22.2.1 配方法(2)
人教版九年级数学上册学案:22.2.1 配方法2

22.2.1 配方法学习目标:1.会用开平方法解形如(x 十m)2=n(n ≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解一元二次方程.教学重点: 利用配方法解一元二次方程教学难点: 把一元二次方程通过配方转化为(x 十m)2=n(n ≥0)的形式.一.学前准备1用直接开平方法解方程2x 2--8=0 )62+x (--9=02完全平方公式是什么?3填上适当的数,使下列等式成立:(1)x 2+12x+ = (x+6)2(2)x 2―12x+ = (x ― )2(3)x 2+8x+ = (x+ )2(4)x 2+43x+ = (x+ )2(5)x 2+px+ = (x+ )2观察并思考填的数与一次项的系数有怎样的关系? 二、探究活动问题:下列方程能否用直接开平方法解?x2一l0x十25=7 x2+8x―9=0是否先把它变成(x+m)2=n (n≥0)的形式再用直接开平方法求解?如: x2+8x―9=0移项得将方程左边配成完全平方式同时加16得总结归纳:,叫做配方法。
配方是为了例1: 用配方法解下列方程x2--8x+1=0 x2+2x-35=0 x2+8x+9=0例2:用配方法解下列方程. 2x 2-4x -1=0总结用配方法解方程的一般步骤.(1)化二次项系数为1,即方程两边同时除以二次项系数.(2)移项,使方程左边为二次项和一次项,右边为常数项.(3)要在方程两边各加上一次项系数一半的平方.(注:一次项系数是带符号的)(4)方程变形为(x+m)2=n 的形式.(5)如果右边是非负实数,就用直接开平方法解这个一元二次方程;如果右边是一个负数,则方程在实数范围内无解.三.课堂小结:本节课你有什么收获?还有什么疑问?四.自我测试1配方:填上适当的数,使下列等式成立:(1)x 2+12x+ =(x+6)2(2)x 2―12x+ =(x ― )2(3)x 2+8x+ =(x+ )22213x x +=23640x x -+=2.将二次三项式x2-4x+1配方后得(). A.(x-2)2+3 B.(x-2)2-3C.(x+2)2+3 D.(x+2)2-33.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是(). A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-114.用配方法解方程:x2﹣2x﹣24=0; 3x2+8x-3=0; x(x+2)=120.3x2+3x―3=0 3x2 -9x+2=0 2x2+6=7x。
22.2.1配方法

∴X2+8X=-7
②∴X2+8X+()2=()2
即(X+4)2=9
3、3X2-6X+2=0如何变形可得到(X-1)2=
①∵3X2-6X+2=0
∴3X2-6X=-2
②∴X2-2X=-
③∴X2-2X+1=-+1
④∴(X-1)2=
3、怎样解方程X2+6X-16=0
1移项X2+6X=16
(1)X1=5,X2=8
(2)X1=1,X2=-
注重配方过程,得出两个实数根。
四、拓展延伸
1、用配方法解下列方程
(1)X2+8X=33
(2)2X2-3X+4=0
(3)X2-X+1=0
2、当x为何值时,代数式X2-8X+12=X
3、求证:方程有两个相等的实数根?
4、解方程:3X2+2x-a=0
怎样判断?
1、化为一般形式
2、移项
3、二次项系数化为1
4、配方
5、左边写成完全平方的形式
6、降次直接开平方
7、求解解一元一次方程定解等
要求学生通过讨论自己归纳得出步骤。引导学生回顾目标,明确重难、难点
六、作业布置
1、复习巩固所讲内容
2、完成课后练习和习题相关作业;
3、完成练习册相关作业。
即时练习,巩固所学知识。
3.解方程:X2+6X-16=0
4、用配方法解一元二次方程的基本步骤
4.用配方法解下列方程
例题1例题2例题3例题4
5.做一做
6.小结
7.作业等
学生学习活动评价设计
配方法

22.2降次——解一元二次方程
22.2.1《配方法》教案
姓名:序号:32
配方法是解一元二次方程的通法.因为用配方法解一元二次方程比较麻烦,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是推出求根公式的关键,并在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程就必须熟悉完全平方式的特征.
一、教学目标
(一)知识技能
1、探索具体问题当中的数量关系,并会列一元二次方程。
2、熟练掌握用配方法解一元二次方程
(二)过程与方法
通过解特殊一元二次方程的解法,归纳总结出一般一元二次方程的配方法的解法从而提高学生解决问题的能力。
(三)情感、态度与价值观
在教师的引导下,通过学生的亲身参与的教学活动,并从中体会“化归方法”这一数学思想,使学生感受到用数学知识战胜困难带来的快乐。
二、教学重点、教学难点
重点:开平方法和用配方法解一元二次方程。
难点:归纳和总结配方法
三、教学方法
讲练结合法
四、课时安排
一个课时,40分钟
五、教学过程
.
六、板书设计
七、教学反思
本章是用配方法的思想来解一元二次方程,从学生的角度考虑本身理解就存在一定难度,从今天教学学生的反应情况看只有60%的学生基本理解,所以在下节课还要讲几个例题,从而加强更多学生对配方法的理解。
人教版数学九年级上册22.2.1《配方法》说课稿2

人教版数学九年级上册22.2.1《配方法》说课稿2一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,本节课的主要内容是让学生掌握配方法的原理和应用。
配方法是解一元二次方程的一种重要方法,它能把一般形式的一元二次方程转化为完全平方式,从而使方程的解法更加简单。
在初中数学中,配方法不仅是一元二次方程解法的基础,也是后续学习二次函数、一元二次不等式等知识的基础。
二. 学情分析九年级的学生已经学习过一元二次方程的基本概念和解法,对二次项、一次项、常数项有一定的了解。
但是,学生对于配方法的原理和推导过程可能还不太理解,对于如何运用配方法解决实际问题可能还存在困难。
因此,在教学过程中,我需要引导学生从已有的知识出发,逐步理解和掌握配方法,并能够运用配方法解决实际问题。
三. 说教学目标1.知识与技能目标:让学生掌握配方法的原理和步骤,能够运用配方法解一元二次方程。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生体验数学的乐趣,培养对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:配方法的原理和步骤,如何运用配方法解一元二次方程。
2.教学难点:配方法的推导过程,如何灵活运用配方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生自主探究和合作交流。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,为学生提供丰富的学习资源。
六. 说教学过程1.导入新课:通过复习一元二次方程的基本概念和解法,引出配方法的概念和作用。
2.自主探究:让学生自主探究配方法的原理和步骤,引导学生发现配方法的规律。
3.合作交流:让学生分组讨论,分享各自的方法和经验,互相学习和借鉴。
4.讲解示范:通过讲解和示范,让学生理解和掌握配方法的具体操作步骤。
5.练习巩固:布置一些练习题,让学生运用配方法解一元二次方程,巩固所学知识。
22.2.1一元一次方程的解法(2)配方法1

2
(2) x 5x 6 0
2
x1 4 3 2 , x2 4 3 2
x1 6, x2 1
2
(3) x 7 6x
2
(4) x 10 2 6x
此方程无解
x1 3 2 , x2 3 2
设场地的宽为
xm,
长
x 6m ,列方程得
即
xx 6 16 2 x 6 x 16 0
方程 x
2
6 x 16 0 和方程 x 6 x 9 2
2
有何联系与区别呢?
把一元二次方程的左边配成一个 完全平方式,然后用开平方法求解,这 种解一元二次方程的方法叫做配方法.
2-12x+ 62 (3)x
=(x- 6 )2
结论:在方程两边同时添加的常数项等于一次 项系数一半的平方.
随堂练习1
32
填空:
X+3
42
X-4
3 2 ( ) 4
3 x 4
例1、解下列方程: (1) x2+2x=5; (2) x2-4x+3=0.
师生合作 1
例2 用配方法解方程: (1)x2-6x-7=0 (2)x2+3x+1=0
用配方法解一元二次方程的步骤:
1.移项:把常数项移到方程的右边; 2.配方: 方程两边都加上一次项系数一半的平方; 3.变形:方程左边分解因式,右边合并同类项 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
(1)x2+8x+ 16 =(x+4)2 (2)x2-4x+ 4 =(x- 2 )2 6 (3)x2-___x+ 9 =(x- 3 )2
一元二次方程配方法

2、用配方法解形如ax2+bx+c=0一元二 次方程的一般步骤是什么?
系数化1ห้องสมุดไป่ตู้移项,配方,变形,开方,求解,定解
作业
• P42 第3题(3)(4)
2 )= 3
10 9
练一练
1解下列方程 (1)3x2+6x-4=0
1 2 (2) x +2x-1=0 2
(3)4x2-6x-3=0
(4)-2x2-x-1=0
试一试
2.用配方法求2x2-7x+2的最小值
3.用配方法证明-10x2+7x-4的值 恒小于0
归纳总结
1、解二次项系数不为1的一元二次方程的
开方,得
,x2=2
5 3 x 4 4
∴ x1 2
开方
定解
1 x2 2
典型例题
解下列方程: (1)2x2+1=3x
(2) 3x2-6x+4=0
概括总结
1.对于二次项系数不为1的一元二次方程, 用配方法求解时首先要怎样做 ?
首先要把二次项系数化为1
2.用配方法解一元二次方程的一般步骤:
22.2.1一元二次方程的解法 配方法2
知识回顾
1.什么是配方法? 我们通过配成完全平方式的方法,得到了一元二次方 程的根,这种解一元二次方程的方法称为配方法
用配方法解一元二次方程的方法的 2.什么是平方根?
如果x2=a,那么x= a.
助手:
x就是a的平方根
3.什么是完全平方式?
式子a2±2ab+b2叫完全平方式, 且 a2±2ab+b2 =(a±b)2.
5 2
x+1=0与
配方法.公式法.因式分解

学习课题:22.2.1配方法(2)课题内容:找出配方法的概念,然后运用配方法解一元二次方程学习目标:了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目学习重点:讲清配方法的解题步骤.把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方学习指南:学习流程:学习流程:复习自学(阅读课本)自我检测课堂展示小结报告学习环节一、温馨回忆:学生活动:解下列方程:(1)x2-8x+7=0已经学习了如何解左边含有x的完全平方形式,•右边是非负数,不可以直接开方降次解方程的转化问题解:(1)x2-8x+(-4)2+7-(-4)2=0 (x-4)2=9x-4=±3即x1=7,x2=1(2)x2+4x+1=0(试一试二、自我探究学习:像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解例1.解下列方程(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:(1)移项,得:x2+6x=-5配方:x2+6x+32=-5+32(x+3)2=4由此可得:x+3=±2,即x1=-1,x2=-5(2)移项,得:2x2+6x=-2二次项系数化为1,得:x2+3x=-1配方x2+3x+(32)2=-1+(32)2(x+32)2=54由此可得x+32=x132,x232(3)(1+x)2+2(1+x)-4=0(自己试一试)三、自我展示:(学生小组交流解疑,教师点拨、拓展)问题一:配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0C.(x-13)2=89D.(x-13)2=109问题二:1.如果x2+4x-5=0,则x=_______.2.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数问题三:用配方法解方程.(1)9y2-18y-4=0 (2)x2问题四:如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________问题五:已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1 B.2 C.-1 D.-2问题六:无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数四、自我练习:1.教材P42复习巩固3小结学习报告:(写出小节所学的内容,以及自已的学习感受)五、能力提升已知:x2+4x+y2-6y+13=0,求222x yx y-+的值六、中考链接:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案学习课题:公式法课题内容:1.一元二次方程求根公式的推导过程; 2.公式法的概念;3.利用公式法解一元二次方程学习目标:理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx+c=0(a ≠0)•的求根公式的推导公式,并应用公式法解一元二次方程学习重点:求根公式的推导和公式法的应用 学习指南:学习流程:复习 自学(阅读课本) 自我检测 课堂展示 小结报告 学 习 环 节一、温馨回忆: 学生活动:(学生活动)用配方法解下列方程 (1)6x 2-7x+1=0 (2)4x 2-3x=52总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解 二、自我探究学习:如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1x 2分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c •也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-ca配方,得:x 2+b a x+(2b a )2=-c a +(2b a)2即(x+2b a )2=2244b aca -∵b 2-4ac ≥0且4a 2>0∴2244b aca-≥0 直接开平方,得:x+2ba =即∴x 1x 2由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,•将a 、b 、c 代入式子(2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根三、学有所用:(学生小组交流解疑,教师点拨、拓展) 问题一:1.用公式法解方程4x 2-12x=3,得到( ).A .x=B .C .x= D .2、 若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是____3、 用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0问题二:用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2(3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可 问题三:某数学兴趣小组对关于x 的方程(m+1)22mx ++(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.(2)若使方程为一元二次方程m 是否存在?若存在,请求出.你能解决这个问题吗?问题四:12的根是( ).A .x 1=x 2B .x 1=6,x 2C .x 1x 2D .x 1=x 22、如果分式3322---x x x 的值为0,则x 值为A.3或-1B.3C.-1D.1或-3问题五:1、m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ). A .4 B .-2 C .4或-2 D .-4或22、若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是____问题六:1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________. 2.当x=______时,代数式x 2-8x+12的值是-4. 3、利用求根公式求x x 62152=+的根时,a,b,c 的值分别是 A.5,21,6 B.5,6, 21 C.5,-6, 21 D.5,-6,- 21四、自我练习:教材P 42 练习1.(1)、(3)、(5) 小结学习报告:五、能力提升设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=ca;(2)•求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值六、中考链接:某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A元收费. (1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)(2)下表是这户居民3月、4月的用电情况和交费情况学习课题:22.2.3因式分解法课题内容:用因式分解法解一元二次方程学习目标:1、掌握用因式分解法解一元二次方程.2、通过复习用配方法、公式法解一元二次方程学习重难点:让学生通过比较解一元二次方程的多种方法感悟用因式分解法学习指南:学习流程:复习自学(阅读课本)自我检测课堂展示小结报告学习环节一、温馨回忆(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)二、自我探究学习:1、自学教材38—39页内容,明确因式分解法解一元二次方程的一一般方法步骤,主要依据,会用因式分解法节简单的一元二次方程,通过演练40页练习题1,43页习题6检验自己自学效果,小组讨论解决疑难问题,15分钟后抽同学展示学习成果。
配方法解一元二次方程的教学设计

课后反思:
1、本节课先以解决实际问题引入,创设一个“出现不会解的方程”的问题情境,激发学生的探究欲。
通过与会解方程的比较,引导学生观察方程形式的区别,进一步联想:要利用已知解决未知,就需要将式子变形,从而确定探究方向——配方。
在探究配方的过程中,着重引导学生就配方规律、配方的形式要求、配方后的分类处理三个方面进行探究,使学生对配方法解一元二次方程有一个完整的了解,教学时重点环节放在以学生发现为主,教师适时适量点拨补充为辅,尽量避免喧宾夺主,收到较好的教学效果,达到预期的教学目的。
2、本节课运用多媒体教学的目的是起到辅助教学的作用,让学生感到耳目一新,提高学习兴趣,增大客容量,提高课堂学习效率。
但利用多媒体不能取代学生探索交流的过程和教师板演的的环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
63中学导学案年级:八年级学科:数学姓名:_________ ____年____月___日
63中学导学案年级:八年级学科:数学姓名:_________ ____年____月___日
1.式子44x +配成完全平方式,应加上( D )
A. 4x
B. ±4x
C. 4x 2
D. ±4x 2
2.用配方法解方程2250x x --=时,原方程应变形为( B )
A .()216x +=
B .()216x -=
C .()229x +=
D .()229x -=
3.+-px x 2_________=(x -_________)2.
4.x a
b x -2+_________=(x -_________)2.
5.方程2x 2+5x-3=0的解为
6.解方程x 2-2x -1=0.
7.解方程y 2-6y +6=0.
8.解方程3x 2-4x =2.
(完成时间:45分钟,满分:100分)
一、选择题(每题5分,共25分)
1.方程x 2-3x +2=0的解是 ( )
A .1和2
B .-1和-2
C .1和-2
D .-1和2
2.用配方法解方程x 2+2x =8的解为 ( )
A .x 1=4,x 2=-2
B .x 1=-10,x 2=8
C .x 1=10,x 2=-8
D .x 1=-4,x 2=2
3.用配方法解方程013
22=--x x 应该先变形为 ( ) A .98)31(2=-x B .98)31(2-=-x C .910)31(2=-x D .0)3
2(2=-x 4.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为 ( ).
A .-2
B .-4
C .-6
D .2或6
5.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为(
) A .12 B .15 C .12或15 D .不能确定
二、填空题(每题5分,共25分)
6.x x 23
2-+_________=(x -_________)2.
7.方程x 2-6x +8=0的解是
8.方程042=-x x 的解是______________.
9.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.
10.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______.
三、解答题(每题10分,共50分)
11.x 2+4x -3=0.
12.x (x +4)=21.
13.-2x 2+2x +1=0.
14.2x -1=-2x 2
15.x 2+2mx =n .(n +m 2≥0).。