2020届广东省佛山市高三教学质量检测(二模)数学理试题
2020年广东高三二模理科数学试卷(详解)

2020年广东高三二模理科数学试卷(详解)一、选择题(本大题共12小题,每小题5分,共60分)1.A. B.C.D.【答案】【解析】已知集合,,则( ).C ∵集合.集合,∴.故选.2.A.B.C.D.【答案】【解析】已知复数(为虚数单位,),若,则的取值范围为( ).A ,∴,又∵,则,∴ .故选.3.《周髀算经》是我国古老的天文学和数学著作,其书中记载:一年有二十四个节气,每个节气晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测影子的长度),夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测A.尺B.尺C.尺D.尺【答案】【解析】算,这九个节气的所有晷长之和为尺,夏至、大暑、处暑三个节气晷长之和为尺,则立秋的晷长为( ).D不妨设夏至到寒露依次为,,,∴数列为为等差数列,由题可知,,∴,∵,则,∴,故立秋的晷长为尺.故选.4.A.B.C.D.【答案】【解析】在中,已知,,且边上的高为,则( ).B 在中,面积,∴,由余弦定理可知,,∴,由正弦定理,得.故选.5.A.B.C.D.一个底面半径为的圆锥,其内部有一个底面半径为的内接圆柱,若其内接圆柱的体积为,则该圆锥的体积为( ).【答案】【解析】D作出该几何体的轴截面图如图,,,设内接圆柱的高为,由,得,∵,∴,即,得,∴该圆锥的体积为.故选.6.A. B.C.D.【答案】【解析】已知函数是定义在上的奇函数,且在上单调递减,,则不等式的解集为( ).B根据题意,函数是定义在上的奇函数,且在上单调递减,则在上递减,又由,则,则函数的草图如图:若,则有,解可得,即不等式的解集为,故选.7.A.B.C.D.【答案】【解析】已知双曲线的右焦点为,过点分别作双曲线的两条渐近线的垂线,垂足分别为,.若,则该双曲线的离心率为( ).D 由得,又∵在四边形中,,且,则四边形为正方形,∴,即,∴双曲线渐近线方程为,∴,即,∴,∴离心率.故选.8.A.B.C. D.【答案】【解析】已知四边形中,,,,,在的延长线上,且,则( ).A ABDCE在中,由余弦定理可知,,∴,由可知,,∴,在中,由正弦定理可知,,得,∴.故选.9.A.B.C.D.【答案】【解析】的展开式中,的系数为( ).C把的展开式看成个因式的乘积形式,从中任意选个因式,这个因式取,再取个因式,这个因式都取,剩余个因式取,相乘即得含的项;故含项的系数为:.故选:.10.A.B.C.D.【答案】【解析】把函数的图象向右平移个单位长度,再把所得的函数图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数的图象,关于的说法有:①函数的图象关于点对称;②函数的图象的一条对称轴是;③函数在上的最小值为;④函数在上单调递增.则以上说法正确的个数是( ).C 把函数的图象向右平移个单位长度,可得的函数图象,由横坐标缩短到原来的可得.①中,∵,,则不是的对称中心,故①错误;②中,当时,,故是的对称轴,故②正确;③中,当时,,,∴,则在内的最小值为,故③正确;④∵函数的周期,又因为正弦函数不会在一个周期内为单调增函数,故④错误;故选.11.A. B. C. D.如图,在矩形中,已知,是的中点,将沿直线翻折成,连接.若当三棱锥的体积取得最大值时,三棱锥外接球的体积为,则( ).【答案】【解析】B 在矩形中,已知,是的中点,所以:为等腰直角三角形;斜边上的高为:;要想三棱锥的体积最大;需高最大,则当面时体积最大,此时三棱锥的高等于:,取的中点,过作下底面的垂线,此时三棱锥的外接球球心在上,∵三棱锥外接球的体积为,所以球半径,如图:,①,②即:,③,④联立③④可得.故选.12.A. B.C.D.【答案】【解析】已知函数,若函数有唯一零点,则的取值范围为( ).D 因为.令,则,所以当时,,即在上单调递增,又,所以,,当,,所以在上为增函数,在上为减函数,又,所以当,,当,对恒成立,即当时,,且当且仅当,,故当时,有唯一的零点;排除,当时,,令,可得,有无数解,所以,不成立,排除,故选.二、填空题(本大题共4小题,每小题5分,共20分)13.【答案】【解析】若,满足约束条件,则的最大值是 .由不等式组可画出可行域如图,目标函数可化为,经平移可知直线过点时,在轴截距最大,由,得:,即,∴.故答案为:.14.【答案】【解析】已知,则 .∵,∴,即,∴.故答案为:.15.【答案】【解析】从正方体的个面的对角线中,任取条组成对,则所成角是的有 对.根据题意,如图,在正方体中,与平面中一条对角线成的直线有,,,,,,,,共条直线,则包含在内的符合题意的对角线有对;又由正方体个面,每个面有条对角线,共有条对角线,则共有对面对角线所成角为,而其中有一半是重复的;则从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有对,故答案为:.16.【答案】【解析】如图,直线过抛物线的焦点且交抛物线于,两点,直线与圆交于,两点,若,设直线的斜率为,则= .∵,同理可得,∴.设,联立可得,∴,.∴,即,解.三、解答题(本大题共5小题,每小题12分,共60分)17.(1)(2)(1)【答案】已知数列和满足,且,,设.求数列的通项公式.若是等比数列,且,求数列的前项和..(2)(1)(2)【解析】.由,得,∴,∵,∴,∴是以为公差的等差数列.又∵,∴.设的公比为,则,∴由()知,又,∴∴,①,②①②得:∴..18.为了提高生产效益,某企业引进了一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取件产品进行质量检测,所有产品质量指标值均在以内,规定质量指标值大于的产品为优质品,质量指标值在的产品为合格品.旧设备所生产的产品质量指标值如频率分布直方图所示,新设备所生产的产品质量指标值如频数分布表所示.频率组距质量指标值质量指标值频数(1)(2)(3)(1)(2)(3)【答案】合计请分别估计新、旧设备所生产的产品的优质品率.优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高.根据已知图表数据填写下面列联表(单位:件),并判断是否有的把握认为“产品质量高与新设备有关”.非优质品优质品合计新设备产品 旧设备产品合计附:,其中.用频率代替概率,从新设备所生产的产品中随机抽取件产品,其中优质品数为件,求的分布列及数学期望.,.非优质品优质品合计新设备产品旧设备产品合计有的把握认为产品质量高与新设备有关.的分布列为.(1)(2)(3)【解析】估计新设备所生产的产品的优质品率为:,估计旧设备所生产的产品的优质品率为:.非优质品优质品合计新设备产品旧设备产品合计由列联表可得,,∴有的把握认为产品质量高与新设备有关.的所有可能取值为,,,.∵由知新设备所生产的优质品率为,∴,,,.∴的分布列为∴的数学期望为.19.(1)(2)(1)【答案】如图,四棱锥中,四边形是菱形,,.是上一点,且.设.证明:平面.若,,求二面角的余弦值.证明见解析.(2)(1)(2)【解析】.∵四边形是菱形,∴是的中点,,∵,,∴平面,∵平面,∴,∵,是的中点,∴,∵平面,平面,,∴平面.由知平面,.∴,,两两互相垂直,∴以为原点,以,,所在直线分别为,,轴建立空间直角坐标系如图所示,,设四边形的边长为,,∵四边形是菱形,,∴和都是等边三角形,∴,∴,,,,∴,,,∵,∴,∴,即,∴,,设平面的法向量为,则,令,得,,∴,设平面的法向量为,则,令,得,,∴,设二面角的平面角为,结合图象可知,,∴二面角的余弦值为.20.(1)(2)(1)(2)【答案】(1)【解析】已知椭圆:的焦点为,,是椭圆上一点.若椭圆的离心率为,且,的面积为.求椭圆的方程.已知是坐标原点,向量,过点的直线与椭圆交于,两点.若点满足,,求的最小值...依据题意得,所以,所以,(2)因为,故设,代入椭圆方程得,所以的面积为:,联立,解得,,所以椭圆的方程为:.由题意可知直线的斜率显然存在,故设直线的方程为:,联立,消去并整理得,所以,设,,所以,,因为,所以,当时,,当时,,,因为,所以,所以,所以,当且仅当时取等号,且满足,所以,综上.21.(1)(2)(1)(2)【答案】(1)(2)【解析】已知函数(),其中为自然对数的底数.若函数的极小值为,求的值.若,证明:当时,成立..证明见解析.函数的定义域为,,当时,对于恒成立,∴在上单调递减,∴在上无极值.当时,令,得.∴当时,,当时,.∴在上单调递减,在上单调递增.∴当时,,∴取得极小值,即.令(),则.∵,∴,∴在上单调递增.又∵,∴.∵,∴,∴,令(),∴.令(),∴,令,得,∴当时,;当时,,∴在上单调递减,在上单调递增.∴当时,取得极小值.又∵,,∴存在使得.∴在上单调递增,在上单调递减,在上单调递增.又∵,∴,∴当时,,即.令(),则对于恒成立.∴在上单调递增.∴,即当时,,∴当时,.∴当时,.∴当时,成立.四、选做题(本大题共2小题,选做1题,共10分)选修4-4:坐标系与参数方程22.(1)(2)(1)(2)【答案】(1)【解析】在直角坐标系中,曲线的方程为,以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.求直线的直角坐标方程.已知是曲线上的一动点,过点作直线交直线于点,且直线与直线的夹角为,若的最大值为,求的值...由,(2)得,∴,∵,.∴直线的直角坐标方程为,即.依题意可知曲线的参数方程为:(为参数),设,则点到直线的距离为:,,∵,∴当时,,依题意得,∴的最大值为,即,∵,∴解得.选修4-5:不等式选讲23.(1)(2)(1)(2)【答案】(1)【解析】已知函数.解不等式:.若,,均为正数,且,证明:..证明见解析.,当时,,即,解得:;(2)当时,,满足题意;当时,,即,解得:.综上,不等式的解集为.由知,∴,∴,∴,∴,当且仅当时等号成立,∴.。
广东佛山高三教学质量检测(二模)数学理试题 含答案

2019~2020学年佛山市普通高中高三教学质量检测(二)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x 2>2 x },B ={x |1≤x ≤3},则A ∪B =( )A 、{x |0≤x <1}B 、{x |x <0或x ≥1}C 、{x |2<x ≤3}D 、{x |x ≤1或x >3}2.复数z 满足(z +2)(1+i)=3+i ,则|z |=()A 、1B 、2C 、3D 、23.(1-x )10的二项展开式中,x 的系数与x 4的系数之差为( )A 、-220B 、-90C 、90D 、04.设变量x ,y 满足约束条件,则目标函数z =x +6y 的最大值为() A 、3 B 、4 C 、18 D 、405.设函数()f x =(sin x +cos x )2+cos2x ,则下列结论错误的是()A 、()f x 的最小正周期为πB 、y =()f x 的图像关于直线x =8π对称 C 、()f x 的最大值为2+1 D 、()f x 的一个零点为x =78π 6.已知,则() A 、a <b <c B 、a <c <b C 、c <a <b D 、b <a <c7.已知点A (3,-2)在抛物线C :x 2=2py (p >0)的准线上,过点A 的直线与抛物线在第一象限相切于点B ,记抛物线的焦点为F ,则|BF |=()A 、6B 、8C 、10D 、128.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为()A、35B、79C、715D、31459.2019年,全国各地区坚持稳中求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率为57.8%.下图为2019年居民消费价格月度涨跌幅度:下列结论中不正确的是()A、2019年第三季度的居民消费价格一直都在增长B、2018年7月份的居民消费价格比同年8月份要低一些C、2019年全年居民消费价格比2018年涨了2.5%以上D、2019年3月份的居民消费价格全年最低10.已知P为双曲线C:22221(00)x ya ba b-=>>,上一点,O为坐标原点,F1,F2为曲线C左右焦点.若|OP|=|OF2|,且满足tan∠PF2F1=3,则双曲线的离心率为()A、5B、2C、10D、311.已知A,B,C是球O的球面上的三点,∠AOB=∠AOC=60º,若三棱锥O-ABC体积的最大值为1,则球O的表面积为()A、4πB、9πC、16πD、20π12.双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系xOy中,把到定点F1(-a,0),F2(a,0)距离之积等于a2(a>0)的点的轨迹称为双纽线C.已知点P (x0,y0)是双纽线C上一点,下列说法中正确的有()①双纽线C关于原点O中心对称;②;③双纽线C上满足|PF1|=|PF2|的点P有两个;④|PO|2a.A、①②B、①②④C、②③④D、①③第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.13.设命题,则⌝p 为 . 14.已知函数,若f (a )=-3,则f (-a )= .15.在面积为1的平行四边形ABCD 中,∠DAB =6π,则AB BC u u u r u u u r g =________; 点P 是直线AD 上的动点,则的最小值为________.16.数学兴趣小组为了测量校园外一座“不可到达”建筑物的高度,采用“两次测角法”,并自制了测量工具:将一个量角器放在复印机上放大4倍复印,在中心处绑上一个铅锤,用于测量楼顶仰角(如图);推动自行车来测距(轮子滚动一周为1.753米).该小组在操场上选定A 点,此时测量视线和铅锤线之间的夹角在量角器上度数为37º;推动自行车直线后退,轮子滚动了10圈达到B 点,此时测量视线和铅锤线之间的夹角在量角器上度数为53ο.测量者站立时的“眼高”为1.55m ,根据以上数据可计算得该建筑物的高度约为 米.(精确到0.1)参考数据:三、解答题:本大题共7小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知等比数列{a n }的前n 项和为S n (S n ≠0),满足S 1,S 2,-S 3成等差数列,且a 1a 2=a 3.(1)求数列{a n }的通项公式;(2)设,求数列{b n }的前n 项和T n .18.(本小题满分12分)如图,在四棱锥PABCD-中,底面ABCD是矩形,PA=PD=3,PB=PC=6,∠APB=∠CPD=90ο,点M,N分别是棱BC,PD的中点.(1)求证:MN//平面PAB;(2)若平面PAB⊥平面PCD,求直线MN与平面PCD所成角的正弦值.19.(本小题满分12分)已知椭圆C:22221(0)x ya ba b+=>>的离心率为22,且过点(2,1).(1)求椭圆C的方程;(2)过坐标原点的直线与椭圆交于MN,两点,过点M作圆x2+y2=2的一条切线,交椭圆于另一点P,连接PN,证明:|PM||=PN|.20.(本小题满分12分)2020年是我国全面建成小康社会和“十三五”规划收官之年,也是佛山在经济总量超万亿元新起点上开启发展新征程的重要历史节点.作为制造业城市,佛山一直坚持把创新摆在制造业发展全局的前置位置和核心位置,聚焦打造成为面向全球的国家制造业创新中心,走“世界科技+佛山智造+全球市场”的创新发展之路.在推动制造业高质量发展的大环境下,佛山市某工厂统筹各类资源,进行了积极的改革探索.下表是该工厂每月生产的一种核心产品的产量x(5≤≤x20)(件)与相应的生产总成本y(万元)的四组对照数据.x57911y200298431609模型①:;模型②:.其中模型①的残差(实际值-预报值)图如图所示:(1)根据残差分析,判断哪一个更适宜作为y 关于x 的回归方程?并说明理由;(2)市场前景风云变幻,研究人员统计历年的销售数据得到每件产品的销售价格q (万元)是一个与产量x 相关的随机变量,分布列为:结合你对(1)的判断,当产量x 为何值时,月利润的预报期望值最大?最大值是多少(精确到0.1)?21.(本小题满分12分) 已知函数()-f x x a =-sin x (x ≥a ).(1)若()f x ≥0恒成立,求a 的取值范围;(2)若a <-14,证明:()f x 在(0,2π)有唯一的极值点x 0, 且.请考生在第22,23题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号.22.(本小题满分10分)[选修44-:坐标系与参数方程选讲]在平面直角坐标系xOy 中,曲线C 1的参数方程为为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4cos θ.(1)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(2)设点M 的极坐标为(4,0),射线θ=α(0<α<2π)与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,若∠AMB =4π,求tan α的值.23.(本小题满分10分)[选修45-:不等式选讲]已知函数,a∈R.(1)若f(0)>8,求实数a的取值范围;(2)证明:对∀x∈R,恒成立.。
2020佛山二模理科数学试题(定稿)

2019~2020学年佛山市普通高中高三教学质量检测(二)数学(理科)注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|2}A x x x =>,{|13}B x x =≤≤,则A B = ( )A .{|01}x x ≤<B .{|0x x <或1}x ≥C .{|23}x x <≤D .{|1x x ≤或3}x >2.复数z 满足(2)(1i)3i z ++=+,则||z =( )A .1 BCD .23.10(1-的二项展开式中,x 的系数与4x 的系数之差为( )A .220-B .90-C .90D .04.设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为( )A .3B .4C .18D .405.设函数()()2sin cos cos 2f x x x x =++,则下列结论错误的是( )A .()f x 的最小正周期为πB .()y f x =的图像关于直线π8x =对称C .()f x1 D .()f x 的一个零点为7π8x = 6.已知()33log log 2a =,()23log 2b =,32log 2c =,则( )A .a b c <<B .a c b <<C .c a b <<D .b a c <<7.已知点(3,2)A -在抛物线2:2(0)C x py p =>的准线上,过点A 的直线与抛物线在第一象限相切于点B ,记抛物线的焦点为F ,则||BF =( )A .6B .8C .10D .128.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35 B .79 C .715 D .31459.2019年,全国各地区坚持稳中求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率为57.8%.下图为2019年居民消费价格月度涨跌幅度:(100%-⨯本期数去年同期数同比=去年同期数,100%-⨯本期数上期数环比=上期数)下列结论中不正确的是( )A .2019年第三季度的居民消费价格一直都在增长B .2018年7月份的居民消费价格比同年8月份要低一些C .2019年全年居民消费价格比2018年涨了2.5%以上D .2019年3月份的居民消费价格全年最低10.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,O 为坐标原点,12,F F 为曲线C左右焦点.若2OP OF =,且满足21tan 3PF F ∠=,则双曲线的离心率为( )AB C D 11.已知,,A B C 是球O 的球面上的三点,60AOB AOC ∠=∠=,若三棱锥O ABC -体积的最大值为1,则球O 的表面积为( )A .4πB .9πC .16πD .20π12.双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系xOy 中,把到定点12(,0),(,0)Fa F a -距离之积等于2(0)a a >的点的轨迹称为双纽线C .已知点00(,)P x y 是双纽线C 上一点,下列说法中正确的有( )①双纽线C 关于原点O 中心对称;②022a ay -≤≤;③双纽线C 上满足12||||PF PF =的点P 有两个;④||PO . A .①②B .①②④C .②③④D .①③第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.13.设命题21:(0,),e 12xp x x ∀∈+∞>+,则p ⌝为 .PNDCMBA14.已知函数2(1sin )1()2x x x f x x+++=,若()3f a =-,则()f a -= .15.在面积为1的平行四边形ABCD 中,π6DAB ∠=,则AB BC ⋅= ________;点P 是直线AD 上的动点,则22PB PC PB PC +-⋅的最小值为________.16.数学兴趣小组为了测量校园外一座“不可到达”建筑物的高度,采用“两次测角法”,并自制了测量工具:将一个量角器放在复印机上放大4倍复印,在中心处绑上一个铅锤,用于测量楼顶仰角(如图);推动自行车来测距(轮子滚动一周为1.753米).该小组在操场上选定A 点,此时测量视线和铅锤线之间的夹角在量角器上度数为37 ;推动自行车直线后退,轮子滚动了10圈达到B 点,此时测量视线和铅锤线之间的夹角在量角器上度数为53 .测量者站立时的“眼高”为1.55m ,根据以上数据可计算得该建筑物的高度约为 米.(精确到0.1)参考数据:3sin375≈,4sin535≈ .三、解答题:本大题共7小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知等比数列{}n a 的前n 项和为()0n n S S ≠,满足123,,S S S -成等差数列,且123a a a =.(1)求数列{}n a 的通项公式;(2)设13(1)(1)nn n n a b a a +-=++,求数列{}n b 的前n 项和n T .18.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD是矩形,PA PD ==,PB PC ==90APB CPD ∠=∠= ,点,M N 分别是棱,BC PD 的中点.(1)求证://MN 平面PAB ;(2)若平面PAB ⊥平面PCD ,求直线MN 与平面PCD 所成角的正弦值.19.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且过点(2,1).(1)求椭圆C 的方程;(2)过坐标原点的直线与椭圆交于,M N 两点,过点M 作圆222x y +=的一条切线,交椭圆于另一点P ,连接PN ,证明:||||PM PN =.20.(本小题满分12分)2020年是我国全面建成小康社会和“十三五”规划收官之年,也是佛山在经济总量超万亿元新起点上开启发展新征程的重要历史节点.作为制造业城市,佛山一直坚持把创新摆在制造业发展全局的前置位置和核心位置,聚焦打造成为面向全球的国家制造业创新中心,走“世界科技+佛山智造+全球市场”的创新发展之路.在推动制造业高质量发展的大环境下,佛山市某工厂统筹各类资源,进行了积极的改革探索.下表是该工厂每月生产的一种核心产品的产量()520x x ≤≤(件)与相应的生产总成本y (万元)的四组对照数据.x57911y200298431609工厂研究人员建立了y 与x 的两种回归模型,利用计算机算得近似结果如下:模型①: 31733x y =+;模型②:68160y x =-.其中模型①的残差(实际值-预报值)图如图所示:(1)根据残差分析,判断哪一个更适宜作为y 关于x 的回归方程?并说明理由;(2)市场前景风云变幻,研究人员统计历年的销售数据得到每件产品的销售价格q (万元)是一个与产量x 相关的随机变量,分布列为:q 1402x -1302x -1002x-P0.50.40.1结合你对(1)的判断,当产量x 为何值时,月利润的预报期望值最大?最大值是多少(精确到0.1)?21.(本小题满分12分)已知函数()sin ()f x x x a =≥.(1)若()0f x ≥恒成立,求a 的取值范围;(2)若14a <-,证明:()f x 在π(0,)2有唯一的极值点0x ,且0001()π2f x x x >--.请考生在第22,23题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号.22.(本小题满分10分)[选修44-:坐标系与参数方程选讲]在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x tt y t =⎧⎨=+⎩为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;(2)设点M 的极坐标为(4,0),射线π(0)2θαα=<<与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,若π4AMB ∠=,求tan α的值.23.(本小题满分10分)[选修45-:不等式选讲]已知函数()2cos 15,f x x a a a =+-+-∈R .(1)若(0)8f >,求实数a 的取值范围;(2)证明:对x ∀∈R ,1()51f x a a≥--+恒成立.。
2020年广东省佛山市高考数学二模试卷(理科) (含答案解析)

2020年广东省佛山市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 若集合A ={x|0≤x ≤2},B ={x|x 2>1},则A ∪B =( )A. {x|0≤x ≤1}B. {x|x >0或x <−1}C. {x|1<x ≤2}D. {x|x ≥0或x <−1}2. 若复数z 满足z ⋅(1+i)=−2i ,则|z|=( )A. √2B. √3C. 2D. √5 3. (√x 3−2x )8二项展开式中的常数项为( ) A. 56 B. −56 C. 112 D. −1124. 若实数x,y 满足约束条件{x −3y +4≥03x −y −4≤0x +y ≥0,则z =3x +2y 的最大值是 ( )A. −1B. 1C. 10D. 125. 已知函数f(x)=2sinx(sinx +cosx),下列说法中错误的是( )A. f(x)是周期函数B. f(x)有最大值和最小值C. f(x)在(π8,π4)上是增函数D. f(x)的图象关于直线x =π8对称 6. 设a =log 36,b =log 510,c =log 714,则( )A. c >b >aB. b >c >aC. a >c >bD. a >b >c7. 抛物线C :x 2=2py(p >0)的焦点F 与双曲线2y 2−2x 2=1的一个焦点重合,过点F 的直线交C 于点A 、B ,点A 处的切线与x 、y 轴分别交于点M 、N ,若△OMN 的面积为12,则|AF|的长为( ) A. 2 B. 3 C. 4 D. 58. 盒中装有形状,大小完全相同的5个小球,其中红色球3个,黄色球2个,若从中随机取出2个球,则所取出的2个球颜色不同的概率等于A. 310B. 25C. 12D. 35 9. 如图1为某省2018年1∼4月快递业务量统计图,图2是该省2018年1∼4月快递业务收入统计图,下列对统计图理解错误的是( )A. 2018年1∼4月的业务量,3月最高,2月最低,差值接近2000万件B. 2018年1∼4月的业务量同比增长率超过50%,在3月最高C. 从两图来看,2018年1∼4月中的同一个月快递业务量与收入的同比增长率并不完全一致D. 从1∼4月来看,该省在2018年快递业务收入同比增长率逐月增长10.已知O为坐标原点,F1,F2是双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点,双曲线C上一点P满足PF1⊥PF2,且|PF1||PF2|=2a2,则双曲线C的离心率为()A. √2B. √3C. 2D. √511.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O−ABC体积的最大值为36,则球O的表面积为()A. 36πB. 64πC. 144πD. 256π12.平面内到两个定点的距离之比为常数k(k≠1)的点的轨迹是阿波罗尼斯圆.已知曲线C是平面内到两个定点F1(−1,0)和F2(1,0)的距离之比等于常数a(a>1)的阿波罗尼斯圆,则下列结论中正确的是()A. 曲线C关于x轴对称B. 曲线C关于y轴对称C. 曲线C关于坐标原点对称D. 曲线C经过坐标原点二、填空题(本大题共4小题,共20.0分)13.写出命题“∃x>0,x2−1≤0”的否定:________14.已知函数f(x)=lg(√x2+1+x)+a,且f(ln3)+f(ln13)=1,则a=_________.15.在面积为2的平行四边形ABCD中,点P在直线DA上,则PC⃗⃗⃗⃗⃗ ⋅PB⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ 2的最小值为________.16.沿着山边一条平直的公路测量山顶一建筑物的高度,如图所示,已知A处测量建筑物顶部的仰角为60°,B处测量建筑物顶部的仰角为30°,已知图中PA⊥AB,AB=440√63米,山的高度是190米,则建筑物的高度为______ 米.三、解答题(本大题共7小题,共82.0分)17.已知正项等比数列{a n}满足a1=1,且3,a3,5a2成等差数列,数列{b n}满足a1b1+a2b2+⋯+a nb n=(n+1)3n−1.(1)求数列{a n}和{b n}的通项公式;(2)若c n=1,求数列{c n}的前n项和T n.b n b n+118.在四棱锥SABCD中,SA⊥平面ABCD,底面ABCD是菱形.(1)求证:平面SAC⊥平面SBD;NS,求证:SC//平面BMN.(2)若点M是棱AD的中点,点N在棱SA上,且AN=1219.已知椭圆C:x2a2+y2b2=1(a>b>0)过点A(2,0),且离心率为√32.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线y=kx+√3与椭圆C交于M,N两点,若直线x=3上存在点P,使得四边形PAMN 是平行四边形,求k的值.20.某公司生产一种产品,从流水线上随机抽取100件产品,统计其质量指数并绘制频率分布直方图(如图1),产品的质量指数在[50,70)的为三等品,在[70,90)的为二等品,在[90,110]的为一等品,该产品的三、二、一等品的销售利润分别为每件1.5,3.5,5.5(单位:元).以这100件产品的质量指数位于各区间的频率代替产品的质量指数位于该区间的概率.(1)求每件产品的平均销售利润;(2)该公司为了解年营销费用x(单位:万元)对年销售量y(单位:万件)的影响,对近5年的年营销费用x i 和年销售量y i (i =1,2,3,4,5)数据做了初步处理,得到的散点图(如图2)及一些统计量的值. ∑5i=1 u i ∑5i=1 v i ∑5i=1 (u i −u )(v i −v ) ∑5i=1 (u i −u )2 16.30 24.87 0.411.64 表中u i =lnx i ,v i =lny i ,u =15∑5i=1 u i ,v =15∑5i=1 v i . 根据散点图判断,可以作为年销售量y(万件)关于年营销费用x(万元)的回归方程. (i)建立y 关于x 的回归方程;(ii)用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大?(收益=销售利润−营销费用,取e 4.159=64).参考公式:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线的斜率和截距的最小二乘估计分别为β̂=i −u )(i −v )n i=1∑(u −u )2n α̂=v −β̂u .21.已知函数f(x)=e x−1x+a.(1)判断f(x)极值点的个数;(2)若x>0时,e x>f(x)恒成立,求实数a的取值范围.22.在直角坐标系xOy中,曲线C的参数方程为{x=2cosα,y=2+2sinα(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线M的极坐标方程为ρ2sin2θ=32(0<θ<π2).(1)求曲线C的极坐标方程;(2)已知β为锐角,直线l:θ=β(ρ∈R)与曲线C的交点为A(异于极点),l与曲线M的交点为B,若|OA|⋅|OB|=16√2,求l的直角坐标方程.23.已知函数f(x)=2|x−2|+3|x+3|.(1)解不等式:f(x)>15;(2)若函数f(x)的最小值为m,正实数a,b满足4a+25b=m,证明:1a +1b≥4910.-------- 答案与解析 --------1.答案:D解析:本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.先分别求出集合A ,B ,由此能求出A ∪B .解:∵集合A ={x|0≤x ≤2},B ={x|x 2>1}={x|x >1或x <−1},∴A ∪B ={x|x ≥0或x <−1}.故选:D .2.答案:A解析:解:由z(1+i)=−2i ,得z =−2i 1+i =−2i(1−i)(1+i)(1−i)=−1−i ,∴|z|=√2.故选A .把已知等式变形,再由复数代数形式的乘除运算化简,然后代入复数模的计算公式求解. 本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题. 3.答案:C解析:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项. 解:(√x 3−2x )8二项展开式的通项公式为T r+1=C 8r ⋅x 8−r 3⋅(−2)r ⋅x −r =(−2)r ⋅C 8r ⋅x 8−4r 3,令8−4r 3=0,求得r =2,。
【理科数学教师版】2019-2020学年佛山市普通高中高三教学质量检测(二)理科数学

2019~2020学年佛山市普通高中高三教学质量检测(二)数 学(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|2},{|13}A x x x B x x =>=≤≤,则A B =U ( ) A .{|01}x x <≤ B .{|0x x <或1}x ≥ C .{|23}x x <≤D .{|1x x ≤或3}x >1.答案:B解析:2{|2}{|0A x x x x x =>=<或2},{|13}x B x x >=≤≤,所以A B =U {|0x x <或1}x ≥. 2.复数z 满足(2)(1i)3i z ++=+,则z =( ) A .1 BCD .22.答案:A 解析:3i (3i)(1i)42i222i,11i (1i)(1i)2z z ++--=-=-=-=-∴=++-. 3.10(1-的二项展开式中,x 的系数与4x 的系数之差为( )A .220-B .90-C .90D .03.答案:D解析:10(1的二项展开式中,含x的项为2221010(C C x =,含4x的项为88841010(C C x =,因为281010C C =,所以x 的系数与4x 的系数之差为04.设变量,x y 满足约束条件2030230x x y x y +⎧⎪-+⎨⎪+-⎩≥≥≥,则目标函数6z x y =+的最大值为( )A .3B .4C .18D .404.答案:C解析:作出可行域如图中阴影部分所示, 由6z x y =+得1166y x z =-+,表示斜率为16-, 纵截距为16z 的直线,作出直线16y x =-并平移,使其经过可行域内的点,当直线过点(0,3)A 时, 纵截距最大,此时z 取得最大值,最大值为18.2020年5月5.设函数2()(sin cos )cos 2f x x x x =++,则下列结论错误的是( ) A .()f x 的最小正周期为π B .()y f x =的图象关于直线8x π=对称C .()f x1 D .()f x 的一个零点为78x π=5.答案:D解析:2()(sin cos )cos 21sin 2cos 2214f x x x x x x x π⎛⎫=++=++=++ ⎪⎝⎭,所以函数()f x 的最小正周期22T ππ==,A 正确;当8x π=时,242x ππ+=,选项B 正确; ()f x1,选项C 正确;当78x π=时,()1f x =,故选项D 错误,所以选D . 6.已知23333log (log 2),(log 2),2log 2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b a c <<6.答案:A解析:3log 2(0,1)∈Q ,所以2333333log (log 2)log 10,(log 2)(0,1),2log 2log 41a b c =<==∈==>,所以a b c <<.7.已知点(3,2)A -在抛物线2:2(0)C x py p =>的准线上,过点A 的直线与抛物线在第一象限相切于点B ,记抛物线的焦点为F ,则BF =( )A .6B .8C .10D .127.答案:C解析:由题可知2,42p p -=-∴=,抛物线方程为28x y =,设2(4,2)(0)B t t t >,由28x y =可得4x y '=,22320t t --=,(21)(2)0t t ∴+-=, )A .35B .79C .715D .31458.答案:A解析:若从盒中取出一个红色球(概率为25),则第二次取球时盒中有6个红色球,3个黄色球,取出黄色球的概率为39; 若从盒中取出一个黄色球(概率为35),则第二次取球时盒中有2个红色球,7个黄色球,取出黄色球的概率为79; 由全概率公式,可知第二次取球时取出黄色球的概率23372735959455P =⨯+⨯==. 9.2019年,全国各地区坚持稳中求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率为57.8%.下图为2019年居民消费价格月度涨跌幅度: (100%100%--=⨯=⨯本期数去年同期数本期数上期数同比,环比去年同期数上期数)下列结论中不正确的是( )A .2019年第三季度的居民消费价格一直都在增长B .2018年7月份的居民消费价格比同年8月份要低一些C .2019年全年居民消费价格比2018年涨了2.5%以上D .2019年3月份的居民消费价格全年最低 9.答案:D解析:设2019年3月份的居民消费价格为a ,则6月份的居民消费价格为2(10.001)(10.001)(10.001)a a a +-=-<,所以2019年6月份的居民消费价格全年最低,故D 不正确.10.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,O 为坐标原点,12,F F 为双曲线C 的左、右焦点.若2OP OF =,且满足21tan 3PF F ∠=,则双曲线的离心率为 ( )11.答案:C解析:AOB △和AOC △都是边长为R 的等边三角形,显然当平面AOB ⊥平面AOC 时,三棱锥O ABC -的体积取得最大值,最大值为231113428R R R ⎛⎫⨯⨯== ⎪ ⎪⎝⎭,所以2R =, 所以球O 的表面积2416S R ππ==.O AB12.双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系xOy 中,把到定点12(,0),(,0)F a F a -距离之积等于2(0)a a >的点的轨迹称为双纽线C .已知点00(,)P x y 是双纽线C 上一点,下列说法正确的有( )①双纽线C 关于原点O 中心对称; ②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个; ④PO A .①②B .①②④C .②③④D .①③12.答案:B解析:在曲线C 上任取一点(,)P x y ,则根据题意可得2PA PB a ⋅=,即224PA PB a ⋅=,所以22224()()x a y x a y a ⎡⎤⎡⎤++⋅-+=⎣⎦⎣⎦,整理得4222422(22)20x y a x y a y +-++= (1), 在(1)式中同时将x 换成x -,将y 换成y -,方程不变,所以曲线C 关于原点对称,故①正确;在(1)中,由222422422(22)4(2)4160y a y a y a a y ∆=--+=-≥,得224a y ≤,22a a y ∴-≤≤,故②正确; ②解法二:12120121211sin 22PF F S F F y PF PF F PF =⋅=⋅∠△, 212012sin sin 222a F PF a a y F PF a ∠∴==∠≤,022a ay ∴-≤≤,故②正确;满足12PF PF =的点P 都在y 轴上,在(1)中,令0x =,得42220y a y +=,解得0y =,即(0,0)P , 所以③错误;222a θ≤,ρ≤00()p x ”14.已知函数2(1sin )1()2x x x f x x+++=,若()3f a =-,则()f a -= .14.答案:4解析:2(1sin)1sin11 ()22222 x x x x xf xx x+++==+++,设sin1()222x xg xx=++,则()g x为奇函数,177171()()3,(),(),()()4222222f ag a g a g a f a g a=+=-∴=--=-=-+=+=.15.在面积为1的平行四边形ABCD中,6DABπ∠=,则AB BC⋅=u u u r u u u r;点P是直线AD上的动点,则22PB PC PB PC+-⋅u u u r u u u r u u u r u u u r的最小值为.15.答案:3,3解析:设,AB a AD b==,则1sin1,262ABCDS ab ab abπ===∴=,则cos36AB BC abπ⋅==u u u r u u u r,在PBC△中,由余弦定理得222222cos2BC PB PC PB PC BPC PB PC PB PC=+-⋅∠=+-⋅u u u r u u u r u u u r u u u r,2222PB PC PB PC BC PB PC b PB PC∴+-⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,过点P作PQ BC⊥于点Q,设BQ x=,则CQ b x=-,()()221()4PB PC PQ QB PQ QC PQ QB QC a x b x⋅=+⋅+=+⋅=--u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,222222222111133()344444PB PC PB PC b a x b x b a b a b ab∴+-⋅=+--+-+=u u u r u u u r u u u r u u u r=≥≥.QCDA BP16.数学兴趣小组为了测量校园外一座“不可到达”建筑物的高度,采用“两侧测角法”,并自制了测量工具;将一个量角器放在复印机上放大4倍复印,在中心处绑上一个铅锤,用于测量楼顶仰角(如图);推动自行车来测距(轮子转动一周为1.753米).该小组在操场上选定A点,此时测量视线与铅垂线之间的夹角在量角器上的度数为37︒;推动自行车直线后退,轮子滚动了10圈到达B点,此时测量视线与铅垂线之间的夹角在量角器上的度数为53︒.测量者站立时的“眼高”为1.55米,根据以上数据可计算得该建筑物的高度约为米.(精确到0.1)参考数据:34sin37,sin5355︒≈︒≈.16.答案:31.6解析:如图,设CD h =,因为53,37CAD CBD ∠=︒∠=︒,34tan 37,tan 5343︒≈︒≈, 所以34,43AC h BC h ==, 所以437121.7531017.53,17.5330.0534127AB BC AC h h h h =-=-==⨯=∴=⨯≈米所以该建筑物的高度约为30.05 1.5531.6+=米BDCA三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 已知等比数列{}n a 的前n 项和为(0)n n S S ≠,满足123,,S S S -成等差数列,且123a a a =. (1)求数列{}n a 的通项公式; (2)设13(1)(1)nn n n a b a a +-=++,求数列{}n b 的前n 项和为n T .17.解析:(1)设等比数列{}n a 的公比为q ,由123,,S S S -成等差数列,得2132S S S =-, 即2111122a a q a q a q +=--,所以2320q q ++=,(1)(2)0q q ++=,解得1q =-或2q =-, 又因为0n S ≠,所以1q ≠-,故2q =-,由123a a a =,得2211a q a q =,得12a q ==-,所以11(2)n n n a a q -==-.(2)111133(2)[(2)1][(2)1](1)(1)[(2)1][(2)1][(2)1][(2)1]n n n n n n n n n n n a b a a ++++--⋅--+--+===++-+⋅-+-+⋅-+ 111(2)1(2)1n n +=--+-+, 所以12n n T b b b =+++L12231111111(2)1(2)1(2)1(2)1(2)1(2)1n n +⎡⎤⎡⎤⎡⎤=-+-++-⎢⎥⎢⎥⎢⎥-+-+-+-+-+-+⎣⎦⎣⎦⎣⎦L 1111111(2)1(2)1(2)1n n ++=-=---+-+-+.18.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD是矩形,PA PD PB PC ====,90APB CPD ∠=∠=︒,点,M N 分别为棱,BC PD 的中点.(1)求证://MN 平面PAB ;(2)若平面PAB ⊥平面PCD ,求直线MN 与平面PCD 所成角的正弦值.PABCDMN18.解析:(1)解法一:取PA 中点E ,连接,BE EN ,则EN 为PAD △的中位线,12EN AD P , 又因为12BM AD P,所以EN BM P ,所以四边形BENM 是平行四边形,所以//MN BE , 又因为MN ⊄平面PAB ,BE ⊂平面PAB ,所以//MN 平面PAB .解法二:取AD 中点E ,连接,ME EN ,因为E M 、分别为AD BC 、的中点,所以//ME AB , 又ME ⊄平面PAB ,AB ⊂平面PAB ,所以//ME 平面PAB ; 因为EN 是PAD △的中位线,所以//EN PA ,又EN ⊄平面PAB ,PA ⊂平面PAB ,所以//EN 平面PAB ;又因为,,ME EN E ME EN =⊂I 平面EMN ,所以平面//EMN 平面PAB , 而MN ⊂平面EMN ,所以//MN 平面PAB . 解法三:取PC 中点E ,连接,NE ME ,则NE 是PCD △的中位线,所以//NE CD ,又因为//CD AB ,所以//NE AB , 又NE ⊄平面PAB ,AB ⊂平面PAB ,所以//NE 平面PAB ;ME 是PBC △的中位线,所以//ME PB ,又ME ⊄平面PAB ,PB ⊂平面PAB ,所以//ME 平面PAB ; 又因为,,ME EN E ME EN =⊂I 平面EMN ,所以平面//EMN 平面PAB , 而MN ⊂平面EMN ,所以//MN 平面PAB .PABCDMNEP ABCDMNE PABCDMN ExB(2)解法一:设平面PAB I 平面PCD l =,因为//AB 所以//AB 平面PCD ,又AB ⊂平面PAB ,平面PAB I 平面PCD l =,则//AB l ,过P 作PF AB ⊥于F ,PG CD ⊥于点G ,连接FG ,过P 作PO FG ⊥于点O ,连接OM , 则,PF l PG l ⊥⊥,所以FPG ∠即为平面PAB 与平面PCD 所成二面角的平面角,因为平面PAB ⊥平面PCD ,所以90FPG ∠=︒,由,,AB PF AB PG PF PG P ⊥⊥=I ,可得AB ⊥平面PFG ,所以AB PO ⊥,又PO FG ⊥,AB FG F =I ,所以PO ⊥平面ABCD ,经计算得3,2,1AB CD PF PG FG AF DG =======,所以O 为FG 中点,以O 为原点,,,OM OG OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,则111(0,0,1),(2,1,0),(1,1,0),(2,0,0),,,222P C D M N ⎛⎫-- ⎪⎝⎭,则511,,,(2,1,1),(3,0,0)222MN PC CD ⎛⎫=-=-=- ⎪⎝⎭u u u u r u u u r u u u r,设平面PCD 的法向量(,,)n x y z =r ,则2030n PC x y z nPD x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩r u u u r r u u u r,可取(0,1,1)n =r ,所以cos ,MN n MN n MN n ⋅===⋅u u u u r ru u u u r r u u u u r r . 所以直线MN 与平面PCD 解法二:可将此四棱锥还原成如图所示的直三棱柱BCF ADE -,因为平面PAB ⊥平面PCD ,所以90AED ∠=︒,经计算可得AE DE ==1EP =,3AB =,以E 为坐标原点,,,EA ED EF 所在直线分别为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,则1,,(0,0,1),0,2222M P D N ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以522MN ⎛⎫=-- ⎪ ⎪⎝⎭u u u u r ,显然平面PCD 的一个法向量(1,0,0)n =r,所以cos ,MN n MN n MN n -⋅===⋅u u u u r r u u u u r r u u u u r r , 所以直线MN 与平面PCD所成角的正弦值9. 解法三:取PA 中点E ,连接,BE EN ,由(1)的证明可知//MN BE ,设平面PAB I 平面PCD l =,因为//,AB CD AB ⊄平面PCD ,CD ⊂平面PCD ,所以//AB 平面PCD ,又AB ⊂平面PAB , 平面PAB I 平面PCD l =,则//AB l ,过P 作PF AB ⊥于F ,则PF l ⊥,又因为平面PAB ⊥平面PCD ,PF ⊂平面PAB ,所以PF ⊥平面PCD ,所以PF u u u r即为平面PCD 的法向量,在平面PAB 中,以F 为原点建立如图所示平面直角坐标系,则1(1,0),(2,0),2A B P E ⎛-- ⎝⎭,5,2BE FP ⎛=-= ⎝⎭u u ur u u u r ,cos ,9BE FP BE FP BE FP ⋅===⋅u u u r u u u ru u u r u u u r u u u r u u u r , 所以直线MN 与平面PCD19.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且过点(2,1).(1)求椭圆C 的方程;(2)过坐标原点的直线与椭圆交于,M N 两点,过点M 作圆222x y +=的一条切线,交椭圆于另一点P ,连接PN ,证明:PM PN =.19.解析:(1)设椭圆的半焦距为c,由椭圆的离心率2c e a ==,且222a b c =+,可得222a b =,将点(2,1)代入椭圆方程222212x y b b +=,得224112b b+=,解得23b =,从而2226a b ==,所以椭圆C 的方程为22163x y +=. (2)当直线MP 的斜率不存在时,由对称性,不妨设直线MP的方程为x =则(M P N,则PM PN == 当直线MP 的斜率存在时,设直线MP 的方程为y kx m =+,则圆心(0,0)O 到直线MP的距离d ==所以2222m k =+,因为圆在椭圆内部,所以圆的切线与椭圆一定会有两个交点,将y kx m =+代入22260x y +-=,整理得:222(21)4260k x kmx m +++-=,设1122(,),(,)M x y P x y ,则2121222426,2121km m x x x x k k --+==++,22121212121212()()(1)()OM OP x x y y x x kx m kx m k x x km x x m ∴⋅=+=+++=++++u u u u r u u u r22222222222222264428(1)(1)(1)2(1)21212121m k m k k k k m k k k k k k --+=+-+=+-++++++在每月生产的一种核心产品的产量(520)x x ≤≤(件)与相应的生产总成本y (万元)的四组对照数据.y 200 298 431 609工厂研究人员建立了y 与x 的两种回归模型,利用计算机得近似结果如下:模型①:31733x y =+; 模型②:68160y x =-. 其中模型①的残差(实际值-预报值)图如图所示:(1)根据残差分析,判断哪一个模型更适宜作为y 关于x 的回归方程?并说明理由;(2)市场前景风云变幻,研究人员统计历年销售数据得到每件产品的销售价格q (万元)是一个与产量x q 1402x -1302x -1002x -P0.50.40.1结合你对(1)的判断,当产量为何值时,月利润的预报期望值最大?最大值是多少(精确到0.1)? 20.解析:(1x 5 7 8 11 y200 298431609 ˆe 2018- 21-21模型②的残差图如图所示.………………………………………………………………2分(只要算出残差或残差绝对值,或直接画出残差图,即给2分)模型①更适宜作为y 关于x 的回归方程,因为:………………………………………………3分 理由1:模型①这4个样本点的残差的绝对值都比模型②小.理由2:模型①这4个样本的残差点落在的带状区域比模型②的带状区域更窄. 理由3:模型①这4个样本的残差点比模型②的残差点更贴近x 轴.(写出一个理由即可得分)………………………………………………………………………5分 (2)设月利润为Y ,由题意知Y qx y =-,则Y 的分布列为:232323121()1401731301731001732322352310x x x x x x E Y x x x ⎛⎫⎛⎫⎛⎫=---⨯+---⨯+---⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3213217332x x x =--+-.………………………………………………………………………………9分设函数322()132173,(0,),()13232x x f x x x f x x x '=--+-∈+∞=--+.……………………9分 令()0f x '=,解得11x =或12x =-(舍去),当(0,11)x ∈时,()0,()f x f x '>单调递增;当(11,)x ∈+∞时,()0,()f x f x '<单调递减. 则函数()f x 的最大值为4649(11)6f =,即产量为11件时,月利润的预报期望值最大,最大值是774.8万元.…………………………………………………………………………………………………………12分 21.(本小题满分12分) 已知函数()sin ()f x x x a =≥.(1)若()0f x ≥恒成立,求a 的取值范围;(2)若14a <-,证明:()f x 在0,2π⎛⎫⎪⎝⎭有唯一的极值点0x ,且0001()2f x x x π>--. 21.解析:(1)由()0f a ≥,得sin 0a -≥,即sin 0a ≤,解得22,Z k a k k πππ-∈≤≤……1分 以下证明,当22()Z k a k k πππ-∈≤≤时,()0f x ≥sin (0)x x ≥. 若1x ≥1sin x ≥;若01x <≤,x,令()sin (0)g x x x x =-≥,可知()1cos 0g x x '=-≥,故()(0)0g x g =≥, 即sin (0)x x x ≥≥sin (0)x x≥.…………………………………………………………3分 若22()Z k a k k πππ-∈≤≤,则当2a x k π≤≤时,sin 0x ≤,0sin x ≥,即()0f x ≥; 当2x k π≥sin (0)x x ≥sin(2)sin x k x π-=. 故当22()Z k a k k πππ-∈≤≤时,()0f x ≥.综上,所求a 的取值范围是{|22,}Z a k a k k πππ-∈≤≤.…………………………………………5分(2)()cos f x x '=,令()cos g x x =-,则321()sin 4()g x x x a '=+-,………6分1,()4a g x '<-∴Q 是0,2π⎛⎫⎪⎝⎭上的增函数,又321(0)0,10242g g a ππ⎛⎫''<=-> ⎪⎝⎭⎛⎫- ⎪⎝⎭,故存在唯一实数00,2t π⎛⎫∈ ⎪⎝⎭,使0()0g t '=,当0(0,)x t ∈时,()0,()g x g x '<单调递减,当0,2x t π⎛⎫∈ ⎪⎝⎭时, ()0,()g x g x '>单调递增.………………………………………………………………………………7分又14a <-,则11,,142a ->>>,11(0)10,10,03222g g g ππ⎛⎫⎪⎛⎫⎛⎫⎪∴=-<==-<=> ⎪ ⎪⎪⎝⎭⎝⎭⎪⎭,故存在唯一实数0,32x ππ⎛⎫∈⎪⎝⎭,使00()cos 0g x x =-=.………………………………8分 所以在区间0,2π⎛⎫⎪⎝⎭有唯一极小值点0x,且极小值为00()sin f x x =……………………9分又由00()cos 0g x x =-=000011,()sin 2cos 2cos f x x x x =∴=-, 又00000011()(sin )2cos 2cos f x x x x x x +=+->.………………………………………………10分以下只需证明00112cos 2x x π>-,即证0002cos 2x x π<<- .000000,,2cos 2sin 22222x x x x x ππππ⎛⎫⎛⎫⎛⎫∈∴=-<-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q ,……………………………………11分则0000000111()(sin )2cos 2cos 2f x x x x x x x π+=+->>-,所以0001()2f x x x π>--………12分 (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所作的第一题计分.22.【选修4—4:坐标系与参数方程】(本小题满分10分) 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x ty t=⎧⎨=+⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=. (1)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程; (2)设点M 的极坐标为(4,0),射线02πθαα⎛⎫=<< ⎪⎝⎭与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,若4AMB π∠=,求tan α的值.22.解析:(1)曲线1C 是以(0,2)为圆心,半径为2的圆,其直角坐标方程为22(2)4x y +-=, 即224x y y +=,又由222,sin x y y ρρθ+==,可得曲线1C 的极坐标方程为4sin ρθ=. (2)将θα=代入4sin ρθ=,得4sin A ρα=,将θα=代入4cos ρθ=,得4cos B ρα=, 又因为4AMB π∠=,2ABM π∠=,所以ABM △是等腰直角三角形,所以4cos 4sin BM AB OB OA αα==-=-,(1)若(0)8f >,求实数a 的取值范围;(2)证明:对R x ∀∈,1()51f x a a--+≥恒成立. 23.解析:(1)由(0)8f >,得156a a -+->, 当1a <时,156a a -+->,解得0a <,所以0a <; 当15a ≤≤时,156a a -+->,无解;当5a >时,156a a -+->,解得6a >,所以6a >. 综上可知,实数a 的取值范围是(,0)(6,)-∞+∞U .(2)11()512cos 110f x a x a a a--+⇔+-++≥≥, 111111(1)12a a a a a a a a-++-++=+=+Q ≥≥,而2cos 2x -≥, 所以12cos 11220x a a+-++-+=≥恒成立, 所以对R x ∀∈,1()51f x a a--+≥恒成立.。
【理科数学试卷】2019-2020学年佛山市普通高中高三教学质量检测(二)理科数学

2019~2020学年佛山市普通高中高三教学质量检测(二)数 学(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|2},{|13}A x x x B x x =>=≤≤,则A B =U ( ) A .{|01}x x <≤B .{|0x x <或1}x ≥C .{|23}x x <≤D .{|1x x ≤或3}x >2.复数z 满足(2)(1i)3i z ++=+,则z =( ) A .1 BCD .23.10(1-的二项展开式中,x 的系数与4x 的系数之差为( )A .220-B .90-C .90D .04.设变量,x y 满足约束条件2030230x x y x y +⎧⎪-+⎨⎪+-⎩≥≥≥,则目标函数6z x y =+的最大值为( )A .3B .4C .18D .405.设函数2()(sin cos )cos 2f x x x x =++,则下列结论错误的是( ) A .()f x 的最小正周期为π B .()y f x =的图象关于直线8x π=对称C .()f x1D .()f x 的一个零点为78x π=6.已知23333log (log 2),(log 2),2log 2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b a c <<7.已知点(3,2)A -在抛物线2:2(0)C x py p =>的准线上,过点A 的直线与抛物线在第一象限相切于点B ,记抛物线的焦点为F ,则BF =( )A .6B .8C .10D .128.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31459.2019年,全国各地区坚持稳中求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率为57.8%.下图为2019年居民消费价格月度涨跌幅度: (100%100%--=⨯=⨯本期数去年同期数本期数上期数同比,环比去年同期数上期数)2020年5月下列结论中不正确的是( )A .2019年第三季度的居民消费价格一直都在增长B .2018年7月份的居民消费价格比同年8月份要低一些C .2019年全年居民消费价格比2018年涨了2.5%以上D .2019年3月份的居民消费价格全年最低10.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,O 为坐标原点,12,F F 为双曲线C 的左、右焦点.若2OP OF =,且满足21tan 3PF F ∠=,则双曲线的离心率为 ( )A 5B 2C 10D 311.已知,,A B C 是球O 的球面上的三点,60AOB AOC ∠=∠=︒,若三棱锥O ABC -体积的最大值为1,则球O 的表面积为( ) A .4πB .9πC .16πD .20π12.双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系xOy 中,把到定点12(,0),(,0)F a F a -距离之积等于2(0)a a >的点的轨迹称为双纽线C .已知点00(,)P x y 是双纽线C 上一点,下列说法正确的有( )①双纽线C 关于原点O 中心对称; ②022a ay -≤≤; ③双纽线C 上满足12PF PF =的点P 有两个; ④PO 2a A .①②B .①②④C .②③④D .①③二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.设命题21:(0,),12xp x e x ∀∈+∞>+,则p ⌝为 . 14.已知函数2(1sin )1()2x x x f x x+++=,若()3f a =-,则()f a -= .15.在面积为1的平行四边形ABCD 中,6DAB π∠=,则AB BC ⋅=u u u r u u u r;点P 是直线AD 上的动点,则22PB PC PB PC +-⋅u u u r u u u r u u u r u u u r的最小值为 .16.数学兴趣小组为了测量校园外一座“不可到达”建筑物的高度,采用“两侧测角法”,并自制了测量工具;将一个量角器放在复印机上放大4倍复印,在中心处绑上一个铅锤,用于测量楼顶仰角(如图);推动自行车来测距(轮子转动一周为1.753米).该小组在操场上选定A 点,此时测量视线与铅垂线之间的夹角在量角器上的度数为37︒;推动自行车直线后退, 轮子滚动了10圈到达B 点,此时测量视线与铅垂线之 间的夹角在量角器上的度数为53︒.测量者站立时的 “眼高”为1.55米,根据以上数据可计算得该建筑物 的高度约为 米.(精确到0.1) 参考数据:34sin 37,sin 5355︒≈︒≈. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 已知等比数列{}n a 的前n 项和为(0)n n S S ≠,满足123,,S S S -成等差数列,且123a a a =. (1)求数列{}n a 的通项公式; (2)设13(1)(1)nn n n a b a a +-=++,求数列{}n b 的前n 项和为n T .18.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,3,6PA PD PB PC ====,90APB CPD ∠=∠=︒,点,M N 分别为棱,BC PD 的中点.(1)求证://MN 平面PAB ;(2)若平面PAB ⊥平面PCD ,求直线MN 与平面PCD 所成角的正弦值.19.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为22,且过点(2,1).(1)求椭圆C 的方程;(2)过坐标原点的直线与椭圆交于,M N 两点,过点M 作圆222x y +=的一条切线,交椭圆于另一点P ,连接PN ,证明:PM PN =.20.(本小题满分12分)2020年是我国全面建成小康社会和“十三五”规划收官之年,也是佛山经济总量超万亿元新起点上开启发展新征程的重要历史节点.作为制造业城市,佛山一直把创新摆在制造业发展全局的前置位置和核心位置,聚焦打造成为面向全球的国家制造业创新中心,走“世界科技+佛山智造+全球市场”的创新发展之路.在推动制造业高质量发展的大环境下,佛士市某工厂统筹各类资源,进行了积PABCDMN极的改革探索.下表是该工厂每月生产的一种核心产品的产量(520)x x ≤≤(件)与相应的生产总成本(万元)的四组对照数据.x57811y 200 298 431 609 y x 利用计算机得近似结果如下:模型①:31733x y =+; 模型②:68160y x =-. 其中模型①的残差(实际值-预报值)图如图所示:(1)根据残差分析,判断哪一个模型更适宜作为y 关于x 的回归方程?并说明理由;(2)市场前景风云变幻,研究人员统计历年销售数据得到每件产品的销售价格q (万元)是一个与产量x q 1402x -1302x -1002x -P0.50.40.1结合你对(1)的判断,当产量为何值时,月利润的预报期望值最大?最大值是多少(精确到0.1)? 21.(本小题满分12分)已知函数()sin ()f x x a x x a =--≥.(1)若()0f x ≥恒成立,求a 的取值范围;(2)若14a <-,证明:()f x 在0,2π⎛⎫⎪⎝⎭有唯一的极值点0x ,且0001()2f x x x π>--. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所作的第一题计分.22.【选修4—4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x t y t =⎧⎨=+⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=. (1)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程; (2)设点M 的极坐标为(4,0),射线02πθαα⎛⎫=<< ⎪⎝⎭与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,若4AMB π∠=,求tan α的值.23.【选修4—5:不等式选讲】(本小题满分10分)已知函数()2cos 15,R f x x a a a =+-+-∈. (1)若(0)8f >,求实数a 的取值范围;(2)证明:对R x ∀∈,1()51f x a a--+≥恒成立.。
2020佛山二模理数答案

Q
N
又点 N 是 PD 的中点,则 NQ / / AD 且 NQ 1 AD . 2
又点 M 是 BC 的中点,底面 ABCD 是矩形,
A E
O
D Fy
则 BM 1 AD 且 BM / / AD .………………………2 分
2
B
M
C
∴ NQ / / BM 且 NQ BM ,∴四边形 MNQB 是平行四边形,
4kmx 2m2
6
0
则
x1
x2
1
4km 2k
2
, x1x2
2m2 6 1 2k 2
.
2 ,即| m |
2(1 k 2 ) …7 分
∴ PM
1 k 2 x1 x2
1 k2
(x1 x2 )2 4x1x2 2
2 1 k 2 1 4k 2 1 2k 2
………………9 分
∵ PN
( x1
x
∴ MN / /BQ ,又 MN 平面 PAB , BQ 平面 PAB ,∴ MN / / 平面 PAB .………………………4 分
(2)过点 P 作 PE AB 交 AB 于点 E ,作 PF CD 交 CD 于点 F ,连接 EF .
则 PF AB ,PE PF P ,∴ AB 平面 PEF ,又 AB 平面 ABCD ,∴平面 PEF 平面 ABCD .
x2 )2
( y1
y2 )2
,
y1
y2
k ( x1
x2 ) 2m
k(142kkm2 ) 2m
2m 1 2k2
,
∴ PN
(142kkm2 )2
( 1
2m 2k
2
)2
【理科数学答案】2019-2020学年佛山市普通高中高三教学质量检测(二)理科数学 试题答案

2019~2020学年佛山市普通高中高三教学质量检测(二)理科数学参考答案123456789101112B ADCDAC ADC CB1302001(0,),12x x e x ∃∈+∞+≤144153,31531.617(1)(2)nn a =-(2)111(2)1n n T +=---+18(1)取PA 中点E ,连接,BE EN ,则EN 为PAD △的中位线,12EN AD ,又因为12BM AD ,所以EN BM ,所以四边形BENM 是平行四边形,所以//MN BE ,又因为MN ⊄平面PAB ,BE ⊂平面PAB ,所以//MN 平面PAB .(2)6919(1)22163x y +=(2)设直线MP 的方程为y kx m =+,代入椭圆方程,证明12120OM OP x x y y ⋅=+=20(1)模型①更适宜作为y 关于x 的回归方程(2)即产量为11件时,月利润的预报期望值最大,最大值是774.8万元21(1){|22,}Z a k a k k πππ-∈≤≤(2)证明过程略22(1)曲线1C 是以(0,2)为圆心,半径为2的圆,极坐标方程为4sin ρθ=(2)1tan 2α=23(1)(,0)(6,)-∞+∞ (2)证明过程略1.答案:B解析:2{|2}{|0A x x x x x =>=<或2},{|13}x B x x >=≤≤,所以A B = {|0x x <或1}x ≥.2.答案:A 解析:3i (3i)(1i)42i222i,11i (1i)(1i)2z z ++--=-=-=-=-∴=++-.3.答案:D 解析:10(1)x -的二项展开式中,含x 的项为2221010()C x C x -=,含4x 的项为88841010()C x C x -=,因为281010C C =,所以x 的系数与4x 的系数之差为04.答案:C解析:作出可行域如图中阴影部分所示,由6z x y =+得1166y x z =-+,表示斜率为16-,纵截距为16z 的直线,作出直线16y x =-并平移,使其经过可行域内的点,当直线过点(0,3)A 时,纵截距最大,此时z 取得最大值,最大值为18.5.答案:D解析:2()(sin cos )cos 21sin 2cos 2214f x x x x x x x π⎛⎫=++=++=++ ⎪⎝⎭,所以函数()f x 的最小正周期22T ππ==,A 正确;当8x π=时,242x ππ+=,选项B 正确;()f x 1+,选项C 正确;当78x π=时,()1f x =,故选项D 错误,所以选D .6.答案:A解析:3log 2(0,1)∈ ,所以2333333log (log 2)log 10,(log 2)(0,1),2log 2log 41a b c =<==∈==>,所以a b c <<.7.答案:C 解析:由题可知2,42pp -=-∴=,抛物线方程为28x y =,设2(4,2)(0)B t t t >,由28x y =可得4xy '=,所以切线斜率k t =,又22243t k t +=-,所以22243t t t +=-,整理得22320t t --=,(21)(2)0t t ∴+-=,2t ∴=,(8,8)B ∴,8210BF ∴=+=.8.答案:A解析:若从盒中取出一个红色球(概率为25),则第二次取球时盒中有6个红色球,3个黄色球,取出黄色球的概率为39;若从盒中取出一个黄色球(概率为35),则第二次取球时盒中有2个红色球,7个黄色球,取出黄色球的概率为79;由全概率公式,可知第二次取球时取出黄色球的概率23372735959455P =⨯+⨯==.9.答案:D解析:设2019年3月份的居民消费价格为a ,则6月份的居民消费价格为2(10.001)(10.001)(10.001)a a a +-=-<,所以2019年6月份的居民消费价格全年最低,故D 不正确.10.答案:C解析:因为2OP OF =,所以点P 在以O 为圆心,2OF 为半径的圆上,所以1290F PF ∠=︒,所以1212tan 3PF PF F PF ∠==,不妨设21PF =,则13PF =,1210F F =,所以121222,210a PF PF c F F =-===,离心率21022c c e a a ===.11.答案:C解析:AOB △和AOC △都是边长为R 的等边三角形,显然当平面AOB ⊥平面AOC 时,三棱锥O ABC -的体积取得最大值,最大值为23133113428R R R ⎛⎫⨯⨯== ⎪ ⎪⎝⎭,所以2R =,所以球O 的表面积2416S R ππ==.12.答案:B解析:在曲线C 上任取一点(,)P x y ,则根据题意可得2PA PB a ⋅=,即224PA PB a ⋅=,所以22224()()x a y x a y a ⎡⎤⎡⎤++⋅-+=⎣⎦⎣⎦,整理得4222422(22)20x y a x y a y +-++=(1),在(1)式中同时将x 换成x -,将y 换成y -,方程不变,所以曲线C 关于原点对称,故①正确;在(1)中,由222422422(22)4(2)4160y a y a y a a y ∆=--+=-≥,得224a y ≤,22a a y ∴-≤≤,故②正确;②解法二:12120121211sin 22PF F S F F y PF PF F PF =⋅=⋅∠△,212012sin sin 222a F PF a a y F PF a ∠∴==∠≤,022a ay ∴-≤≤,故②正确;满足12PF PF =的点P 都在y 轴上,在(1)中,令0x =,得42220y a y +=,解得0y =,即(0,0)P ,所以③错误;由22224()()x a y x a y a ⎡⎤⎡⎤++⋅-+=⎣⎦⎣⎦,得2222224()4x y a a x a ++-=,即2222224()4cos a a a ρρθ+-=,42222224cos 0a a ρρρθ+-=,2222cos 22a a ρθ=≤,2aρ≤所以④正确13.答案:02001(0,),12xx e x ∃∈+∞+≤14.答案:4解析:2(1sin )1sin 11()22222x x x x x f x x x +++==+++,设sin 1()222x x g x x=++,则()g x 为奇函数,177171()()3,(),(),()()4222222f ag a g a g a f a g a =+=-∴=--=-=-++=.15解析:设,AB a AD b ==,则1sin 1,262ABCD S ab ab ab π===∴=,则cos 6AB BC ab π⋅== 在PBC △中,由余弦定理得222222cos 2BC PB PC PB PC BPC PB PC PB PC =+-⋅∠=+-⋅ ,2222PB PC PB PC BC PB PC b PB PC ∴+-⋅=+⋅=+⋅ ,过点P 作PQ BC ⊥于点Q ,设BQ x =,则CQ b x =-,()()221()4PB PC PQ QB PQ QC PQ QB QC a x b x ⋅=+⋅+=+⋅=--,2222222221()4111344442PB PC PB PC b a x b x b a b a ∴+-⋅=+--+-+= =≥≥.16.答案:31.6解析:如图,设CD h =,因为53,37CAD CBD ∠=︒∠=︒,34tan 37,tan 5343︒≈︒≈,所以34,43AC h BC h ==,所以4371.7531017.533412AB BC AC h h h =-=-==⨯=,1217.5330.057h ∴=⨯≈米所以该建筑物的高度约为30.05 1.5531.6+=米17.解析:(1)设等比数列{}n a 的公比为q ,由123,,S S S -成等差数列,得2132S S S =-,即2111122a a q a q a q +=--,所以2320q q ++=,(1)(2)0q q ++=,解得1q =-或2q =-,又因为0n S ≠,所以1q ≠-,故2q =-,由123a a a =,得2211a q a q =,得12a q ==-,所以11(2)n n n a a q-==-.(2)111133(2)[(2)1][(2)1](1)(1)[(2)1][(2)1][(2)1][(2)1]n n n n n n n n n n n a b a a ++++--⋅--+--+===++-+⋅-+-+⋅-+111(2)1(2)1n n +=--+-+,所以12n nT b b b =+++ 12231111111(2)1(2)1(2)1(2)1(2)1(2)1n n +⎡⎤⎡⎤⎡⎤=-+-++-⎢⎥⎢⎥⎢⎥-+-+-+-+-+-+⎣⎦⎣⎦⎣⎦ 1111111(2)1(2)1(2)1n n ++=-=---+-+-+.18.解析:(1)解法一:取PA 中点E ,连接,BE EN ,则EN 为PAD △的中位线,12EN AD ,又因为12BM AD,所以EN BM ,所以四边形BENM 是平行四边形,所以//MN BE ,又因为MN ⊄平面PAB ,BE ⊂平面PAB ,所以//MN 平面PAB .解法二:取AD 中点E ,连接,ME EN ,因为E M 、分别为AD BC 、的中点,所以//ME AB ,又ME ⊄平面PAB ,AB ⊂平面PAB ,所以//ME 平面PAB ;因为EN 是PAD △的中位线,所以//EN PA ,又EN ⊄平面PAB ,PA ⊂平面PAB ,所以//EN 平面PAB ;又因为,,ME EN E ME EN =⊂ 平面EMN ,所以平面//EMN 平面PAB ,而MN ⊂平面EMN ,所以//MN 平面PAB .解法三:取PC 中点E ,连接,NE ME ,则NE 是PCD △的中位线,所以//NE CD ,又因为//CD AB ,所以//NE AB ,又NE ⊄平面PAB ,AB ⊂平面PAB ,所以//NE 平面PAB ;ME 是PBC △的中位线,所以//ME PB ,又ME ⊄平面PAB ,PB ⊂平面PAB ,所以//ME 平面PAB ;又因为,,ME EN E ME EN =⊂ 平面EMN ,所以平面//EMN 平面PAB ,而MN ⊂平面EMN ,所以//MN 平面PAB.(2)解法一:设平面PAB 平面PCD l =,因为//,AB CD AB ⊄平面PCD ,CD ⊂平面PCD ,所以//AB 平面PCD ,又AB ⊂平面PAB ,平面PAB 平面PCD l =,则//AB l ,过P 作PF AB ⊥于F ,PG CD ⊥于点G ,连接FG ,过P 作PO FG ⊥于点O ,连接OM ,则,PF l PG l ⊥⊥,所以FPG ∠即为平面PAB 与平面PCD 所成二面角的平面角,因为平面PAB ⊥平面PCD ,所以90FPG ∠=︒,由,,AB PF AB PG PF PG P ⊥⊥= ,可得AB ⊥平面PFG ,所以AB PO ⊥,又PO FG ⊥,AB FG F = ,所以PO ⊥平面ABCD ,经计算得3,2,2,1AB CD PF PG FG AF DG =======,所以O 为FG 中点,以O 为原点,,,OM OG OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,则111(0,0,1),(2,1,0),(1,1,0),(2,0,0),,,222P C D M N ⎛⎫-- ⎪⎝⎭,则511,,,(2,1,1),(3,0,0)222MN PC CD ⎛⎫=-=-=- ⎪⎝⎭,设平面PCD 的法向量(,,)n x y z = ,则2030n PC x y z n PD x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,可取(0,1,1)n = ,所以6cos ,93322MN n MN n MN n ⋅===⋅⨯.所以直线MN 与平面PCD 所成角的正弦值69.解法二:可将此四棱锥还原成如图所示的直三棱柱BCF ADE -,因为平面PAB ⊥平面PCD ,所以90AED ∠=︒,经计算可得2AE DE ==,1EP =,3AB =,以E 为坐标原点,,,EA ED EF 所在直线分别为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,则2221,3,(0,0,1),(0,2,0),0,2222M P D N ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以25,0,22MN ⎛⎫=-- ⎪ ⎪⎝⎭,显然平面PCD 的一个法向量(1,0,0)n = ,所以262cos ,92MN n MN n MN n -⋅===-⋅ ,所以直线MN 与平面PCD所成角的正弦值9.解法三:取PA 中点E ,连接,BE EN ,由(1)的证明可知//MN BE ,设平面PAB 平面PCD l =,因为//,AB CD AB ⊄平面PCD ,CD ⊂平面PCD ,所以//AB 平面PCD ,又AB ⊂平面PAB ,平面PAB 平面PCD l =,则//AB l ,过P 作PF AB ⊥于F ,则PF l ⊥,又因为平面PAB ⊥平面PCD ,PF ⊂平面PAB ,所以PF ⊥平面PCD ,所以PF即为平面PCD 的法向量,在平面PAB 中,以F 为原点建立如图所示平面直角坐标系,则12(1,0),(2,0),(0,22A B P E ⎛-- ⎝⎭,52,,22BE FP ⎛=-= ⎝⎭,6cos ,9BE FP BE FP BE FP ⋅===⋅,所以直线MN 与平面PCD所成角的正弦值9.19.解析:(1)设椭圆的半焦距为c ,由椭圆的离心率22c e a ==,且222a b c =+,可得222a b =,将点(2,1)代入椭圆方程222212x y b b +=,得224112b b +=,解得23b =,从而2226a b ==,所以椭圆C 的方程为22163x y +=.(2)当直线MP 的斜率不存在时,由对称性,不妨设直线MP的方程为x =,则(M P N,则PM PN ==当直线MP 的斜率存在时,设直线MP 的方程为y kx m =+,则圆心(0,0)O 到直线MP的距离d ==所以2222m k =+,因为圆在椭圆内部,所以圆的切线与椭圆一定会有两个交点,将y kx m =+代入22260x y +-=,整理得:222(21)4260k x kmx m +++-=,设1122(,),(,)M x y P x y ,则2121222426,2121km m x x x x k k --+==++,22121212121212()()(1)()OM OP x x y y x x kx m kx m k x x km x x m ∴⋅=+=+++=++++22222222222222264428(1)(1)(1)2(1)21212121m k m k k k k m k k k k k k --+=+-+=+-++++++22222(1)(42842)021k k k k k +--++==+,OM OP ∴⊥,因为点O 为线段MN 的中点,所以PM PN =.20.解析:(1)模型②的残差数据如下表:x 57811y200298431609ˆe 2018-21-21模型②的残差图如图所示.…………………………2分(只要算出残差或残差绝对值,或直接画出残差图,即给2分)模型①更适宜作为y 关于x 的回归方程,因为:……………3分理由1:模型①这4个样本点的残差的绝对值都比模型②小.理由2:模型①这4个样本的残差点落在的带状区域比模型②的带状区域更窄.理由3:模型①这4个样本的残差点比模型②的残差点更贴近x 轴.(写出一个理由即可得分)………………………………………………………………………5分(2)设月利润为Y ,由题意知Y qx y =-,则Y 的分布列为:Y 2314017323x x x ⎛⎫--+ ⎪⎝⎭2313017323x x x ⎛⎫--+ ⎪⎝⎭2310017323x x x ⎛⎫--+ ⎪⎝⎭P0.50.40.1232323121()1401731301731001732322352310x x x x x x E Y x x x ⎛⎫⎛⎫⎛⎫=---⨯+--⨯---⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3213217332x xx =--+-.………………………………………………………………………………9分设函数322()132173,(0,),()13232x x f x x x f x x x '=--+-∈+∞=--+.……………………9分令()0f x '=,解得11x =或12x =-(舍去),当(0,11)x ∈时,()0,()f x f x '>单调递增;当(11,)x ∈+∞时,()0,()f x f x '<单调递减.则函数()f x 的最大值为4649(11)6f =,即产量为11件时,月利润的预报期望值最大,最大值是774.8万元.…………………………………………………………………………………………………………12分21.解析:(1)由()0f a ≥,得sin 0a -≥,即sin 0a ≤,解得22,Z k a k k πππ-∈≤≤……1分以下证明,当22()Z k a k k πππ-∈≤≤时,()0f x ≥sin (0)x x ≥.若1x ≥1sin x ≥;若01x <≤,x ,令()sin (0)g x x x x =-≥,可知()1cos 0g x x '=-≥,故()(0)0g x g =≥,即sin (0)x x x ≥≥sin (0)x x ≥.…………………………………………………………3分若22()Z k a k k πππ-∈≤≤,则当2a x k π≤≤时,sin 0x ≤,0sin x ≥,即()0f x ≥;当2x k π≥sin (0)x x ≥sin(2)sin x k x π-=.故当22()Z k a k k πππ-∈≤≤时,()0f x ≥.综上,所求a 的取值范围是{|22,}Z a k a k k πππ-∈≤≤.…………………………………………5分(2)()cos f x x '=,令()cos g x x =,则321()sin 4()g x x x a '=+-,………6分1,()4a g x '<-∴ 是0,2π⎛⎫ ⎪⎝⎭上的增函数,又321(0)0,10242g g a ππ⎛⎫''<=-> ⎪⎝⎭⎛⎫- ⎪⎝⎭,故存在唯一实数00,2t π⎛⎫∈ ⎪⎝⎭,使0()0g t '=,当0(0,)x t ∈时,()0,()g x g x '<单调递减,当0,2x t π⎛⎫∈ ⎪⎝⎭时,()0,()g x g x '>单调递增.………………………………………………………………………………7分又14a <-,则11,,142a ->>,11(0)10,10,03222g g g ππ⎛⎫⎪⎛⎫⎛⎫⎪∴=<==<= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎭,故存在唯一实数0,32x ππ⎛⎫∈⎪⎝⎭,使00()cos 0g x x ==.………………………………8分所以在区间0,2π⎛⎫⎪⎝⎭有唯一极小值点0x,且极小值为00()sin f x x =……………………9分又由00()cos 0g x x ==000011,()sin 2cos 2cos f x x x x =∴=-,又00000011()(sin )2cos 2cos f x x x x x x +=+->.………………………………………………10分以下只需证明00112cos 2x x π>-,即证0002cos 2x x π<<-.000000,,2cos 2sin 22222x x x x x ππππ⎛⎫⎛⎫⎛⎫∈∴=-<-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,……………………………………11分则0000000111()(sin )2cos 2cos 2f x x x x x x x π+=+->>-,所以0001()2f x x x π>--………12分22.解析:(1)曲线1C 是以(0,2)为圆心,半径为2的圆,其直角坐标方程为22(2)4x y +-=,即224x y y +=,又由222,sin x y y ρρθ+==,可得曲线1C 的极坐标方程为4sin ρθ=.(2)将θα=代入4sin ρθ=,得4sin A ρα=,将θα=代入4cos ρθ=,得4cos B ρα=,又因为4AMB π∠=,2ABM π∠=,所以ABM △是等腰直角三角形,所以4cos 4sin BM AB OB OA αα==-=-,所以4cos 4sin tan 1tan 4cos BM OB ααααα-===-,解得1tan 2α=.23.解析:(1)由(0)8f >,得156a a -+->,当1a <时,156a a -+->,解得0a <,所以0a <;当15a ≤≤时,156a a -+->,无解;当5a >时,156a a -+->,解得6a >,所以6a >.综上可知,实数a 的取值范围是(,0)(6,)-∞+∞ .(2)11()512cos 110f x a x a a a--+⇔+-++≥≥,111111(1)12a a a a a a a a-++-++=+=+ ≥≥,而2cos 2x -≥,所以12cos 11220x a a +-++-+=≥恒成立,所以对R x ∀∈,1()51f x a a--+≥恒成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2019~2020学年佛山市普通高中高三教学质量检测(二)
数学(理科)
注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上
第Ⅰ卷(选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A ={x |x 2>2 x },B ={x |1≤x ≤3},则A ∪B =( ) A 、{x |0≤x <1} B 、{x |x <0或x ≥1} C 、{x |2<x ≤3} D 、{x |x ≤1或x >3} 2.复数z 满足(z +2)(1+i)=3+i ,则|z |=() A 、1 B 、2 C 、3 D 、2
3.(1-x )10的二项展开式中,x 的系数与x 4
的系数之差为( )
A 、-220
B 、-90
C 、90
D 、0 4.设变量x ,y 满足约束条件
,则目标函数z =x +6y 的最大值为()
A 、3
B 、4
C 、18
D 、40
5.设函数()f x =(sin x +cos x )2+cos2x ,则下列结论错误的是() A 、()f x 的最小正周期为π B 、y =()f x 的图像关于直线x =8
π
对称 C 、()f x 的最大值为2+1 D 、()f x 的一个零点为x =78
π 6.已知
,则()
A 、a <b <c
B 、a <c <b
C 、c <a <b
D 、b <a <c
7.已知点A (3,-2)在抛物线C :x 2
=2py (p >0)的准线上,过点A 的直线与抛物线在第一象限相切于点B ,记抛物线的焦点为F ,则|BF |=() A 、6 B 、8 C 、10 D 、12
8.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为() A 、35 B 、
79 C 、715 D 、3145
9.2019年,全国各地区坚持稳中求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,
发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率
为57.8%.下图为2019年居民消费价格月度涨跌幅度:
下列结论中不正确的是()
A、2019年第三季度的居民消费价格一直都在增长
B、2018年7月份的居民消费价格比同年8月份要低一些
C、2019年全年居民消费价格比2018年涨了2.5%以上
D、2019年3月份的居民消费价格全年最低
10.已知P为双曲线C:
22
22
1(00)
x y
a b
a b
-=>>
,上一点,O为坐标原点,F1,F2为曲线C左
右焦点.若|OP|=|OF2|,且满足tan∠PF2F1=3,则双曲线的离心率为()
A、
5
2
B、2
C、
10
2
D、3
11.已知A,B,C是球O的球面上的三点,∠AOB=∠AOC=60º,若三棱锥O-ABC体积的最大值为1,则球O的表面积为()
A、4π
B、9π
C、16π
D、20π
12.双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系xOy中,把到定点F1(-a,0),F2(a,0)距离之积等于a2(a>0)的点的轨迹称为双纽线C.已知点P (x0,y0)是双纽线C上一点,下列说法中正确的有()
①双纽线C关于原点O中心对称;②;
③双纽线C上满足|PF1|=|PF2|的点P有两个;④|PO|2a.
A、①②
B、①②④
C、②③④
D、①③
第Ⅱ卷(非选择题共90分)
本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23为选考题,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分,满分20分.
13.设命题,则⌝p 为 .
14.已知函数
,若f (a )=-3,则f (-a )= .
15.在面积为1的平行四边形ABCD 中,∠DAB =6
π
,则AB BC u u u r u u u r g =________;
点P 是直线AD 上的动点,则
的最小值为________.
16.数学兴趣小组为了测量校园外一座“不可到达”建筑物的高度,采用“两次测角法”,并自制了测量工具:将一个量角器放在复印机上放大4倍复印,在中心处绑上一个铅锤,用于测量楼顶仰角(如图);推动自行车来测距(轮子滚动一周为1.753米). 该小组在操场上选定A 点,此时测量视线和铅锤线之间的夹角在量角器上度数为37º;推动自行车直线后退,轮子滚动了10圈达到B 点,此时测量视线和铅锤线之间的夹角在量角器上度数为53ο.测量者站立时的“眼高”为1.55m ,根据以上数据可计算得该建筑物的高度约为 米.(精确到0.1) 参考数据:
三、解答题:本大题共7小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)
已知等比数列{a n }的前n 项和为S n (S n ≠0),满足S 1,S 2,-S 3成等差数列,且a 1a 2=a 3. (1)求数列{a n }的通项公式; (2)设
,求数列{b n }的前n 项和T n .
18.(本小题满分12分)
如图,在四棱锥PABCD -中,底面ABCD 是矩形,PA =PD 3PB =PC 6,
∠APB =∠CPD =90ο,点M ,N 分别是棱BC ,PD 的中点.
(1)求证:MN//平面PAB;
(2)若平面PAB⊥平面PCD,求直线MN与平面PCD所成角的正弦值.
19.(本小题满分12分)
已知椭圆C:
22
22
1(0)
x y
a b
a b
+=>>的离心率为
2
2
,且过点(2,1).
(1)求椭圆C的方程;
(2)过坐标原点的直线与椭圆交于MN,两点,过点M作圆x2+y2=2的一条切线,交椭圆于另一点P,连接PN,证明:|PM||=PN|.
20.(本小题满分12分)
2020年是我国全面建成小康社会和“十三五”规划收官之年,也是佛山在经济总量超万亿元新起点上开启发展新征程的重要历史节点.作为制造业城市,佛山一直坚持把创新摆在制造业发展全局的前置位置和核心位置,聚焦打造成为面向全球的国家制造业创新中心,走“世界科技+佛山智造+全球市场”的创新发展之路.在推动制造业高质量发展的大环境下,佛山市某工厂统筹各类资源,进行了积极的改革探索.下表是该工厂每月生产的一种核心产品的产量
x(5≤≤x20)(件)与相应的生产总成本y(万元)的四组对照数据.
x 5 7 9 11
y200 298 431 609
工厂研究人员建立了与的两种回归模型,利用计算机算得近似结果如下:
模型①:;
模型②:.
其中模型①的残差(实际值-预报值)图如图所示:
(1)根据残差分析,判断哪一个更适宜作为y 关于x 的回归方程?并说明理由; (2)市场前景风云变幻,研究人员统计历年的销售数据得到每件
产品的销售价格q (万元)是一个与产量x 相关的随机变量,分布列为:
结合你对(1)的判断,当产量x 为何值时,月利润的预报期望值最大?最大值是多少(精确到0.1)?
21.(本小题满分12分) 已知函数()-f x x a =
-sin x (x ≥a ).
(1)若()f x ≥0恒成立,求a 的取值范围; (2)若a <-14,证明:()f x 在(0,2
π
)有唯一的极值点x 0, 且
.
请考生在第22,23题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号.
22.(本小题满分10分)[选修44-:坐标系与参数方程选讲] 在平面直角坐标系xOy 中,曲线C 1的参数方程为
为参数),以坐标原点O 为极
点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4cos θ. (1)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程; (2)设点M 的极坐标为(4,0),射线θ=α(0<α<2
π
)与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,若∠AMB =4
π
,求tan α的值.
23.(本小题满分10分)[选修45-:不等式选讲]
已知函数,a∈R.(1)若f(0)>8,求实数a的取值范围;
(2)证明:对∀x∈R,恒成立.。