2016年各地中考数学解析版试卷分类汇编(第1期):二次根式
2016年中考数学试题分类解析汇编(第一辑)(29份)_2

2016年全国各地中考数学试题分类解析汇编(第一辑)第12章全等三角形一.选择题(共13小题)1.(2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF2.(2016•永州)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.(2016•金华)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD4.(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD5.(2016•莆田)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB 上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD6.(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A.15 B.30 C.45 D.607.(2016•湖州)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.28.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC9.(2015•宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.(2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB11.(2015•六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD12.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE13.(2015•宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个2016年全国各地中考数学试题分类解析汇编(第一辑)第12章全等三角形参考答案与试题解析一.选择题(共13小题)1.(2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.2.(2016•永州)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.3.(2016•金华)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD.【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,∴PC=PD,故A正确;在Rt△OCP与Rt△ODP中,,∴△OCP≌△ODP,∴∠CPO=∠DPO,OC=OD,故C、D正确.不能得出∠CPD=∠DOP,故B错误.故选B.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质,得出PC=PD是解题的关键.5.(2016•莆田)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB 上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD【分析】要得到△POC≌△POD,现有的条件为有一对角相等,一条公共边,缺少角,或着是边,根据全等三角形的判定定理即可得到结论.于是答案可得.【解答】解:∵OP是∠AOB的平分线,∴∠AOP=∠BOP,∵OP=OP,∴根据‘HL’需添加PC⊥OA,PD⊥OB,根据‘SAS’需添加OC=OD,根据‘AAS’需添加∠OPC=∠OPD,故选D.【点评】本题考查了角平分线的定义,全等三角形的判定,熟记全等三角形的判定定理是解题的关键.6.(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.7.(2016•湖州)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.8.(2015•莆田)如图,AE∥DF,AE=DF,要使△E AC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(2015•宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到A B的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P 的位置.10.(2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠AC B【分析】本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.(2015•六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【分析】本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.【解答】解:A、可利用AAS定理判定△ABC≌△DC B,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.13.(2015•宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD 全等和利用SAS证明△AOD与△COD全等.智汇文库专业文档。
2016年各地中考数学解析版试卷分类汇编(第一期):开放性问题.doc

开放性问题一、选择题无二、填空题1. (2016·四川乐山·3分)高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数.例如:[]2.32=,[]1.52-=-. 则下列结论: ①[][]2.112-+=-; ②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<; ④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有___▲__(写出所有正确结论的序号). 答案:①③解析:①[][]2.11312-+=-+=-,正确;②取特殊值x =1时,[][][1][1]121x x +-=+-=-=-,故错误;③若[]13x +=,则314x ≤+<,即x 的取值范围是23x ≤<,正确; ④当11x -≤<时,有1x +,1x -+不能同时大于1小于2,则[][]11x x ++-+的值可取不到2,错误。
2.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 )(或152525-3+-考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA ,由平行得出21∠=∠,由角平分得出32∠=∠ 从而得出31∠=∠,所以HE =HA . 再利用△DGH ∽△DCA 即可求出HE , 从而求出HG解答:如图(1)由勾股定理可得DA =52422222=+=+CD AC由 AE 是DAB ∠的平分线可知21∠=∠由CD ⊥AB ,BE ⊥AB ,EH ⊥DC 可知四边形GEBC 为矩 形,∴HE ∥AB ,∴32∠=∠ ∴31∠=∠ 故EH =HA 设EH =HA =x则GH =x -2,DH =x -52 ∵HE ∥AC ∴△DGH ∽△DCA ∴AC HG DA DH =即2252-52-=x x 解得x =5-5 故HG =EH -EG =5-5-2=53-三、解答题1.(2016·山西)(本题12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心,逆时针方向旋转角α,使 BAC ∠=α,得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的状是 菱形 ;(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.考点:几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定,矩形的判定正方形的判定 分析:(1)利用旋转的性质和菱形的判定证明 (2)利用旋转的性质以及矩形的判定证明(3)利用平移行性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情 况当点C ''在边C C '上和点C ''在边C C '的延长线上时. (4)开放型题目,答对即可 解答:(1)菱形(2)证明:作C C AE '⊥于点E .…………………………………………(3分)由旋转得AC C A =',BAC AE C CAE ∠=='∠=∠∴α21.Θ四边形ABCD 是菱形,BC BA =∴,BAC BCA ∠=∠∴,BCA CAE ∠=∠∴,BC AE //∴,同理C D AE '//,C D BC '∴//,又C D BC '=Θ,∴ 四边形D C BC '是平行四边形,…………………(4分)又BC AE //Θ,︒=∠90CEA ,︒=∠-='∠∴90180CEA C BC ,∴四边形D C BC '是矩形…………………………………………(5分)(3)过点B 作AC BF ⊥,垂足为F ,BC BA =Θ,5102121=⨯===∴AC AF CF . 在Rt BCF ∆ 中,125132222=-=-=CF BC BF ,在ACE ∆和CBF ∆中,BCF CAE ∠=∠Θ, ︒=∠=∠90BFC CEA . ACE ∆∴∽CBF ∆,BC AC BF CB =∴,即131012=CE ,解得13120=CE , C A AC '=Θ,C C AE '⊥,132401312022=⨯=='∴CE C C .…………………(7分) 当四边形D C BC '''恰好为正方形时,分两种情况:①点C ''在边C C '上.1371131324013a =-=-'=C C .…………………(8分) ②点C ''在边C C '的延长线上,13409131324013a =+=+'=C C .……………(9分) 综上所述,a 的值为1371或13409. (4):答案不唯一.例:画出正确图形.……………………………………(10分)平移及构图方法:将ACD ∆沿着射线CA 方向平移,平移距离为AC 21的长度,得到D C A ''∆,连接DC B A ,'.………………………(11分)结论:四边形是平行四边形……(12分)2.(2016·山西)(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使FOE∆≌FCE∆,若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,OPQ∆是等腰三角形.考点:求抛物线的解析式,求点坐标,全等构成,等腰三角形的构成分析:(1)将A,D的坐标代入函数解析式,解二元一次方程即可求出函数表达式点B坐标:利用抛物线对称性,求出对称轴结合A点坐标即可求出B点坐标点E坐标:E为直线l和抛物线对称轴的交点,利用D点坐标求出l表达式,令其横坐标为3=x,即可求出点E的坐标(2)利用全等对应边相等,可知FO=FC,所以点F肯定在OC的垂直平分线上,所以点F的纵坐标为-4,带入抛物线表达式,即可求出横坐标(3)根据点P在y轴负半轴上运动,∴分两种情况讨论,再结合相似求解解答:(1)Θ抛物线8y2-+=bxax经过点A(-2,0),D(6,-8),⎩⎨⎧-=-+=--∴8863682a4bab解得⎪⎩⎪⎨⎧-==321ba…………………………………(1分)∴抛物线的函数表达式为83212--=xxy……………………………(2分)Θ()225321832122--=--=xxxy,∴抛物线的对称轴为直线3=x.又Θ抛物线与x轴交于A,B两点,点A的坐标为(-2,0).∴点B的坐标为(8,0)…………………(4分)设直线l的函数表达式为kxy=.Θ点D(6,-8)在直线l上,∴6k=-8,解得34-=k.∴直线l的函数表达式为xy34-=………………………………………………………(5分)Θ点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为4334-=⨯-,即点E 的坐标为(3,-4)……………………………………………………………………(6分) (2)抛物线上存在点F ,使FOE ∆≌FCE ∆.点F 的坐标为(4,173--)或(4,173-+).……………………………………(8分) (3)解法一:分两种情况:①当OQ OP =时,OPQ ∆是等腰三角形.Θ点E 的坐标为(3,-4),54322=+=∴OE ,过点E 作直线ME //PB ,交y 轴于点M ,交x 轴于点H ,则OQOEOP OM =,5==∴OE OM ……………………………………(9分)∴点M 的坐标为(0,-5).设直线ME 的表达式为51-=x k y ,∴4531-=-k ,解得311=k ,∴ME 的函数表达式为531-=x y ,令y =0,得0531=-x ,解得x =15,∴点H 的坐标为(15,0)…(10分)又ΘMH//PB ,∴OH OB OM OP =,即1585=-m ,∴38-=m ……………………………(11分) ②当QP QO =时,OPQ ∆是等腰三角形.当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8), ∴5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,又因为QP QO =,∴31∠=∠, ∴32∠=∠,∴CE//PB ………………………………………………………………(12分) 设直线CE 交x 轴于点N ,其函数表达式为82-=x k y ,∴4832-=-k ,解得342=k ,∴CE 的函数表达式为834-=x y ,令y =0,得0834=-x ,∴6=x ,∴点N 的坐标为(6,0)………………………………………………………………(13分) ΘCN//PB ,∴ON OB OC OP =,∴688=-m ,解得332-=m ………………(14分) 综上所述,当m 的值为38-或332-时,OPQ ∆是等腰三角形. 解法二:当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8),∴点E 的坐标为 (3,-4),54322=+=∴OE ,5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,设抛物线的对称轴交直线PB 于点M ,交x 轴于点H .分两种情况: ① 当QP QO =时,OPQ ∆是等腰三角形.∴31∠=∠,∴32∠=∠,∴CE //PB ………………………………………(9分) 又ΘHM //y 轴,∴四边形PMEC 是平行四边形,∴m CP EM --==8, ∴5384)8(4=-=--=--+=+=BH m m EM HE HM ,ΘHM//y 轴,∴BHM ∆∽BOP ∆,∴BOBHOP HM =……………………………………………………(10分) ∴332854-=∴=---m m m ………………………………………………………(11分)②当OQ OP =时,OPQ ∆是等腰三角形.y EH //Θ轴,∴OPQ ∆∽EMQ ∆,∴OPEMOQ EQ =,∴EM EQ =……………(12分) m m OP OE OQ OE EQ EM +=--=-=-==∴5)(5,)5(4m HM +-=∴,y EH //Θ轴,∴BHM ∆∽BOP ∆,∴BOBH OPHM =…………………………………………………(13分)∴38851-=∴=---m mm ………………(14分)∴当m 的值为38-或332-时,OPQ ∆是等腰三角形.3.(2016·湖北咸宁)(本题满分7分)证明命题“角的一部分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程. 下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC ,点P 在OC 上._____________________________________.求证:______________________. 请你补全已知和求证,并写出证明过程.。
2016年中考数学试题分类解析汇编(第一辑)(29份)2

2016年全国各地中考数学试题分类解析汇编(第一辑)第21章一元二次方程一.选择题(共20小题)1.(2016•扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定2.(2016•台湾)如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?()A.B.C.2﹣D.4﹣23.(2016•台州)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=454.(2016•随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.85.(2016•兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0 6.(2016•衡阳)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x ,根据题意列方程得( )A .10(1+x )2=16.9B .10(1+2x )=16.9C .10(1﹣x )2=16.9 D .10(1﹣2x )=16.97.(2016•枣庄)已知关于x 的方程x 2+3x+a=0有一个根为﹣2,则另一个根为( ) A .5 B .﹣1 C .2 D .﹣58.(2016•雅安)已知关于x 的一元二次方程x 2+mx ﹣8=0的一个实数根为2,则另一实数根及m 的值分别为( )A .4,﹣2B .﹣4,﹣2C .4,2D .﹣4,29.(2016•江西)设α、β是一元二次方程x 2+2x ﹣1=0的两个根,则αβ的值是( ) A .2 B .1 C .﹣2 D .﹣110.(2016•威海)已知x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,且x 1+x 2=﹣2,x 1•x 2=1,则b a的值是( )A .B .﹣C .4D .﹣111.(2016•凉山州)已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( )A .B .C .D .12.(2016•贵港)若关于x 的一元二次方程x 2﹣3x+p=0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2﹣ab+b 2=18,则+的值是( )A .3B .﹣3C .5D .﹣513.(2016•烟台)若x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两个根,则x 12﹣x 1+x 2的值为( )A .﹣1B .0C .2D .314.(2016•广州)定义运算:a ⋆b=a (1﹣b ).若a ,b 是方程x 2﹣x+m=0(m <0)的两根,则b ⋆b ﹣a ⋆a 的值为( ) A .0 B .1 C .2 D .与m 有关15.(2016•玉林)关于x 的一元二次方程:x 2﹣4x ﹣m 2=0有两个实数根x 1、x 2,则m 2()=( )A .B .C .4D .﹣416.(2016•黄冈)若方程3x 2﹣4x ﹣4=0的两个实数根分别为x 1,x 2,则x 1+x 2=( )A .﹣4B .3C .D .17.(2016•金华)一元二次方程x 2﹣3x ﹣2=0的两根为x 1,x 2,则下列结论正确的是( )A .x 1=﹣1,x 2=2B .x 1=1,x 2=﹣2C .x 1+x 2=3D .x 1x 2=218.(2016•自贡)已知关于x 的一元二次方程x 2+2x ﹣(m ﹣2)=0有实数根,则m 的取值范围是( )A .m >1B .m <1C .m ≥1D .m ≤119.(2016•莆田)关于x 的一元二次方程x 2+ax ﹣1=0的根的情况是( )A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根20.(2016•衡阳)关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥42016年全国各地中考数学试题分类解析汇编(第一辑)第21章一元二次方程参考答案与试题解析一.选择题(共20小题)1.(2016•扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.2.(2016•台湾)如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?()A.B.C.2﹣D.4﹣2【分析】设出丁的一股为a,表示出其它,再用面积建立方程即可.【解答】解:设丁的一股长为a,且a<2,∵甲面积+乙面积=丙面积+丁面积,∴2a+2a=×22+×a2,∴4a=2+a2,∴a2﹣8a+4=0,∴a===4±2,∵4+2>2,不合题意舍,4﹣2<2,合题意,∴a=4﹣2.故选D.【点评】此题是一元二次方程的应用题,主要考查了一元二次方程的解,解本题的关键是列出一元二次方程.3.(2016•台州)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x﹣1)场,再根据题意列出方程为x(x﹣1)=45.【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选A.【点评】此题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.4.(2016•随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8【分析】设这两年观赏人数年均增长率为x,根据“2014年约为20万人次,2016年约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选C.【点评】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.5.(2016•兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式方程可列出.【解答】解:设原正方形的边长为xm,依题意有(x﹣1)(x﹣2)=18,故选C.【点评】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.6.(2016•衡阳)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9 【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.(2016•枣庄)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣5【分析】根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【解答】解:∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m,∴﹣2+m=,解得,m=﹣1,故选B.【点评】本题考查根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.8.(2016•雅安)已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,2【分析】根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.【解答】解:由根与系数的关系式得:2x2=﹣8,2+x2=﹣m=﹣2,解得:x2=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D【点评】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.9.(2016•江西)设α、β是一元二次方程x 2+2x ﹣1=0的两个根,则αβ的值是( ) A .2 B .1 C .﹣2 D .﹣1【分析】根据α、β是一元二次方程x 2+2x ﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【解答】解:∵α、β是一元二次方程x 2+2x ﹣1=0的两个根,∴αβ=,故选D .【点评】本题考查根与系数的关系,解题的关键是明确两根之积等于常数项与二次项系数的比值.10.(2016•威海)已知x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,且x 1+x 2=﹣2,x 1•x 2=1,则b a的值是( )A .B .﹣C .4D .﹣1【分析】根据根与系数的关系和已知x 1+x 2和x 1•x 2的值,可求a 、b 的值,再代入求值即可.【解答】解:∵x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根, ∴x 1+x 2=﹣a=﹣2,x 1•x 2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故选:A .【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.(2016•凉山州)已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( )A .B .C .D .【分析】由x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,结合根与系数的关系可得出x 1+x 2=﹣,x 1•x 2=﹣2,将其代入x 1﹣x 1x 2+x 2中即可算出结果.【解答】解:∵x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,∴x 1+x 2=﹣=﹣,x 1•x 2==﹣2,∴x 1﹣x 1x 2+x 2=﹣﹣(﹣2)=.故选D .【点评】本题考查了根与系数的关系,解题的关键是得出x1+x2=﹣,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.12.(2016•贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5【分析】根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+变形成﹣2,代入数据即可得出结论.【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+===﹣2=﹣2=﹣5.故选D.【点评】本题考查了根与系数的关系、解一元一次方程以及完全平方公式的应用,解题的关键是求出p=﹣3.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.13.(2016•烟台)若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.3【分析】由根与系数的关系得出“x1+x2=2,x1•x2=﹣1”,将代数式x12﹣x1+x2变形为x12﹣2x1﹣1+x1+1+x2,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,∴x1+x2=﹣=2,x1•x2==﹣1.x12﹣x1+x2=x12﹣2x1﹣1+x1+1+x2=1+x1+x2=1+2=3.故选D.【点评】本题考查了根与系数的关系,解题的关键是利用根与系数的关系找出两根之积与两根之和.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系,找出两根之和与两根之积是关键.14.(2016•广州)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b⋆b﹣a⋆a=b (1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,ab=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.15.(2016•玉林)关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A.B.C.4 D.﹣4【分析】根据所给一元二次方程,写出韦达定理,代入所求式子化简.【解答】解:∵x2﹣4x﹣m2=0有两个实数根x1、x2,∴,∴则m2()===﹣4.故答案选D.【点评】本题主要考查一元二次方程根与系数的关系,属基础题,熟练掌握韦达定理是解题关键.16.(2016•黄冈)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.【分析】由方程的各系数结合根与系数的关系可得出“x1+x2=,x1•x2=﹣”,由此即可得出结论.【解答】解:∵方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,∴x1+x2=﹣=,x1•x2==﹣.故选D.【点评】本题考查了根与系数的关系,解题的关键是找出“x1+x2=﹣=,x1•x2==﹣”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.17.(2016•金华)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1•x2==﹣2”,再结合四个选项即可得出结论.【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2==﹣2,∴C选项正确.故选C.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.18.(2016•自贡)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m 的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤1【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m的取值范围.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【点评】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.19.(2016•莆田)关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】先计算判别式的值,然后非负数的性质和判别式的意义判断方程根的情况.【解答】解:∵△=a2+4>0,∴,方程有两个不相等的两个实数根.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.20.(2016•衡阳)关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥4【分析】根据判别式的意义得到△=42﹣4k=0,然后解一次方程即可.【解答】解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42﹣4k=0,解得:k=4,故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.。
2016年中考数学试题分类解析汇编(第一辑)(29份)_3

2016年全国各地中考数学试题分类解析汇编(第一辑)第13章轴对称一.选择题(共20小题)1.(2016•台湾)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.2.(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)3.(2016•巴中)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.4.(2016•深圳)下列图形中,是轴对称图形的是()A.B.C.D.5.(2016•西宁)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.6.(2016•重庆)下列交通指示标识中,不是轴对称图形的是()A.B.C.D.7.(2016•桂林)下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形8.(2016•泸州)下列图形中不是轴对称图形的是()A.B.C.D.9.(2016•菏泽)以下微信图标不是轴对称图形的是()A .B .C .D .10.(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .11.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A .1条B .2条C .3条D .4条12.(2016•重庆)下列图形中是轴对称图形的是( )A .B .C .D .13.(2016•邵阳)下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .14.(2016•漳州)下列图案属于轴对称图形的是( )A .B .C .D .15.(2016•舟山)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是( )A .B .C .D .16.(2016•南充)如图,直线MN 是四边形AMBN 的对称轴,点P 时直线MN 上的点,下列判断错误的是( )A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM17.(2016•河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上18.(2016•内江)已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定19.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.320.(2016•邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC2016年全国各地中考数学试题分类解析汇编(第一辑)第13章轴对称参考答案与试题解析一.选择题(共20小题)1.(2016•台湾)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.【分析】直接利用轴对称图形的性质分析得出符合题意的答案.【解答】解:A、正三角形有3条对称轴,故此选项错误;B、正方形有4条对称轴,故此选项正确;C、正六边形有6条对称轴,故此选项错误;D、正八边形有8条对称轴,故此选项错误.故选:B.【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.2.(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.(2016•巴中)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是,故选D.【点评】此题考查了轴对称图形,熟练掌握轴对称图形的定义是解本题的关键.4.(2016•深圳)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(2016•西宁)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:四个汉字中只有“善”字可以看作轴对称图形,故选D.【点评】考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.6.(2016•重庆)下列交通指示标识中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.(2016•桂林)下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形【分析】根据轴对称图形的概念,结合选项求解即可.【解答】解:A、直角三角形中只有等腰直角三角形为轴对称图形,本选项错误;B、平行四边形不是轴对称图形,本选项错误;C、直角梯形不是轴对称图形,本选项错误;D、正方形是轴对称图形,本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(2016•泸州)下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9.(2016•菏泽)以下微信图标不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选D.【点评】本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.10.(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.12.(2016•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,对称轴有两条,符合题意.故选:D.【点评】此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.14.(2016•漳州)下列图案属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故B不是轴对称图形;D、不能找出对称轴,故B不是轴对称图形.故选A.【点评】本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.15.(2016•舟山)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.16.(2016•南充)如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.【点评】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.17.(2016•河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上【分析】如图在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON 即可推出△PMN是等边三角形,由此即可对称结论.【解答】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MP N=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△POM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选D.【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的性质等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型.18.(2016•内江)已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定【分析】作出图形,根据等边三角形的性质求出高AH的长,再根据三角形的面积公式求出点P到三边的距离之和等于高线的长度,从而得解.【解答】解:如图,∵等边三角形的边长为3,∴高线AH=3×=,S△AB C=B C•AH=AB•PD+BC•PE+AC•PF,∴×3•AH=×3•PD+×3•PE+×3•PF,∴PD+PE+PF=AH=,即点P到三角形三边距离之和为.故选:B.【点评】本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.19.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.【点评】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.20.(2016•邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC >∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.【点评】本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.。
2016年全国各地中考数学试题分类解析汇编——二次根式(解析版)

二次根式1.(2016•武汉)若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤2【解析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:x﹣2≥0,解得x≥2.故选:C.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.2.(2016•永州)下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣1【解析】利用同底数的幂的乘法法则、幂的乘方、合并同类项法则,以及平方差公式即可判断.【解答】解:A、﹣a•a3=﹣a4,故选项错误;B、﹣(a2)2=﹣a4,选项错误;C、x﹣x=x,选项错误;D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.故选D.【点评】本题考查了同底数的幂的乘法法则、幂的乘方、合并同类项法则,以及平方差公式,理解运算性质以及公式是关键.3.(2016•咸宁)下列运算正确的是()A.﹣=B.=﹣3 C.a•a2=a2D.(2a3)2=4a6【解析】直接利用二次根式加减运算法则以及积的乘方运算法则和幂的乘方运算法则、同底数幂的乘法运算法则、二次根式的性质分别化简判断即可.【解答】解:A、﹣无法计算,故此选项错误;B、=3,故此选项错误;C、a•a2=a3,故此选项错误;D、(2a3)2=4a6,正确.故选:D.【点评】此题主要考查了二次根式加减运算以及积的乘方运算和幂的乘方运算、同底数幂的乘法运算、二次根式的性质等知识,正确掌握相关运算法则是解题关键.4.(2016•河南)下列计算正确的是()A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a5【解析】分别利用有理数的乘方运算法则以及积的乘方运算法则、二次根式的加减运算法则化简求出答案.【解答】解:A、﹣=2﹣=,故此选项正确;B、(﹣3)2=9,故此选项错误;C、3a4﹣2a2,无法计算,故此选项错误;D、(﹣a3)2=a6,故此选项错误;故选:A.【点评】此题主要考查了有理数的乘方运算以及积的乘方运算、二次根式的加减运算等知识,正确化简各式是解题关键.5.(2016•桂林)计算3﹣2的结果是()A.B.2C.3D.6【解析】直接利用二次根式的加减运算法则求出答案.【解答】解:原式=(3﹣2)=.故选:A.【点评】此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.6.(2016•广州)下列计算正确的是()A.B.xy2÷C.2D.(xy3)2=x2y6【解析】分别利用二次根式加减运算法则以及分式除法运算法则和积的乘方运算法则化简判断即可.【解答】解:A、无法化简,故此选项错误;B、xy2÷=2xy3,故此选项错误;C、2+3,无法计算,故此选项错误;D、(xy3)2=x2y6,正确.故选:D.【点评】此题主要考查了二次根式加减运算以及分式除法运算和积的乘方运算,正确掌握相关运算法则是解题关键.7.(2016•凉山州)下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b2【解析】直接利用二次根式加减运算法则以及完全平方公式和积的乘方运算法则分别化简求出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、(﹣2a2b)3=﹣8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.【点评】此题主要考查了二次根式加减运算以及完全平方公式和积的乘方运算等知识,正确把握相关运算法则是解题关键.8.(2016•巴中)下列二次根式中,与是同类二次根式的是()A.B.C.D.【解析】直接利用同类二次根式的定义分别化简二次根式求出答案.【解答】解:A、=3,与不是同类二次根式,故此选项错误;B、=,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、==,与不是同类二次根式,故此选项错误;故选:B.【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.9.(2016•长沙)下列计算正确的是()A.×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a6【解析】直接利用二次根式乘法运算法则以及结合同底数幂的乘除运算法则分别化简求出答案.【解答】解:A、×=,正确;B、x8÷x2=x6,故此选项错误;C、(2a)3=8a3,故此选项错误;D、3a5•2a3=6a8,故此选项错误;故选:A.【点评】此题主要考查了二次根式乘法运算以及结合同底数幂的乘除运算、积的乘方运算等知识,正确掌握相关性质是解题关键.10.(2016•临夏州)下列根式中是最简二次根式的是()A.B.C.D.【解析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,故此选项错误;D、=2,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.11.(2016•自贡)下列根式中,不是最简二次根式的是()A.B.C.D.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:因为==2,因此不是最简二次根式.故选B.【点评】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.12.(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【解析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质以及同底数幂的乘法运算和分式的混合运算等知识,正确掌握相关运算法则是解题关键.13.(2016•南充)下列计算正确的是()A.=2B.=C.=x D.=x【解析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.14.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【解析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.15.(2016•荆门)要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1【解析】直接利用二次根式有意义的条件进而得出x﹣1≥0,求出答案.【解答】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确得出x﹣1的取值范围是解题关键.16.(2016•重庆)若二次根式有意义,则a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a≠2【解析】根据负数没有平方根列出关于a的不等式,求出不等式的解集确定出a的范围即可.【解答】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选A【点评】此题考查了二次根式有意义的条件,二次根式性质为:二次根式中的被开方数必须是非负数,否则二次根式无意义.17.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【解析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零.18.(2016•宁波)使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【解析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.。
2016年中考数学 专题 实数运算整式因式分解二次根式试卷答案

专题01 实数的有关概念及运算学校:___________姓名:___________班级:___________1.【黑龙江省黑河市、齐齐哈尔市、大兴安岭2015年考数学试卷】下列各式正确的是()A.-22=4 B.20=0 C.4=±2 D.|-2|=2【答案】D.【解析】考点:1.算术平方根;2.有理数的乘方;3.实数的性质;4.零指数幂.2.【吉林长春2015年中考数学试题】在长春市“暖房子工程”实施过程中,某工程队做了面积为632000的外墙保暖,632000这个数用科学记数法表示为()(A)40.63210⨯(D)66.3210⨯⨯(C)663.210⨯(B)56.3210【答案】B【解析】试题分析:由科学记数法的表示形式为a³10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是10.正数;当原数的绝对值<1时,n是负数.因此632000=6.32³5故选B考点:科学记数法3.【2015届浙江省宁波市江北区中考模拟】下列四个数中,值最小的数是().A.tan45° B. C.π D.【答案】A.【解析】考点:1.实数比较大小;2.特殊角的三角函数值.4.【2015届河北省沧州市东光二中中考二模】按一定的规律排列的一列数依次为:21,31,101,151,261,351…,按此规律排列下去,这列数中的第7个数是( ) A .451 B .401 C .461 D .501【答案】D . 【解析】试题分析:通过观察和分析数据可知:分子是定值1,分母的变化规律是:奇数项的分母为:n 2+1,偶数项的分母为:n 2﹣1.据此规律判断即可. 分子的规律:分子是常数1;分母的规律:第1个数的分母为:12+1=2, 第2个数的分母为:22﹣1=3, 第3个数的分母为:32+1=10, 第4个数的分母为:42﹣1=15, 第5个数的分母为:52+1=26, 第6个数的分母为:62﹣1=35, 第7个数的分母为:72+1=50, …第奇数项的分母为:n 2+1, 第偶数项的分母为:n 2﹣1, 所以第7个数是501. 故选D .考点:规律型:数字的变化类.5.【黑龙江绥化2015年中考数学试题】计算:=⎪⎭⎫⎝⎛2-21-4-3_________.【答案】【解析】214()442--==考点:实数的计算.6.【辽宁辽阳2015的整数部分是 . 【答案】3. 【解析】考点:估算无理数的大小.7.【2015届山东省青岛市李沧区中考一模】计算:(﹣1)0+|﹣4|= .【答案】5﹣23. 【解析】试题分析:原式=1+4﹣23=5﹣23. 考点:1.实数的运算;2.零指数幂.8.【2015届浙江省金华市外国语学校联考中考模拟】在数学中,为了简便,记.1!=1,2!=2³1,3!=3³2³1,…,n!=n ³(n ﹣1)³(n ﹣2)³…³3³2³1.则20102011112011!2010!k k k k ==-+=∑∑ . 【答案】0. 【解析】 试题解析∵1123(1)nk k n n ==++++-+∑ ,n!=n ³(n ﹣1)³(n ﹣2)³…³3³2³1,∴20102011112011!2010!k k k k ==-+∑∑ =(1+2+3…+2008+2009+2010)﹣(1+2+3+…+2009+2010+2011)+=1+2+3…+2008+2009+2010﹣1﹣2﹣3﹣…﹣2009﹣2010﹣2011+2011=0. 考点:有理数的混合运算.9.【辽宁大连2015年中考数学试题】计算:()()21241313⎪⎭⎫⎝⎛-+-+【答案】26+1. 【解析】考点:实数的计算.10.【2015届山东省枣庄市滕州市鲍沟中学中考模拟】计算:-21--sin 602⎛⎫+︒ ⎪⎝⎭.【答案】23+4. 【解析】试题分析:原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果. 试题解析:解:原式=23﹣3+4﹣23=23+4. 考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题02 整式与分解因式学校:___________姓名:___________班级:___________1.【湖南株洲2015年考数学试卷】下列等式中,正确的是( ) A 、3a-2a=1 B 、a 2²a 3=a 5C 、(-2a 3)2=-4a 6D 、(a-b)2=a 2-b 2【答案】B 【解析】考点:整式的计算.2.【辽宁辽阳2015年中考数学试题】下列计算正确的是( )A .236x x x ⋅=B .55102x x x += C .33(2)8x x -= D .321(2)(6)3x x x -÷-=【答案】D . 【解析】试题分析:A .x 2²x 3=x 5,故错误;B .x 5+x 5=2x 5,故错误;C .(-2x)3=-8x 3,故错误;D .(-2x 3)÷(-6x 2)=31x ,正确; 故选D .考点:1.整式的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.3.【2015届浙江省宁波市江北区中考模拟】要说明“若两个单项式的次数相同,则它们是同类项”是假命题,可以举的反例是( ).A .2ab 和3abB .2a 2b 和3ab 2C .2ab 和2a 2b 2D .2a 3和﹣2a 3【答案】B . 【解析】试题分析:先明确命题与定理及同类项的概念:判断一件事情的语句叫做命题.许多命题都是由题设和结论两部分组成,有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.同类项是所含字母相同,并且相同字母的次数相同的项是同类项,本题主要看举出的两项满足两个单项式的次数相同,但它们不是同类项.故选B .考点:1.命题与定理;2.同类项概念.4.【2015届山东省枣庄市滕州市鲍沟中学中考模拟】下列各式能用完全平方公式进行分解因式的是( ). A .x 2+1 B .x 2+2x ﹣1 C .x 2+x+1 D .x 2+4x+4 【答案】D . 【解析】考点:因式分解-运用公式法.5.【湖北衡阳2015年中考数学试题】已知a+b=3,a-b=-1,则a 2-b 2的值为 . 【答案】 -3 【解析】试题分析: a 2-b 2=(a+b)(a-b) =3³(﹣1)=﹣3. 考点:1.因式分解;2.整体代入思想. 6.【黑龙江大庆2015年中考数学试题】若若52=na ,162=nb ,则()n ab = .【答案】± 【解析】试题分析:∵52=na,162=n b ,∴2280n n a b ⋅=,∴2()80n ab =,∴()n ab =±故答案为:± 考点:幂的乘方与积的乘方.7.【2014-2015学年山东省潍坊市诸城市实验中学中考三模】分解因式:2x 2﹣12x+32= . 【答案】2(x ﹣8)(x+2). 【解析】试题分析:原式提取2,再利用十字相乘法分解,原式=2(x 2﹣6x+16)=2(x ﹣8)(x+2). 故答案为:2(x ﹣8)(x+2).考点:提公因式法与公式法的综合运用.8.【2015届河北省石家庄市栾城县中考一模】已知(x-1)2=ax 2+bx+c ,则a+b+c 的值为 . 【答案】0. 【解析】试题分析:将x=1代入得:(1-1)2=a+b+c=0, 则a+b+c=0.考点:完全平方公式.9.【湖南长沙2015年中考数学试题】先化简,再求值:(x+y)(x -y)-x(x+y)+2xy ,其中x=()3p-,y=2.【答案】xy -y 2;-2 【解析】考点:代数式的化简求值.10.【2015届山西省忻州六中中考模拟三】(1)计算:(﹣2)﹣1﹣|﹣|+(﹣1)0+cos45°.(2)已知m 2﹣5m ﹣14=0,求(m ﹣1)(2m ﹣1)﹣(m+1)2+1的值. 【答案】(1)2231-;(2)15. 【解析】试题分析:(1)先利用负指数幂法则、绝对值的代数意义化简、零指数幂法则、特殊角的三角函数值计算,然后按顺序计算即可得到结果;(2)先利用多项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.试题解析:(1)原式=﹣21﹣22+1+22=2231-; (2)(m ﹣1)(2m ﹣1)﹣(m+1)2+1=2m 2﹣m ﹣2m +1﹣(m 2+2m+1)+1=2m 2﹣m ﹣2m+1﹣m 2﹣2m ﹣1+1=m 2﹣5m+1, 当m 2﹣5m=14时,原式=(m 2﹣5m )+1=14+1=15. 考点:1.整式的混合运算—化简求值;2.实数的运算.专题04 二次根式学校:___________姓名:___________班级:___________1.【湖北武汉2015年考数学试卷】若代数式2-x 在实数范围内有意义,则x 的取值范为是( ) A .x ≥-2 B .x >-2 C .x ≥2 D .x ≤2【答案】C【解析】考点:二次根式的性质.2.【湖北荆门2015年中考数学试题】当12a <<10a -=的值是( ) A .1- B .1 C .23a - D .32a - 【答案】B . 【解析】试题分析:∵1<a<2,∴a-2<0,1-a<0,∴()22-a +|1-a|=2-a +a-1=1.故选B .考点:二次根式的性质与化简.3.【2015届湖南省邵阳市邵阳县中考二模】下列二次根式中,最简二次根式是( )A 【答案】A. 【解析】试题解析:6是最简二次根式,A 正确;8=22,B 不正确;12=23,C 不正确;2221=,D 不正确, 故选A .考点:最简二次根式.4.【2015届四川省成都市外国语学校中考直升模拟】已知0<a <b ,x ,y 的大小关系是( )A .x >yB .x=yC .x <yD .与a 、b 的取值有关 【答案】C . 【解析】考点:二次根式的化简求值.5.【黑龙江哈尔滨2015-=【解析】试题分析:原式-3考点:二次根式的计算.6.【辽宁葫芦岛2015年中考数学试题】有意义,则实数x 的取值范围是 . 【答案】x ≥0且x ≠1. 【解析】有意义,∴x ≥0,x ﹣1≠0,∴实数x 的取值范围是:x ≥0且x ≠1.故答案为:x ≥0且x ≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件.7.【2015届湖北省黄冈市启黄中学中考模拟】计算32278+-+的结果为 . 【答案】2+43.【解析】:原式=22+33﹣2+3=2+43. 考点:二次根式的加减法.8.【2015= . 【答案】23-2. 【解析】考点:二次根式的混合运算.9.【辽宁大连2015年中考数学试题】计算:()()21241313⎪⎭⎫⎝⎛-+-+【答案】26+1. 【解析】试题分析:先计算平方差、二次根式化简、0指数幂,然后按顺序计算即可; 试题解析:()()21241313⎪⎭⎫⎝⎛-+-+=()1621322-+-=3-1+26-1=26+1.考点:1.实数的计算;2.二次根式的化简.10.【2015-21--sin 602⎛⎫+︒ ⎪⎝⎭.【答案】23+4. 【解析】考点:1.实数的运算;2.负整数指数幂;3.特殊角的三角函数值.。
2016年中考数学专题复习-第六讲-二次根式(含答案)

2016年中考数学专题复习第六讲二次根式【基础知识回顾】一、二次根式式子()叫做二次根式名师提醒:①二次根式必须注意这一条件,其结果也是一个非负数即:_ ,②二次根式(a≥o)中,a可以表示数,也可以是一切符合条件的代数式。
二、二次根式的几个重要性质:①()2= (a≥0);②= =;③= (a≥0 ≥0);④= (a≥0, b>0)。
名师提醒:二次根式的性质注意其逆用:如比较2和3的大小,可逆用()2(a≥0)将根号外的正数移到根号内再比较被开方数的大小。
三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是,因式是整式,2、被开方数不含的因数或因式。
四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将的二次根式进行合并,合并的方法与合并同类项法则相同2、二次根式的乘除:乘除法则:(a≥0 ≥0)除法法则:=(a≥0,b>0)3、二次根式的混合运算顺序:先算再算最后算。
名师提醒:①、二次根式除法运算过程一般情况下是用将分母中的根号化去(分母有理化)这一方法进行:如:= = ;②、二次根式混合运算过程要特别注意两个乘法公式的运用;③、二次根式运算的结果一定要化成。
【重点考点例析】考点一:二次根式有意义的条件例1 (2015•昆明)若二次根式有意义,则x的取值范围是.思路分析:根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.解:解:根据二次根式有意义的条件,1≥0,∴x≥1.故答案为:x≥1.点评:此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.跟踪训练1.(2015•鄂州)若使二次根式有意义,则x的取值范围是.考点二:最简二次根式例2 (2015•扬州)下列二次根式中的最简二次根式是()A.B.C.D.思路分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.跟踪训练2.(2015•锦州)下列二次根式中属于最简二次根式的是()A.B.C.D.考点三:二次根式的混合运算例3 (2015•淄博)计算:.思路分析:首先应用乘法分配律,可得=;然后根据二次根式的混合运算顺序,先计算乘法,再计算加法,求出算式的值是多少即可.解:==1+9=10。
2016年中考数学试题分类解析汇编(第一辑)(29份)

2016年全国各地中考数学试题分类解析汇编(第一辑)第10章数据的收集、整理与描述一.选择题(共10小题)1.(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨A.18户B.20户C.22户D.24户2.(2016•泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学了整)A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少3.(2016•雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,404.(2016•丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少5.(2016•温州)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时6.(2016•重庆)下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查7.(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(2016•盐城)下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查9.(2016•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查10.(2016•山西)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高2016年全国各地中考数学试题分类解析汇编(第一辑)第10章数据的收集、整理与描述参考答案与试题解析一.选择题(共10小题)1.(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以A.18户B.20户C.22户D.24户【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.【点评】本题主要考查了扇形统计图,解题的关键是能识图,理解各部分百分率同总数之间的关系.2.(2016•泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学整)A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少【分析】通过计算得出选项A、B、C正确,选项D错误,即可得出结论.【解答】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D的圆心角为×360°=90°,∵×360°=36°,360°(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.【点评】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.3.(2016•雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,40【分析】先求出打羽毛球学生的比例,然后用总人数×跑步和打羽毛球学生的比例求出人数.【解答】解:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.【点评】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.4.(2016•丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选;D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.5.(2016•温州)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答.6.(2016•重庆)下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查【分析】利用普查与抽样调查的定义判断即可.【解答】解:A、对重庆市居民日平均用水量的调查,抽样调查;B、对一批LED节能灯使用寿命的调查,抽样调查;C、对重庆新闻频道“天天630”栏目收视率的调查,抽样调查;D、对某校九年级(1)班同学的身高情况的调查,全面调查(普查),则最适合采用全面调查(普查)的是对某校九年级(1)班同学的身高情况的调查.故选D【点评】此题考查了全面调查与抽样调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.【点评】此题考查了频数与频率,弄清题中的数据是解本题的关键.8.(2016•盐城)下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、对我国初中学生视力状况的调查,人数太多,调查的工作量大,适合抽样调查,故此选项错误;B、对量子科学通信卫星上某种零部件的调查,关系到量子科学通信卫星的运行安全,必须全面调查,故此选项正确;C、对一批节能灯管使用寿命的调查具有破坏性,适合抽样调查,故此选项错误;D、对“最强大脑”节目收视率的调查,人数较多,不便测量,应当采用抽样调查,故本选项错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.(2016•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查【分析】逐项分析四个选项中们案例最适合的调查方法,即可得出结论.【解答】解:A、对重庆市辖区内长江流域水质情况的调查,应采用抽样调查;B、对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查;C、对一个社区每天丢弃塑料袋数量的调查,应采用抽样调查;D、对重庆电视台“天天630”栏目收视率的调查,应采用抽样调查.故选B.【点评】本题考查了全面调查与抽样调查,解题的关键是逐项分析四个选项应用的调查方法.本题属于基础题,难度不大,解决该题型题目时,联系实际选择调查方法是关键.10.(2016•山西)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查,故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式
一、 选择题
1. (2016·云南)下列计算,正确的是( )
A .(﹣2)﹣2=4
B .
C .46÷
(﹣2)6=64 D .
【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简. 【分析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.
【解答】解:A 、(﹣2)﹣2=,所以A 错误,
B 、
=2,所以B 错误,
C 、46
÷(﹣2)6
=212
÷26
=26
=64,所以C 正确;
D 、
﹣
=2
﹣
=
,所以D 错误,
故选C
【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键. 2.(2016·广东梅州)二次根式x -2有意义,则x 的取值范围是 A .2>x B .2<x C .2≥x D .2≤x 答案:D
考点:二次根式的意义。
解析:由二次根式的意义,得:20x -≥,解得:2≤x 2. (2016年浙江省宁波市)使二次根式有意义的x 的取值范围是( )
A .x ≠1
B .x >1
C .x ≤1
D .x ≥1 【考点】二次根式有意义的条件.
【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可. 【解答】解:由题意得,x ﹣1≥0, 解得x ≥1, 故选:D .
【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
3.(2016·四川巴中)下列二次根式中,与是同类二次根式的是( )
A .
B .
C .
D .
【考点】同类二次根式.
【分析】直接利用同类二次根式的定义分别化简二次根式求出答案.
【解答】解:A 、=3
,与
不是同类二次根式,故此选项错误;
B 、=,与,是同类二次根式,故此选项正确;
C 、=2,与不是同类二次根式,故此选项错误;
D 、
==
,与
不是同类二次根式,故此选项错误;
故选:B .
4.
(2016·江苏泰州)4的平方根是( )
A .±2
B .﹣2
C .2
D .
【考点】平方根.
【分析】直接利用平方根的定义分析得出答案. 【解答】解:4的平方根是:± =±2.
故选:A .
二、 填空题
1. (2016·湖北咸宁) 若代数式1 x 在实数范围内有意义,则x 的取值范围是
____________.
【考点】二次根式有意义的条件.
【分析】根据二次根式的性质,被开方数大于或等于0,即可求解. 【解答】根据二次根式有意义的条件,得:x -1≥0,
解得:x ≥1. 故答案为:x ≥1.
【点评】本题考查了二次根式有意义的条件. 判断二次根式有意义的条件:(1)二次根式的概念.形如a (a ≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根
式中的被开方数是非负数.(3)二次根式具有非负性.a(a≥0)是一个非负数.学习要求:能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围,并能利用二次根式的非负性解决相关问题.
2. (2016·四川资阳)若代数式有意义,则x的取值范围是x≧2.
【考点】二次根式有意义的条件.
【分析】根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可.
【解答】解:∵代数式有意义,
∴x﹣2≥0,
∴x≥2.
故答案为x≥2.
3. (2016·四川自贡)若代数式有意义,则x的取值范围是x≥1.
【考点】二次根式有意义的条件;分式有意义的条件.
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.
【解答】解:由题意得,x﹣1≥0且x≠0,
解得x≥1且x≠0,
所以,x≥1.
故答案为:x≥1.
【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
4.(2016湖北孝感,11,3分)若代数式有意义,则x的取值范围是
x≥2.
【考点】二次根式有意义的条件.
【专题】计算题.
【分析】根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可.
【解答】解:∵代数式有意义,
∴x﹣2≥0,
∴x≥2.
故答案为x≥2.
【点评】本题考查了二次根式有意义的条件:式子有意义的条件为a≥0.
5.(2016·x的取值范围是.
[难易]容易
[考点]根式有意义
[解析]有意义题型主要有根式,分式有意义本题仅考察根式有意义,较简单,满足被开方式非负即可.即9-x³0,x£9
[参考答案]x£9
6.(2016·广西贺州)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0.
【考点】二次根式有意义的条件;分式有意义的条件.
【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.
【解答】解:根据题意,得
,
解得x≥﹣1且x≠0.
【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.
7.(2016年浙江省衢州市)二次根式中字母x的取值范围是x≥3.
【考点】二次根式有意义的条件.
【分析】由二次根式有意义的条件得出不等式,解不等式即可.
【解答】解:当x﹣3≥0时,二次根式有意义,
则x≥3;
故答案为:x≥3.
8.(2016·上海)方程=2的解是x=5.
【考点】无理方程.
【分析】利用两边平方的方法解出方程,检验即可.
【解答】解:方程两边平方得,x﹣1=4,
解得,x=5,
把x=5代入方程,左边=2,右边=2,
左边=右边,
则x=5是原方程的解,
故答案为:x=5.
【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.
9.(2016山东省聊城市,3分)计算:=12.
【考点】二次根式的乘除法.
【分析】直接利用二次根式乘除运算法则化简求出答案.
【解答】解:
=3×÷
=3
=12.
故答案为:12.
【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.
10.(2016.山东省青岛市,3分)计算:=2.
【考点】二次根式的混合运算.
【分析】首先化简二次根式,进而求出答案.
【解答】解:原式===2.
故答案为:2.
11.(2016.山东省威海市,3分)化简:=.
【考点】二次根式的加减法.
【分析】先将二次根式化为最简,然后合并同类二次根式即可.
【解答】解:原式=3﹣2=.
故答案为:.
12.(2016·江苏连云港)化简:═2.
【分析】直接利用立方根的定义即可求解.
【解答】解:∵23
=8
∴=2. 故填2.
【点评】本题主要考查立方根的概念,如果一个数x 的立方等于a ,那么x 是a 的立方根.
13. (2016·江苏南京____________.
答案: 2
考点:算术平方根,三次方根,根式的运算。
解析 2
14. (2016·江苏南京)若式子x 则x 的取值范围是________. 答案:1x ≥
考点:二次根式的意义。
解析:由二次根式的意义,得:10x -≥,解得:1x ≥。
15. (2016·江苏南京3________2
2
.(填“>””<”或“=”号) 答案:<
考点:二次根式的估算。
解析:由于233<0>0,所以,填空“<”。
16.(2016•浙江省舟山)二次根式
中字母x 的取值范围是 x ≥1 .
【考点】二次根式有意义的条件.
【分析】二次根式有意义的条件就是被开方数是非负数,即可求解. 【解答】解:根据题意得:x ﹣1≥0, 解得x ≥1. 故答案为:x ≥1.
17.(2016福州,14,4分)若二次根式在实数范围内有意义,则x 的取值范围是 .
【考点】二次根式有意义的条件.
【专题】常规题型.
【分析】根据二次根式的性质可求出x的取值范围.
【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.
故答案为:x≥﹣1.
【点评】主要考查了二次根式的意义和性质:
概念:式子(a≥0)叫二次根式;
性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
三.解答题
1.(2016·江苏连云港)计算:(﹣1)2016﹣(2﹣)0+.
【分析】原式利用乘方的意义,零指数幂法则,以及算术平方根定义计算即可得到结果.
【解答】解:原式=1﹣1+5
=5.
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
2.(2016·江苏泰州)计算或化简:
(1)﹣(3+).
【考点】二次根式的加减法.
【分析】(1)先化成最简二次根式,再去括号、合并同类二次根式即可;
【解答】解:(1)﹣(3+)
=﹣(+)
=﹣﹣
=﹣.。