9=-1+9,即(x -3)2=8, 故答案为:(x -3)2=8. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.15.(2020·江苏九年级月考)设A =a+3,B =a 2﹣a+5,则A 与B 的大小关系是A_____B (填“>,=,<”之一) 【答案】< 【分析】通过作差法和配方法比较A 与B 的大小. 【详解】解:∵A =a+3,B =a 2﹣a+5,∵B ﹣A =a 2﹣a+5﹣a ﹣3=a 2﹣2a+2=(a ﹣1)2+1 ∵(a ﹣1)2≥0. ∵(a ﹣1)2+1>0. ∵B >A ,即A <B . 故答案是:<. 【点睛】考查了配方法的应用,非负数的性质以及整式的加减,配方法的理论依据是公式a 2±2ab+b 2=(a±b )2. 16.(2020·上海市静安区实验中学八年级课时练习)已知24410xx -+=,则2x=___.【分析】利用直接开方法即可得. 【详解】24410x x -+=,即22(1)0x-=, 直接开方法得:210x-=, 解得21=x, 故答案为:1. 【点睛】本题考查了利用直接开方法解方程,将2x作为一个整体,看成未知数是解题关键.17.(2021·安庆市第四中学九年级二模)实数a ,b 满足a 2+b 2﹣2a =0,则4a +b 2的最大值________. 【答案】9 【分析】根据条件变形为222=-b a a ,将4a +b 2转化为()239a --+即可. 【详解】解:∵a 2+b 2﹣2a =0, ∵222=-b a a ,∵4a +b 2=()()22242639a a a a a a +-=--=--+,∵当3a =时,4a +b 2的最大值为9. 故答案为9. 【点睛】本题考查代数式的最值问题,将代数式变形,利用完全平方公式配方,利用非负性性质是解题关键. 18.(2021·全国九年级专题练习)当x =_________时,代数式22x x --有最大值,其最大值为_________. 【答案】1- 1 【分析】根据配方法的步骤把代数式22x x --通过配方变形为2(1)1x -++,即可得出答案. 【详解】解:22222(2)(211)(1)1x x x x x x x --=-+=-++-=-++,1x ∴=-时,代数式22x x --有最大值,其最大值为1;故答案为:1-,1. 【点睛】 此题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.19.(2021·全国九年级专题练习)若2310a a -+=,则221+=a a ________. 【答案】7 【分析】 将221a a+配方为完全平方公式,再通分,然后将2310a a -+=变形为213a a +=,再代入完全平方公式求值; 【详解】解:222222211112222a a a a a a a a ⎫⎛+⎫⎫⎛⎛+=++-=+-=-⎪ ⎪ ⎪⎝⎝⎭⎭⎝⎭①; 又2310a a -+=,于是213a a +=②,将②代入①得,原式232927a a ⎛⎫=-=-= ⎪⎝⎭. 故答案为:7.【点睛】此题将配方法和代数式求值结合起来,同时需要利用整体思想简化计算;20.(2021·全国九年级专题练习)将一元二次方程2850x x --=化成2()x a b +=(a 、b 为常数)的形式,则a 、b 的值分别是_______.【答案】-4,21【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∵x 2-8x -5=0,∵x 2-8x=5,则x 2-8x+16=5+16,即(x -4)2=21,∵a=-4,b=21,故答案为:-4,21. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(2020·浙江七年级期中)当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.【答案】4 3 15 【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答. 【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∵当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15. 【点睛】 此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.22.(2021·江阴市华士实验中学七年级期中)已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.【答案】3 【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值. 【详解】 解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∵()()()2223110a b c -+++-=,∵a=3,b=-1,c=1,∵a+b+c=3-1+1=3,故答案为3. 【点睛】 本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 三、解答题23.(2021·四川八年级期中)解下列方程.(1)21221x x =+; (2)3123x x x +=+-. 【答案】(1)1226,26,x x =+=-(2)12x =-【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)去分母得:()2221x x =+,去括号得:242x x =+,242x x ∴-=2446,x x ∴-+=()226,x ∴-=26,26,x x ∴-=-=- 解得:1226,26,x x =+=-检验:1226,26x x =+=-都是原方程的根,∵分式方程的解是1226,26x x =+=-.(2)去分母得:()()()()33223x x x x x -++=+-,整理得:223366x x x x x -++=--,解得:12x =-,检验:把12x =-代入得:()()()2310151500x x +-=-⨯-=≠,∵12x =-是分式方程的解. 【点睛】 本题考查了,分式方程的求解,去分母是解题的关键,注意分式方程要检验.24.(2020·浙江杭州·七年级期中)用配方法求2361x x --+的最大值.【答案】4 【分析】将代数式前两项提取-3变形后,配方化为完全平方式,根据完全平方式的最小值为0,即可得到代数式有最大值,求出即可. 【详解】解:2361x x --+=()2321x x -++=()232111x x -++-+=()2314x -++∵()2310x -+≤,∵()23441x +-+≤,∵2361x x --+的最大值为4. 【点睛】本题考查了配方法的应用,难度不大,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.25.(2021·山东八年级期中)试用配方的方法说明:代数式2610x x -+的值恒大于0.【答案】见解析 【分析】 将代数式用配方法配方,利用平方的非负性即可证明.【详解】解:()22261069910=31x x x x x -+=-+-+-+.无论x 取何值,总有()230x -≥,()2310x ∴-+>.即代数式2610x x -+的值恒大于0. 【点睛】 本题考查了配方法的应用,掌握配方法是解题的关键.26.(2021·黑龙江九年级期末)(1)用配方法解方程: x 2+4x ﹣3=0(2)先化简,再求值:22424422x x x x x -⎛⎫-÷ ⎪-+-⎝⎭,其中x 2+2x ﹣8=0 【答案】(1)1x =﹣2+7,2x =﹣2﹣7;(2)﹣222x x+,14- 【分析】(1)依题意,用配方法解方程即可; (2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,由方程变形求出x 2+2x 的值,代入计算即可求出值.【详解】(1)x 2+4x ﹣3=0,2447x x ++=,2(2)7x +=,27x +=±,∴1x =﹣2+7,2x =﹣2﹣7;(2)22424422x x x x x -⎛⎫-÷ ⎪-+-⎝⎭ 42(2)2(2)(2)(4)x x x x x x ---=⨯+-- 2(2)x x =-+ 222x x=-+, x 2+2x ﹣8=0,228x x ∴+=,∴原式2184=-=-. 【点睛】本题考查了用配方法解一元二次方程,分式的化简求值,正确的计算是解题的关键.27.(2021·福建三明市·八年级期中)阅读下面的材料:若22228160m mn n n -+-+=,求m ,n 的值.解:22228160m mn n n -+-+=.()()22228160m mn n n n ∴-++-+=.22()(4)0m n n ∴-+-=. 2()0m n ∴-=,2(4)0n -=.4n ∴=,4m =.根据你的观察,探究下列问题:(1)已知等腰三角形ABC 的两边长a ,b ,都是正整数,且满足221012610a b a b +--+=,求ABC 的周长;(2)已知6a b -=,216730ab c c +-+=,求a b c ++的值.【答案】(1)ABC 的周长为16或17;(2)8a b c ++=【分析】(1)根据题中所给方法把221012610a b a b +--+=进行配方求解a 、b 的值,然后根据等腰三角形的定义及三角形三边关系进行分类求解即可;(2)由6a b -=可知6b a =-,然后代入等式可得()2616730a a c c -+-+=,进而根据配方即可求解.【详解】解:(1)∵221012610a b a b +--+=,∵22102512360a a b b -++-+=,∵()()22560a b -+-=,∵50,60a b -=-=,∵5,6a b ==,∵等腰三角形ABC 的两边长a ,b ,都是正整数,∵当5a =为腰,则6b =为底,满足三角形三边关系,故ABC 的周长为5+5+6=16; 当6b =为腰,则5a =为底,满足三角形三边关系,故ABC 的周长为5+6+6=17;(2)∵6a b -=,∵6b a =-,∵()221673616730ab c c a a c c +-+=-+-+=,226916640a a c c -++-+=,()()22380a c -+-=,∵30,80a c -=-=,∵3,8a c ==,∵363b =-=-,∵8a b c ++=. 【点睛】 本题主要考查配方法的应用,熟练掌握完全平方公式是解题的关键.28.(2021·全国)已知△ABC 中,AB =c ,BC =a ,AC =b ,x 为实数,且6a b +=,29x ab =-. (1)求x 的值;(2)若△ABC 的周长为10,求△ABC 的面积ABC S ∆.【答案】(1)0x =;(2)25ABC S ∆=【分析】 (1)6a b =-代入29x ab =-,根据非负数之和为0,求得x 的值; (2)由(1)的结论结合已知三角形的周长求得第三边c 的值,再根据勾股定理求得三角形的高,进而求得面积.【详解】解:(1)6a b =-代入29x ab =-中得22(3)0x b +-=,∵ 20x ≥,2(3)0b -≥,∵ 0x =,3b =.(2)由(1)知3a b ==,∵ 1064c =-=,ABC∴是等腰三角形过点C作AB边上的高CD则AD BD=2222325 CD AC AD=-=-=∴11452522ABCS AB AD=⨯=⨯⨯=.【点睛】本题考查了配方法的应用,将6a b=-代入29x ab=-凑出完全平方公式是解题的关键.29.(2021·山东八年级期末)先阅读下面的内容,再解决问题:问题:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式,但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax 成为一个完全平方式,再减去a2,整个式子的值不变,于是有x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a);像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”利用“配方法”,解决下列问题(1)分解因式:a2-8a+15.(2)若△ABC的三边长是a,b,c,且满足a2+b2-14a-8b+65=0,c边的长为奇数,求△ABC的周长的最小值.【答案】(1)(a-3)(a-5);(2)∵ABC的周长最小值是16.【分析】(1)根据题目中的例子,可以对题目中的式子配方后分解因式;(2)根据题目中的式子,利用配方法可以求得a、b的值,根据三角形三边关系确定c的值,由三角形周长可得结论;【详解】解:(1)a2-8a+15=(a2-8a+16)-1=(a-4)2-1=(a-3)(a-5);(2)∵a2+b2-14a-8b+65=0,∵(a 2-14a +49)+(b 2-8b +16)=0(a -7)2+(b -4)2=0,a -7=0,b -4=0,解得:a =7,b =4,∵∵ABC 的三边长是a ,b ,c ,∵3<c <11又∵c 边的长为奇数∵c =5,7,9当a =7,b =4,c =5时,∵ABC 的周长最小,最小值是:7+4+5=16. 【点睛】本题考查配方法,三角形三边关系,解题的关键是正确理解题意给出的方法,解决问题,本题属于基础题型.30.(2021·浙江七年级期末)在学了乘法公式“222()2a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答. 同学们经过探索、交流和讨论,最后总结出如下解答方法:解:22222454225(2)1x x x x x ++=++-+=++,△()220x +≥,△()2211x ++≥.当()220x +=时,()221x ++的值最小,最小值是1.△245x x ++的最小值是1. 请你根据上述方法,解答下列各题:(1)直接写出()213x -+的最小值为__________.(2)求代数式21032x x ++的最小值.(3)若27110x x y -+-=,求x y +的最小值.【答案】(1)3;(2)7;(3)2 【分析】(1)根据偶次方的非负性解答即可;(2)利用配方法把原式变形,根据偶次方的非负性解答即可;(3)利用配方法把一般式化为顶点式,根据二次函数的性质解答. 【详解】解:(1)()213x -+,当1x =时,2(1)3x -+有最小值,是3,故答案是:3.(2)()22222103210553257x x x x x ++=++-+=++.∵()250x +≥,∵()2577x ++≥.当()250x +=时,()257x ++的值最小,最小值是7.∵21032x x ++的最小值是7.(3)∵27110x x y -+-=,∵2711y x x =-++.∵22222271161163311(3)2x y x x x x x x x x +=-++=-+=-+-+=-+.∵()230x -≥,∵()2322x -+≥.当()230x -=时,()232x -+的值最小,最小值是2.∵x y +的最小值是2. 【点睛】 本题考查的是代数式最值的确定,掌握配方法的一般步骤和偶次方的非负性是解题的关键.。
专题2解一元二次方程配方法九年级数学上册课后作业(人教版)

专题2 解一元二次方程配方法课后作业(解析版)班级_________ 姓名_________ 学号_________ 分数_________一、单选题(共10小题)1.用配方法解一元二次方程x 2﹣10x +11=0,此方程可化为( )A .(x ﹣5)2=14B .(x +5)2=14C .(x ﹣5)2=36D .(x +5)2=36 【答案】A解:∵x 2﹣10x +11=0,∴x 2﹣10x =﹣11,则x 2﹣10x +25=﹣11+25,即(x ﹣5)2=14,故选:A . 2.方程26100x x --=变形时,下列变形正确的为( )A .2(3)1x +=B .2(3)1x -=C .2(3)19x +=D .2(3)19x -= 【答案】D解:方程移项得:x 26x =10,配方得:x 26x +9=19,即(x 3)2=19,故选:D .【点睛】此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键.3.一元二次方程(x ﹣22)2=0的根为( )A .1x =2x =22B .1x =2x =﹣22C .1x =0,2x =22D .1x =﹣22,2x =224.将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21B .4-,11C .4,21D .8-,69【答案】A解:2850x x --=,移项得285x x -=,配方得2284516x x -+=+,即()2421x -=,∴a =4,b =21. 故选:A【点睛】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方.5.一元二次方程x 2﹣6x +1=0配方后可化为( )A .(x +3)2=2B .(x ﹣3)2=8C .(x ﹣3)2=2D .(x ﹣6)2=35 【答案】B解:∵x 2﹣6x +1=0,∴x 2﹣6x =﹣1,则x 2﹣6x +9=﹣1+9,即(x ﹣3)2=8.故选:B .6.把一元二次方程x 2﹣6x +6=0化成(x +a )2=b 的形式,则a ,b 的值分别是( )A .﹣3,3B .﹣3,15C .3,3D .3,15 【答案】A解:方程x 2﹣6x +6=0,移项得:x 2﹣6x =﹣6,配方得:x 2﹣6x +9=3,即(x ﹣3)2=3,∵一元二次方程x 2﹣6x +6=0化成(x +a )2=b 的形式,∴a =﹣3,b =3.故选:A .二、填空题7.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.【答案】7【详解】x 2−4x−5=x 2−4x+4−4−5=(x−2) 2−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为7【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.8.一元二次方程x 2﹣4x+4=0的解是________.【答案】x 1=x 2=2解:x 2﹣4x+4=0,(x2)2=0,∴x 1=x 2=2【点睛】本题考查了用配方法解一元二次方程,属于简单题,选择配方法是解题关键. 9.方程x 2+2x ﹣1=0配方得到(x+m )2=2,则m=_____.【答案】1【详解】:x 2+2x1=0,x 2+2x=1,x 2+2x+1=2,(x+1)2=2,则m=1;故答案为1.三、解答题10.用配方法解方程:x 2+2x ﹣2=0.【答案】x 1=﹣1+,x 2=﹣1﹣.【解答】解:x 2+2x ﹣2=0,原方程化为:x 2+2x =2,配方,得x 2+2x +1=3,即(x +1)2=3,开方,得x +1=±, 解得:x 1=﹣1+,x 2=﹣1﹣.11.用配方法解方程:x 2+10=8x ﹣1.【答案】,.【解答】解:∵x 2+10=8x ﹣1,∴x 2﹣8x +11=0,∴x 2﹣8x +16﹣16+11=0,∴(x ﹣4)2=5,∴x ﹣4=, ∴,.。
【专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

【专题复习】九年级数学上册一元二次方程解法练习100题1.解方程:2x2﹣8x+3=0(用公式法). 2.解方程:(2x-1)(x+3)=43.解方程:4y2+4y-1=-10-8y.4.解方程:x(x-3)=105.解方程:(x-1)(x-3)=86.解方程:x2-2=-2 x7.解方程:4x(3x-2)=6x-4. 8.解方程:3x(7-x)=18-x(3x-15);9.解方程:5x2-8x+2=0. 10.解方程:x2+12x+27=0.11.解方程:2x2-4x+1=0(用配方法) 12.解方程:4(x-1)2=9(x-5)2 13.解方程:x2﹣6=﹣2(x+1) 14.解方程:x2+4x﹣5=0.15.解方程:2x2+5x﹣1=0.16.解方程:3(x-2)2=x(x-2):17.解方程:2x2-3x-2=0 18.解方程:2x2-7x+1=019.解方程:x2﹣6x﹣4=0(用配方法) 20.解方程:x2-4x-3=021.解方程:x²-5x+2=0 22.解方程:x2﹣4x+8=0;23.解方程:3x2-6x+4=0 24.解方程:(x-2)(x-3)=1225.解方程:(x﹣3)(x+7)=﹣9 26.解方程:3x2+5(2x+1)=0(公式法) 27.解方程:x2﹣12x﹣4=0;28.解方程:(x﹣5)(x﹣6)=x﹣5.29.解方程:x2﹣8x﹣10=0;30.解方程:x(x﹣3)=15﹣5x;31.解方程:5x(x﹣3)=(x+1)(x﹣3) 32.解方程:x2+8x+15=033.解方程:25x2+10x+1=0 34.解方程:x2﹣7=﹣6x.(配方法)35.解方程:x2+4x﹣5=0(配方法) 36.解方程:4(x+3)2﹣(x﹣2)2=0(因式分解法)37.解方程:2x2+8x﹣1=0(公式法) 38.解方程:2x2-4x-1=0.39.解方程:(2x﹣5)2﹣(x+4)2=0.40.解方程:(x+1)(x﹣2)=2x(x﹣2) 41.解方程:4x2﹣6x﹣3=0(运用公式法) 42.解方程:2x2﹣x﹣3=0.43.解方程:(x+3)(x-1)=12 44.解方程:x2+3=3(x+1)45.解方程:x2-2x-24=0. 46.解方程:4x2-7x+2=0.47.解方程:x2-2x=2x+1;48.解方程:2(t-1)2+t=1;49.解方程:(3x-1)2-4(2x+3)2=0. 50.解方程:x2-6x-4=0;51.解方程:x(x﹣3)=4x+6.52.解方程:y2+3y+1=0;53.解方程:3y2+4y-4=0 54.解方程:(x-3)2-2x(x-3)=055.解方程:x2﹣2x=4 56.解方程:3(x﹣1)2=x(x﹣1) 57.解方程:3x2﹣6x+1=0(用配方法) 58.解方程:3(x-5)2=2(5-x) 59.解方程:3x2+5(2x+1)=0 60.解方程:x2+6x=9.61.解方程:x2﹣2x=x﹣2.62.解方程:(2x﹣1)2=(3﹣x)2 63.解方程:2x2-10x=3. 64.解方程:(x﹣1)(x﹣3)=8.65.解方程:3x2+2x-5=0;66.解方程:(1-2x)2=x2-6x+9.67.解方程:5(3x-2)2=4x(2-3x).68.解方程:(2x+1)2+4(2x+1)+3=0.69.解方程:2x2+3=7x; 70.解方程:(2x+1)2+4(2x+1)+3=0.71.解方程:x2﹣2x﹣3=0.72.解方程:x﹣3=4(x﹣3)273.解方程:(x+1)(x-1)=2x;74.解方程:3x2-7x+4=0.75.解方程:(x+2)2﹣10(x+2)=0.76.解方程:x2+3x+2=0;77.解方程:(x-1)2-2(x2-1)=0 78.解方程:x2-4x+2=0;79.解方程:x2﹣5x+1=0;80.解方程:x2﹣2x=4.81.解方程:x2+3x-2=0. 82.解方程:x2-5x+1=0(用配方法)83.解方程:x2+5x﹣6=0(因式分解法) 84.解方程:x2+3x﹣4=0(公式法)85.解方程:x2﹣4x+1=0(配方法) 86.解方程:(x﹣5)2=16 (直接开平方法)87.解方程:(x﹣1)(x+2)=6. 88.解方程:2x2+3x+1=089.解方程:(3x+1)2=9x+3. 90.解方程:5x2﹣3x=x+191.解方程:(x﹣4)2=(5﹣2x)2. 92. 解方程:(2x+1)2+15=8(2x+1)93.解方程:x2+x﹣1=0. 94.解方程:2x2﹣3x﹣1=0.95.解方程:x2-2x-3=0 96.解方程:3x2-7x+4=0.97.解方程:(x+3)(x-1)=12 98.解方程:x2-x-6=099.解方程:2x2﹣4x=1(用配方法) 100.解方程:(x+8)(x+1)=-12参考答案1.答案为:x=,x2=.12.答案为:x=1,x2=-3.5.13.答案为:y=y2=-1.5.14.答案为:x=5,x2=-2.15.答案为:x=5,x2=-1.16.答案为:∴,7.答案为:x=1/2,x2=-2/3.18.答案为:x=39.答案为:10.答案为:x=-3,x2=-9.111.答案为:12.答案为:x=13,x2=-3.4.113.答案为:x=﹣1+,x2=﹣1﹣.114.答案为:x=1,x2=﹣5.115.答案为:x=.16.答案为:x=2,x2=3.117.答案为:x=-0.5,x2=-2.118.答案为:;19.答案为:x=-3+,x2=-3-120.答案为:x=2721.答案为:略;22.答案为:x=x2=2;123.方程无实根;24.答案为:x=-1,x2=6. ;125.答案为:x=﹣6,x2=2;126.答案为:∴x1=,x2=.27.答案为:x=6+2,x2=6﹣2;128.答案为:x=5,x2=7.129.答案为:x=4+,x2=4﹣;130.答案为:x=3,x2=﹣5131.答案为:x=3,x2=0.25.132.答案为:x=-3,x2=-5.133.答案为:x=x2=-0.2.134.答案为:x=1,x2=﹣7.135.答案为:x=﹣5,x2=1;136.答案为:x=﹣4/3,x2=﹣8;137.答案为:x=,x2=.138.答案为:x=+1,x2=1-139.答案为:x=1/3,x2=9.140.答案为:x=2,x2=1.141.答案为:,;42.答案为:x=1.5,x2=﹣1.143.答案为:44.答案略;45.答案为:x=0,x2=3;146.答案为:x=+,x2=-.147.答案为:x=2+,x2=2-.148.答案为:t=1,t2=.149.答案为:x=-,x2=-7.150.答案为:x=3+,x2=3-.151.答案为:x=,x2=.152.答案为:y=,y2=.153.答案为:54.答案为:x=3,x2=-3;155.答案为:∴x=1﹣,x2=1+;156.答案为:x=1,x2=1.5.157.答案为:x=1+,x2=1﹣;158.答案为:x=5,x2=13/3.159.答案为:60.答案为:x=﹣3+3,x2=﹣3﹣3.161.答案为:x=2,x2=1.162.答案为:63.答案为:x 1=,x 2=. 64.答案为:x 1=5,x 2=﹣1. 65.答案为:x 1=1,x 2=-. 66.答案为:x 1=,x 2=-2. 67.答案为:x 1=,x 2=.68.答案为:x 1=-1,x 2=-2.69.答案为:x 1=,x 2=3.70.答案为:x 1=-1,x 2=-2.71.答案为:x 1=3,x 2=﹣1.72.答案为:x 1=3,x 2=3.25;73.答案为:x 1=+,x 2=-74.答案为:x 1=,x 2=1 75.答案为:x 1=﹣2,x 2=8.76.答案为:x 1=-1,x 2=2.77.答案为:x 1=1,x 2=3.78.答案为:x 1=22 ,x 2=2-2. 79.答案为: 80.答案为:x 1=1+,x 2=1﹣.81.∵a=1,b=3,c=-2,∴Δ=32-4×1×(-2)=17,∴x=,∴x 1=,x 2=.82.答案为:,.83.x1=﹣6,x2=1.84.答案为:x=﹣4,x2=1;185.;86.x=1,x2=9;187.x=,x2=.188.x1=﹣0.5,x2=﹣1;89.x1=﹣,x2=.90.x=﹣0.2,x2=1;191.x=3,x2=1.192.x=1,x2=2.193.x=,x2=.194.x=,x2=.195.96.解:(3)x=,x2=1197.98.99.x=1+,x2=1﹣.1100.1=﹣4,x2=﹣5.。
人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案

人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案一、选择题1.用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( ) A .(x −34)2=1716 B .(x −34)2=12 C .(x −34)2=134D .(x −34)2=1142.一元二次方程(x −22)2=0的根为( ). A .x 1=x 2=22B .x 1=x 2=−22C .x 1=0,x 2=22D .x 1=−223.关于一元二次方程x 2+kx −9=0(k 为常数)的根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定根的情况4.若关于 的一元二次方程 有两个不相等的实数根,则实数 的取值范围是( )A . 且B .C .且D .5.若关于 的一元二次方程 有一根为0,则的的值为( )A .2B .-1C .2或-1D .1或-26.已知a ,b 是一元二次方程x 2+3x −2=0的两根,则a 2+5a +2b 的值是( ) A .-5B .-4C .1D .07.三角形两边长分别是8和6,第三边长是一元二次方程x 2−16x +60=0一个实数根,则该三角形的面积是( ) A .24B .48C .24或8√5D .8√5 8.已知一元二次方程x 2+2x +6=10x +2的两实数根分别为x 1,x 2,则x 1+x 2x 1x 2的值为( ) A .-2 B .2C .12D .−12二、填空题9.若用配方法解方程x 2+4x +1=0时,将其配方为(x +b)2=c 的形式,则c = . 10.若实数a ,b 满足a −2ab +2ab 2+4=0,则a 的取值范围是 . 11.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .12.关于x 的一元二次方程x 2+2x-a =0的一个根是2,则另一个根是 .13.设x1,x2是方程2x2+6x−1=0的两根,则x1+x2+x1x2的值是.三、解答题14.解方程:(1)x2−4x+3=0;(2)3x2−5x+1=0.15.已知x=√5−1,求代数式x2+2x−3的值.16.关于的一元二次方程有两个实数根,求实数的取值范围.17.已知关于的一元二次方程(1)若方程的一个根为,求的值及另一个根;(2)若该方程根的判别式的值等于,求的值.18.若关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)设方程的两根分别是、且满足,求的值.参考答案1.A2.A3.A4.A5.A6.B7.C8.B9.310.−8≤a<011.312.-413.−7214.(1)解:∵x2−4x+3=0∴(x−3)(x−1)=0∴x−3=0或x−1=0∴x1=3,x2=1.(2)解:∵3x2−5x+1=0∴a=3,b=−5,c=1∴Δ=25−12=13>0∴x=5±√136∴x1=5+√136,x2=5−√136.15.解:当x=√5−1时x2+2x−3=x2+2x+1−1−3=(x+1)2−4=(√5−1+1)2−4=5-4=1.16.解:∵∴且,即.解得:且.17.(1)解:设方程的另一根是x2.∵一元二次方程mx2﹣(m+2)x+2=0的一个根为3∴x=3是原方程的解∴9m﹣(m+2)×3+2=0解得m= ;又由韦达定理,得3×x2=∴x2=1,即原方程的另一根是1(2)解:∵△=(m+2)2﹣4×m×2=1∴m=1,m=3.18.(1)解:∵关于x的方程有两个不相等的实数根∴即解得:;(2)解:设方程的两根分别是∴又∵∴∴∴解得:. 经检验,都符合原分式方程的根∵,∴。
九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。
人教版数学九年级上学期课时练习- 一元二次方程解法-配方法(人教版)

专题21.7 一元二次方程解法-配方法(专项练习)一、单选题类型一、一元二次方程的解法---配方法1.一元二次方程x 2﹣6x +2=0经过配方后可变形为( )A .(x +3)2=4B .(x +3)2=7C .(x ﹣3)2=4D .(x ﹣3)2=7 2.用配方法解下列方程,其中应在方程左右两边同时加上4的是( ) A .x 2﹣2x =5 B .2x 2﹣4x =5 C .x 2+4x =3 D .x 2+2x =5 3.若把方程2410x x --=化为2()x m n +=的形式,则n 的值是( )A .5B .2C .2-D .5- 4.下列代数式的值可以为负数的是( )A .|3|x -B .2x x +CD .2961x x -+ 5.对于任意实数x ,多项式x 2-6x+10的值是一个( )A .负数B .非正数C .正数D .无法确定正负的数 6.代数式x 2﹣4x +5的值( )A .恒为正B .恒为负C .可能为0D .不能确定 类型二、配方法的应用7.已知等腰△ABC 中的三边长a ,b ,c 满足2a 2+b 2﹣4a ﹣8b +18=0,则△ABC 的周长是( ) A .6 B .9 C .6或9 D .无法确定 8.已知代数式x 2﹣5x +7,当x =m 时,代数式有最小值q .则m 和q 的值分别是( ) A .5和3 B .5和34 C .﹣52和34 D .52和34921440b b -+=,则221a b a ++=( )A .12B .14.5C .16D .6+ 10.在Rt ABC △中,90A ∠=︒,6AB =,8AC =,点P 是ABC 所在平面内一点,则222PA PB PC ++取得最小值时,下列结论正确的是( )A .点P 是ABC 三边垂直平分线的交点B .点P 是ABC 三条内角平分线的交点 C .点P 是ABC 三条高的交点D .点P 是ABC 三条中线的交点11.已知点(3,44)P m m -为平面直角坐标系中一点,若O 为原点,则线段PO 的最小值为( )A .2B .2.4C .2.5D .3 12.无论x 为何值,关于x 的多项式﹣12x 2+3x +m 的值都为负数,则常数m 的取值范围是( )A .m <﹣9B .m <﹣92C .m <9D .m <92二、填空题 类型一、一元二次方程的解法---配方法13.如果方程x 2+4x +n =0可以配方成(x +m )2﹣3=0,那么(n ﹣m )2020=______. 14.将方程22490x x --=配方成()2x m n +=的形式为______.15.方程x 2+a =0的一个解是x =﹣1,另一个解是______.16.对方程223055x x +-=进行配方,得22355x x m m ++=+,其中m =______. 17.下面是用配方法解关于x 的一元二次方程2320x x +-=的具体过程,23210x x +-= 解:第一步:221033x x +-= 第二步:22133x x += 第三步:22221113333x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ 第四步:21439x ⎛⎫+= ⎪⎝⎭1233x ∴+=±113x ∴=,21x =- 以下四条语句与上面四步对应:“△移项:方程左边为二次项和一次项,右边为常数项;△求解:用直接开方法解一元二次方程;△配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;△二次项系数化1,方程两边都除以二次项系数”,则第一步,第二步,第三步,第四步应对应的语句分别是________.18.方程220(40)x px q p q ++=-≥的根是___________.类型二、配方法的应用19.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =这个公式也被称为海伦—秦九韶公式.若3p =,2c =,则此三角形面积的最大值是_________.20.若关于x 的一元二次方程x 2﹣10x +m =0可以通过配方写成(x ﹣n )2=0的形式,那么于m +n 的值是___________21.代数式2524x x -+的最小值是_______. 22.已知x 2263x x +-的值是______. 23.当x =___ ___.24.如图,矩形ABCD ,:3:4AB AD =,EFGH 的4个顶点都落在矩形边上,且有2AE AF =,设EFGH 的面积为1S ,矩形ABCD 的面积为2S ,则12S S 的最大值为__________.三、解答题25.用配方法解下列关于x 的方程(1)212250x x ++= (2)22419980x x +-=26.用配方法解下列方程:(1)2352x x -=; (2)289x x +=; (3)212150x x +-=;(4)21404x x --=; (5)2212100x x ++=; (6)()22040x px q p q ++=-≥.27.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y 2+4y +8的最小值.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4△(y +2)2≥0,△(y +2)2+4≥4△y 2+4y +8的最小值是4.(1)求代数式x 2+2x +4的最小值;(2)求代数式4-x 2+2x 的最大值;(3)如图,某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设AB =x (m ),请问:当x 取何值时,花园的面积最大?最大面积是多少?28.阅读材料:用配方法求最值.已知x ,y 为非负实数,2220x y +-+-=≥,x y ∴+≥“x y =”时,等号成立.示例:当0x >时,求14y x x=++的最小值.解:1()446y x x =++≥=,当1x x =,即1x =时,y 的最小值为6. (1)尝试:当0x >时,求21x x y x++=的最小值. (2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n 年的保养、维护费用总和为210n n +万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=n所有费用之和年数)?最少年平均费用为多少万元?参考答案1.D【解析】【分析】利用配方法的步骤配方即可解答.【详解】解:移项,得:x2﹣6x=﹣2,配方,得:x2﹣6x+9=﹣2+9,即(x﹣3)2=7,故选:D.【点睛】本题考查配方法解一元二次方程,熟练掌握配方法的步骤是解答的关键.2.C【解析】【分析】根据配方法的一般步骤逐项判定即可.【详解】解:A、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项不符合题意;B、将该方程的二次项系数化为1,得x2-2x=52,此方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项不符合题意;C、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项符合题意;D、因为本方程的一次项系数是2,所以等式两边同时加上一次项系数一半的平方1;故本选项不符合题意;故选:C.【点睛】本题考查配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题词的关键.3.A【解析】【分析】根据配方法求解即可.【详解】解:将2410x x--=配方得,2(2)5x-=,则5n=,故选A.【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.4.B【解析】【分析】各式化简得到结果,利用非负数的性质判断即可.【详解】解:A、|3-x|≥0,不符合题意;B、当x=12-时,原式=14-<0,符合题意;C,不符合题意;D、原式=(3x-1)2≥0,不符合题意.故选:B.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.5.C【解析】【分析】把多项式进行配方,即可判断.【详解】△x2-6x+10= x2-6x+9+1= (x-3)2+1>0.△多项式x2-6x+10的值是一个正数,故选C.【点睛】此题主要考查多项式的值,解题的关键是熟知配方法的应用.6.A【解析】【分析】直接利用配方法将原式变形,进而得出答案.【详解】解:2245(2)1x x x -+=-+,2(2)0x -,2(2)10x ∴-+>,∴代数式245x x -+的值恒为正.故选:A .【点睛】本题主要考查了配方法的应用,解题的关键是正确配方.7.B【解析】【分析】根据配方法可求出a 与b 的值,然后根据等腰三角形的性质即可求出答案.【详解】解△2a 2+b 2﹣4a ﹣8b +18=0△2(a ﹣1)2+(b ﹣4)2=0△a ﹣1=0,b ﹣4=0解得a =1,b =4△3<c <5△△ABC 是等腰三角形△c =4故△ABC 的周长为:1+4+4=9故选:B .【点睛】本题考查配方法,解题的关键是熟练运用配方法以及等腰三角形的性质,本题属于中等题型.8.D【解析】【分析】利用配方法得到:x 2﹣5x +7=(x ﹣52)2+34,利用偶数次幂的非负性作答. 【详解】解:△x 2﹣5x +7=(x ﹣52)2+7﹣254=(x ﹣52)2+34, △当x =52时,q 有最小值34, △m 和q 的值分别是52和34, 故选:D .【点睛】本题主要考查了配方法的应用,偶数次幂的非负性.配方法的理论依据是公式a 2±2ab +b 2=(a ±b )2.9.B【解析】【分析】将已知等式变形后,利用非负数的性质和完全平方式求出关于a 的等式和b 的值,代入所求式子中计算可解.【详解】将已知等式整理:21440b b -+=()2210b -=△a 2-4a +1=0,2b -1=0整理得:a +1a =4,b =12, 即a 2+21a=( a +1a )2-2=16-2=14, 则221a b a ++=14.5. 故选:B .【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 10.D【解析】【分析】以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,则222PA PB PC ++=()22820032333x y ⎛⎫-+-+ ⎪⎝⎭,可得P (2,83)时,222PA PB PC ++最小,进而即可得到答案. 【详解】以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,如图,则A (0,0),B (6,0),C (0,8),设P (x ,y ),则222PA PB PC ++=()()22222268x y x y x y ++-+++-=22331216100x y x y +--+=()22820032333x y ⎛⎫-+-+ ⎪⎝⎭, △当x =2,y =83时,即:P (2,83)时,222PA PB PC ++最小, △由待定系数法可知:AB 边上中线所在直线表达式为:883y x =-+, AC 边上中线所在直线表达式为:243y x =-+, 又△P (2,83)满足AB 边上中线所在直线表达式和AC 边上中线所在直线表达式, △点P 是ABC 三条中线的交点,故选D .【点睛】本题主要考查三角形中线的交点,两点间的距离公式,建立合适的坐标系,把几何问题化为代数问题,是解题的关键.11.B【解析】【分析】利用勾股定理求出两点的距离=16=25m时,OP最小=2.4即可.【详解】(3,44)P m m-,=,=△16=25m,OP最小12=2.45=,故选择:B.【点睛】本题考查勾股定理求两点距离问题,掌握勾股定理两点距离公式,会用配方法求最值是解题关键.12.B【解析】【分析】首先判断出:﹣12x2+3x+m=﹣12(x﹣3)2+m+92,然后根据偶次方的非负性质,可得-12(x﹣3)2+m+92≤m+92,再根据无论x为何值,﹣12x2+3x+m<0,推得m+92<0,据此判断出常数m的取值范围即可.【详解】解:△﹣12x 2+3x +m =﹣12(x 2﹣6x +9)+m +92=﹣12(x ﹣3)2+m +92△﹣12(x ﹣3)2≤0, △﹣12(x ﹣3)2+m +92≤m +92, △无论x 为何值,﹣12x 2+3x +m <0, △m +92<0, 解得m <﹣92. 故选:B .【点睛】本题考查的知识点是配方法的应用,将多项式进行配方是解此题的关键.13.1【解析】【分析】先把方程进行配方,即可求出n 、m 的值,再最后求值即可.【详解】解:把方程x 2+4x +n =0进行配方,得:()2240x n +-+=; 由已知可得:243m n =⎧⎨-+=-⎩,化简21m n =⎧⎨=⎩, △()()()2020202020201211n m -=-=-=;故答案为:1.【点睛】本题考查配方法,掌握完全平方公式的合并化简是解题的关键.14.()21112x -=【解析】【分析】先将-9移到等号右边变成2249x x -=,然后等号左右两边同时除以2得到2922x x -=,最后等号左右两边同时加上1,再把左边变成完全平方的形式即可.【详解】解:22490x x--=2249x x-=29 22x x -=29 2112x x-+=+ ()21112x-=故答案为:()21112x-=【点睛】本题考查了一元二次方程的配方,掌握如何配方是解题关键.15.x=1【解析】【分析】先将x=﹣1代入方程求出a的值,再利用直接开平方法求解即可.【详解】解:根据题意,将x=﹣1代入方程x2+a=0,得:1+a=0,解得a=﹣1,则方程为x2﹣1=0,△x2=1,△x1=1,x2=﹣1,故答案为:x=1.【点睛】本题主要考查含参一元二次方程的求解问题,解决问题的关键是正确理解一元二次方程解的概念.16.1 25【解析】【分析】方程两边同时加上一次项系数一半的平方,依此可求m.【详解】解:由题意得:m =2212525⎛⎫÷= ⎪⎝⎭, 故答案为:125. 【点睛】 本题考查了解一元二次方程-配方法,将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.17.△△△△【解析】【分析】根据配方法的步骤:二次项系数化为1,移项,配方,求解,进行求解即可.【详解】解:根据配方法的步骤可知:第一步为:△二次项系数化1,方程两边都除以二次项系数; 第二步为:△移项:方程左边为二次项和一次项,右边为常数项;第三步为:△配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方; 第四步为:△求解:用直接开方法解一元二次方程;故答案为:△△△△.【点睛】本题主要考查了配方法解一元二次方程,熟知配方法的步骤是解题的关键.18.12x x ==【解析】【分析】根据题意得出配方得出2224()=244p p p q x q -+=-,开方得出:2p x +=解得出根.【详解】解:△220(40)x px q p q ++=-≥.△配方得出222(4)()=244p p p q x q -+=-,2p x +=,△12x x ==故答案为:12x x 【点睛】本题考查了运用配方法求解二次方程的根的问题,难度很小,很容易做出,本题属于基础题. 19【解析】【分析】根据公式算出a +b 的值,代入公式,根据完全平方公式的变形即可求出解.【详解】解:△2a b c p ++=,p =3,c =2, △232a b ++=, △a +b =4,△a =4−b ,△S===== △当b =2时,S【点睛】本题考查了二次根式与完全平方公式的应用,解答本题的关键是明确题意,表示出相应的三角形的面积.20.30【解析】【分析】把方程x 2-10x +m =0移项后配方,即可得出(x -5)2=25-m ,得出25-m =0,n =5.求出m =25.【详解】解:x 2-10x +m =0,移项,得x 2-10x =-m ,配方,得x 2-10x +25=-m +25,(x -5)2=25-m ,△关于x 的一元二次方程x 2-10x +m =0可以通过配方写成(x -n )2=0的形式,△25-m =0,n =5,△m =25,△25530m n +=+=故答案为:30.【点睛】本题考查了用配方法解一元二次方程,能够正确配方是解此题的关键.21.14##0.25 【解析】【分析】 利用配方法得到:22512(1)44x x x -+=-+.利用非负数的性质作答. 【详解】 解:因为22512(1)44x x x -+=-+≥0, 所以当x =1时,代数式2524x x -+的最小值是14, 故答案是:14. 【点睛】本题主要考查了配方法的应用,非负数的性质.配方法的理论依据是公式a 2±2ab +b 2=(a ±b )2.22.-5【解析】【分析】先利用配方法把所求的代数式配方,然后代值计算即可.【详解】解:△x , △2263x x +-()2233x x =+-29152342x x ⎛⎫=++- ⎪⎝⎭ 2315222x ⎛⎫=+- ⎪⎝⎭ 21522=-⎝⎭ 21522=⨯-⎝⎭ 51522=- 5=-,故答案为:-5.【点睛】本题主要考查了配方法的使用和代数式求值,解题的关键在于能够熟练掌握配方法. 23. -1 【解析】【分析】把x x ++22410配方得:x +22(+1)8,即可解决. 【详解】△x ≥22(+1)0△x +≥22(+1)88当x =-1时,x +22(+1)8故答案为:-1,【点睛】本题考查了配方法及求最小值,关键是配方.24.2548【解析】【分析】设,2,3,4AF a AE a AB b AD b ====,由矩形和平行四边形的性质,易得△AFE△△CHG ,△BFG△△DHE ;EFGH 的面积等于矩形ABCD 的面积减去△AFE 、△CHG 、△BFG 、△DHE ,据此计算得解.【详解】设,2,3,4AF a AE a AB b AD b ====,则42,3DE BG b a BF DH b a ==-==-, 2221122(42)(3)410S b a b a b a a ab ∴=----=-+221525444S a b b ⎛⎫∴=--+ ⎪⎝⎭,△当54a b =时,1S 的最大值为2254b △12S S 的最大值为2254b :2251248b =. 【点睛】本题考查矩形中平行四边形面积的最大值,关键是设未知数,建立代数关系,运用配方法求最值.25.(1)16x =-26x =-(2)11x =-+21x =--【解析】【分析】(1)根据配方法,先把常数项移到等式右边,再两边同时加上36,等式左边凑成完全平方形式,再直接开平方得出结果;(2)根据配方法,先把二次项系数化为1,然后把常数项移到等式右边,再两边同时加上1,等式左边凑成完全平方形式,再直接开平方得出结果.【详解】(1)212250x x ++=()22123625366116x x x x ++=-++=+=16x =-26x =-(2)22419980x x +-=()2222999219991110001x x x x x x +=++=++=+=±11x =-+21x =--【点睛】本题考查一元二次方程的解法——配方法,解题的关键是熟练掌握配方法的方法.26.(1)12312x x ==-,;(2)129,1x x ;(3)1266x x =-=-(4)1222x x =+=-(5)121,5x x =-=-;(6)x =. 【解析】【分析】根据配方的方法,正确、认真配方,注意二次项系数,即可得出正确答案.【详解】解:(1)3x 2−5x =2x 2-53x =23x 2-53x +2536=23+2536(x -56)2=4936x -56=±76x 1=56+76=2 x 2=56-76=-13(2)x 2+8x =9x 2+8x +16=9+16 (x +4)2=25 x +4=±5 x 1=5-4=1 x 2=-5-4=-9 (3)x 2+12x −15=0 x 2+12x +36=15+36 (x +6)2=51xx 1=-6x 2=-6(4)14x 2−x −4=0 x 2-4 x +4=16+4 (x -2)2=20x -x 1=2+x 2=2-(5)2x 2+12x +10=0 x 2+6x +9=-5+9 (x +3)2=4 x +3=±2 x 1=2-3=-1 x 2=-2-3=-5 (6)x 2+px +q =0x 2+px +24p =-q +24p (x +2p )2=244p qpx+2px+2x【点睛】本题考察了用配方法解一元二次方程,做题的关键是将二次项系数化1,正确配方,认真即可.27.(1)3;(2)5;(3)当x取5m时,花园的面积最大,最大面积是50m2【解析】【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.【详解】解:(1)x2+2x+4=x2+2x+1+3=(x+1)2+3△(x+1)2≥0,△(x+1)2+3≥3△x2+2x+4的最小值是3.(2)4-x2+2x=-x2+2x+4=-(x2-2x-4)=-(x2-2x+1-5)2=-(x-1)2+5△(x-1)2≥0,△-(x-1)2≤0△-(x-1)2+5≤5△4-x2+2x的最大值是5.(3)设花园的面积为S(m2),根据题意,得S=AB·BC=x(20-2x)=-2x2+20x=-2(x 2-10x )=-2(x 2-10x +25-25)=-2(x -5)2+50△-2(x -5)2≤0△-2(x -5)2+50≤50△当x 取5m 时,花园的面积最大,最大面积是50m 2.【点睛】此题考查了配方法的应用,解题的关键是:熟练掌握完全平方公式.28.(1)3;(2)10,2.5.【解析】【详解】试题分析:(1)首先根据21x x y x++=,可得11y x x =++,然后应用配方法,即可求出答案. (2)首先根据题意,求出年平均费用,然后应用配方法,求出这种小轿车使用多少年报废最合算,以及最少年平均费用为多少万元即可.试题解析:(1)21x x y x++==11x x ++≥1=3,△当1x x =,即x=1时,y 的最小值为3;(2)年平均费用=2(0.410)10n n n n +++÷=101102n n ++≥12=2+0.5=2.5,△当1010n n =,即n=10时,最少年平均费用为2.5万元.考点:1.配方法的应用;2.阅读型;3.最值问题;4.综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习好资料欢迎下载
2017-2018学年九年级数学上册一元二次方程解法-配方法
专题练习
一、选择题:2﹣4x﹣1=0,配方后得到的方程是( 1、用配方法解一元二次方程x )
﹣2) C.(x﹣2) D.(x=5 =1 B.(x﹣2) =4 A.(x﹣2)2)
2222=3
1=0配方后可变形为( ﹣2、一元二次方程x8x﹣2222=15 ﹣4)=17 D.(x﹣4)A.(x+4)=17
B.(x+4)=15
C.(x2) ﹣4x=5时,此方程可变形为( 3、用配方法解一元二次方程x2222=9 2)=1
B.(x﹣2)=1
C.(x+2)=9
D.(x﹣A.(x+2)2)
4、将方程x +8x+9=0左边配方后,正确的是(
﹣=7 A.(x+4) =﹣9 B.(x+4)=25 C.(x+4)
22227 = D.(x+4)
﹣6x+5=0,此方程可化为5、用配方法解一元二次方程x(
2)
C. A. B.
D.
6、用配方法解下列方程,其中应在两边都加上16的是( )
﹣8x=2 ﹣8x+3=0 A.x C.x﹣4x+2=0 B.2x
2222+4x=2 D.x
( 2x-1=0时,方程变形正确的是7、用配方法解一元二次方程x-2222=7 1)=1 1) D.(x=4 C.(x
2)
-1)A.(x-1)-=2 B.(x-2)
6x+1=0,则方程可变形为( 8、用配方法解方程3x﹣2222=1 1) C.(x ﹣1)= D.(3x
﹣ A.(x﹣3)= B.3(x﹣1)=
2)
9、方程x+6x﹣5=0的左边配成完全平方后所得方程为(
D.= A.(x+3) =14 B.(x﹣3)=14 C.(x+6)2) ( x﹣8x=9时,应当在
222以上答案都不对
方程的两边同时加上10、用配方法解一元二次方程4
﹣ D.﹣A.16 B.16 C.4
2)
( 11、用配方法解一元二次方程x6x+4=0﹣,下列变形正确的是2222=4+9 3)3)=﹣4+9 D.(x
﹣﹣6)=A.(x﹣6)﹣4+36 B.(x﹣=4+36 C.(x2)
,经过配方,得到( 1=012、用配方法解方程x﹣2x﹣2222=5 ﹣=3 D.(x2)1)﹣A.(x+1) =3 B.(x1)=2 C.(x﹣2)
时,原方程应变形为﹣2x﹣5=0( x13、用配方法解方程2222=9
2)﹣ D.(x =9 C.(x+2) =6 1)﹣ B.(x =6 A.(x+1).
学习好资料欢迎下载
4x﹣3=02x配方后所得的方程正确的是( )
2﹣
14、将方程2222=5 =1 D.2(x﹣1)﹣﹣1)=0 B.(2x1)=4 C.2(x﹣1)A.(2x2 ) x的方
程x﹣4x﹣2=0进行配方,正确的是( 15、将关于2222=6 ﹣2) D.(x B.(x+2)A.(x﹣2)=2 =2 C.(x+2)=6
-2=0配方后所得的方程是( 16、将一元二次方程x-2x2222=3 2)A.(x-2)1)=2 B.(x-
2)
D.(x=2 C.(x-1)-=3
,变形后的结果正确的是( 17、用配方法解方程x+1=8x2222=17 4) D.(x--+4)=17 C.(x4)=15 4)A.(x+=15 B.(x2 )
、用配方法解一元二次方程x-6x-4=0,下列变开征确的是( 182222=4+9 D.(x-3)
A.(x-6)=-4+36
B.(x-6)=4+36
C.(x-3)=-4+9
)
19、用配方法解下列方程,配方正确的是(
2222=8 1)9=0
﹣可化为(x﹣4y﹣4=0可化为(y1)﹣=4 B.x﹣A.2y2x﹣2222=4 D.x﹣(x2)﹣4x=0可化为(x+4)+8xC.x﹣9=0可化为=16
2) ,下列变形正确的是+6x+4=0( 、用配方法解方程20x2222 D.(x+3)=5 3)=4
C.(x+3) =±﹣﹣A.(x+3)=4 B.(x:
二、计算题2 ) 、解方程:21x﹣4x+1=0(用配方法
2)
、解方程:﹣223x用配方法+4x+1=0(
2 23
、解方程: ) 用配方法1=0(+6xx﹣
学习好资料欢迎下载
2﹣
6y+2=0 (3y、解方程:配方法). 24
2+3x
﹣4=0;(25、解方程:x用配方法)
2)
用配方法﹣1=0(26、解方程:2x+3x
2 (5x+127
、解方程:x﹣=0;用配方法)
用配方法;+28、解方程:x3x+2=0
2) (
、解方程:+-配方法
2) 399=0.(2xx29
学习好资料欢迎下载
﹣7=0.(用配方法) 30、解方程:x
2+6x
5x+2=0(配方法) 、解方程:312x
2﹣
6x+2=0;(用配方法) 32、解方程:3x
2-
3x﹣1=0(用配方法) 33、解方程:x
2﹣
6x﹣16=0(用配方法) 、解方程:34x
2﹣
6x+1=0(用配方法3x35、解方程:)
2﹣
学习好资料欢迎下载
4x+1=0.(2x用配方法) 36、解方程:
2﹣
6x﹣9=0(配方法) 37、解方程:x 2﹣
用配方法3x) 38、解方程:﹣
2+4x+1=0.(
用配方法、解方程:x+x﹣39
2) 1=0.(
用配方法) 1)(x﹣3)=8.(40、解方程:(x﹣
学习好资料欢迎下载
参考答案
1、C.
2、C
3、D.
4、C
5、A
6、C.
7、A
8、C.
9、A.
10、A.
11、C.
12、B.
13、B.
14、D.
15、D.
16、C
17、C
18、D
19、D.
20、C.
﹣; x,=2+x=221、答案为:21;,x、答案为:x ==2221﹣23、答案为:3+﹣3,x=;x=﹣21=y=.
,y24、答案为:2125、答案为:x=﹣4,x=1;21、答案为:.
26、答案为: 27=-2. =-1,x28、答案为:x21 21,x=19 x29、答案为:=-21=1. 或x730、答案为:x=﹣21=0.5. x=231、答案为:x,21.
x=x32、答案为:,=21x=;、答案为: 33;=1+、答案为:34xx,﹣=121.
学习好资料欢迎下载
﹣;=1 x35、答案为:,=1+x21. ,36、答案为:x=1+x=1﹣21;3 ,x37、答案为:x=3+3=3﹣21.
,xx38、答案为:==21.
,x=x39、答案为:=2140、答案为:x=5,x=﹣1.
21。