新能源汽车电池热管理系统
电动汽车电池热管理系统研究

电动汽车电池热管理系统研究电动汽车电池的工作温度通常在0°C至45°C之间,过高或过低的工作温度都会对电池的性能和寿命产生不利影响。
在高温环境下,电池组的工作温度过高会导致电池容量下降、内阻增加,甚至会引发电池的热失控,出现热失控事故。
而在低温环境下,电池的放电性能也会急剧下降,影响电动汽车的续航能力。
电动汽车电池的热管理系统显得尤为重要。
当前,电动汽车电池热管理系统主要采用空气冷却和液冷却两种方式。
在空气冷却方式下,通过通风散热和散热片来降低电池温度;而液冷却方式下,通过将冷却液循环流经电池组来实现散热。
这两种方式各有优缺点,因此在实际应用中需要根据具体情况进行选择。
除了传统的冷却方式外,还有许多新型的电动汽车电池热管理技术在不断涌现。
PCM (相变材料)技术,利用相变材料的相变过程释放或吸收潜热的特性,可以在一定程度上实现热能的储存和释放,从而降低电池温度变化的速率。
还有热泵技术,利用低温环境下的热能来提高电池的温度,从而提高电池的工作效率。
这些新技术的应用将为电动汽车电池的热管理提供更多的选择和可能性。
电动汽车电池热管理系统的研究对于提高电池效率、延长电池寿命、提高电动汽车续航能力具有重要意义。
当前,世界各国对新能源汽车的政策支持力度持续增强,促使电动汽车技术不断向前发展。
在这样的大环境下,电动汽车电池热管理系统的研究显得尤为重要。
为了进一步推动电动汽车电池热管理系统的研究,需要不断加大在材料、制造工艺、系统集成等方面的投入。
针对电池组材料的热性能进行改良和优化,以实现更低的热损耗和更高的热传导性能。
在制造工艺上,需要进一步提高散热片、冷却系统和传感器等关键部件的制造精度和可靠性。
在电动汽车电池热管理系统的系统集成方面,需要进一步研究优化控制策略,使得热管理系统能够更加精准地控制电池的工作温度。
在未来,随着电动汽车行业的不断发展,电动汽车电池热管理系统的研究也将得到更多的关注和投入。
新能源汽车整车热管理系统介绍

新能源汽车整车热管理系统介绍一、背景相较于传统燃油车热管理的对象为发动机、变速箱和空调等系统,新能源汽车的热管理新增了动力电池、电驱动等热管理对象。
从内燃机到电动车零部件的变化燃油车热管理系统主要包括空调制冷系统,和以发动机为热源的座舱暖风系统。
其主要零部件包括机械式空调压缩机、膨胀阀、蒸发器、冷凝器、以及发动机暖风系统等。
传统燃油车汽车热管理系统•新能源汽车(电动汽车)包括座舱、电池、电机电控热管理。
座舱热管理系统包括空调冷风、热泵暖风或PTC暖风,具有加热和制冷需求,主要零部件包括电动压缩机、电子膨胀阀、蒸发器、冷凝器、热交换器、PTC或者热泵冷凝器等。
新能源汽车热管理系统新能源汽车产业链中游主要包括空调热管理系统、电机电控冷却系统以及电池热管理系统等模块或者总成,由上游水泵、冷凝器等零部件组装而成,为下游整车提供功能安全和使用寿命的保障。
新能源热管理系统产业链中产品更复杂:由于其热管理系统的覆盖范围、实现方式相较传统燃油汽车发生了较大改变,其对于零部件节能性、安全性等方面的要求相对更高。
上游零部件中新增了Chiller、PCT加热器、四通阀等零部件,中游热管理系统中的热泵空调系统、电池冷却系统使得系统复杂程度进一步上升。
新能源汽车产业链系统品名图例作用电池、电机、电子设备等电子/电磁膨胀调节系统流量热管理系统阀电池、电机、电子设备等热管理系统冷却板内充冷却液,用于电池冷却电池、电机、电子设备等热管理系统电池冷却器电池系统换热电池、电机、电子设备等热管理系统电子水泵、水阀用于电池及电子设备水冷却减速器冷却系统油冷器、油泵电机和减速器冷却系统空调系统电动压缩机产生高压气体空调系统PTC/热泵通过加热或热交换产生热量空调系统膨胀阀控制制冷剂流量空调系统贮液器贮存制冷、过滤杂质与吸收水分空调系统冷凝器将冷却剂从气态变成液态,将其热量释放出来至周围空气中空调系统蒸发器让低温低压制冷剂吸收空气中热量关键部件解析小结:新能源汽车热管理系统部件趋于多样化和电气化,复杂性更高,带来新增市场机会。
一文带你看懂动力电池热管理系统

一文带你看懂动力电池热管理系统如果电池的工作温度超出合理温度区间,不论是过热或过冷,都可能发生热失控,电池性能都会明显甚至急剧下降。
因此,电动汽车都会装备动力电池热管理系统,监测电池的工作温度等状况,出现异常时及时报警和处理。
动力电池热管理系统主要有冷却处理、加热升温、调整充放电策略三方面内容。
一、冷却处理高电压蓄电池的工作温度必须处于特定的范围内,才能确保容量和充电循环数等指标的理想寿命得以优化。
当电池温度较高时,利用冷却液循环、自然风吹散热、热泵空调等冷却方式,对电池进行冷却降温。
1.冷却液循环根据环境温度,可通过低温冷却器或连接在制冷剂循环回路上的热交换器,将高电压蓄电池的余热排出。
低温回路2的控制主要通过驱动高电压蓄电池冷却转换阀来完成。
高电压蓄电池冷却回路的散热器可将余热直接排放到环境中。
热交换器通过热交换器中所喷入或蒸发的制冷剂,对冷却液进行冷却。
随后,冷却后的冷却液提供给低温回路。
低温冷却回路如图所示:在通过充电装置供电插座对高电压蓄电池进行充电时,低温回路转换阀(Y73/2)在中等温度下切换到直流转换器和充电装置方向,并将电子装置的余热通过低温回路的散热器排出为此,风扇可根据冷却液温度分级开启。
当高电压蓄电池温度较低时,冷却液通过被高电压蓄电池冷却系统膨胀阀阻断的热交换器进行输送。
在这种情况下,高电压蓄电池的热容量被用于冷却直流转换器和充电装置的电子系统。
电动制冷剂压缩机将低温气态制冷剂从蒸发器中抽取,对其进行压缩,同时令其升温并输送到冷凝器中。
压缩后的高温制冷剂在冷凝器中通过流经的,或通过风扇马达所吸入的车外空气进行冷却。
当达到根据制冷剂压力所确定的露点后,制冷剂便会发生冷凝,并令其形态由气态变为液态。
随后,制冷剂流入储液罐(干燥器)。
在流过储液罐时,制冷剂吸收潮气,蒸气气泡被析出,同时机械杂质会被滤除,以保护后续部件免受侵害,清洁后的制冷剂继续流向高电压蓄电池冷却膨胀阀。
在那里,处于高压下的液态制冷剂被喷入,或蒸发至高电压蓄电池冷却系统热交换器中。
新能源汽车热管理系统

新能源汽车热管理系统随着全球能源危机和环境污染问题日益突出,新能源汽车作为一种环保、节能的交通工具受到越来越多的关注。
而新能源汽车的热管理系统则起着至关重要的作用。
本文将对新能源汽车热管理系统进行1000字的介绍。
新能源汽车热管理系统是指对新能源汽车的动力系统、电池系统和驱动系统进行热能的控制和管理。
热管理系统的主要任务是保持新能源汽车各部件的温度在合理范围内,提高新能源汽车的能效和工作稳定性。
热管理系统的核心部件是散热器。
散热器是将新能源汽车发动机、电池和驱动系统产生的热量迅速散发出去,保持温度稳定的关键设备。
新能源汽车由于发动机的转速较高,电池的充放电速率较快,驱动系统的功率较大,因此其散热的需求也更加紧迫。
散热器必须具备高效散热的特性,以确保新能源汽车的各项指标能够达到要求。
另外,热管理系统还应包括温控装置。
温控装置是用于监测新能源汽车各部件的温度,并根据温度信号对热管理系统进行调控的设备。
通过温控装置的精确控制,可以确保新能源汽车的动力系统、电池系统和驱动系统在各种环境温度下都能正常工作,提高新能源汽车的工作效率和可靠性。
此外,热管理系统还包括冷却液。
冷却液是热管理系统中起冷却作用的介质。
在新能源汽车中,冷却液被用来吸收发动机、电池和驱动系统产生的热量,并通过散热器将热量带走。
冷却液的选用应具备良好的导热性能和抗腐蚀性能,以确保新能源汽车的热管理系统能够长时间高效运行。
此外,热管理系统还包括循环泵和风扇。
循环泵是用于将冷却液循环输送到散热器,形成闭合的循环系统。
风扇则是通过强制对流的方式加速散热器的热量散发,提高新能源汽车的散热效率。
循环泵和风扇的选择应根据新能源汽车的功率和散热需求进行合理配置。
综上所述,新能源汽车热管理系统是保持新能源汽车各部件温度稳定的关键设备。
新能源汽车的热管理系统应包括高效散热的散热器、精确控制的温控装置、优质的冷却液以及合理配置的循环泵和风扇。
通过科学合理的设计和配置,新能源汽车的热管理系统能够提高新能源汽车的能效和工作稳定性,为推动新能源汽车产业的发展做出贡献。
新能源汽车电池热管理系统设计和控制

新能源汽车电池热管理系统设计和控制随着环境污染问题的日益突出以及对能源可持续性的关注,新能源汽车逐渐成为人们对未来出行方式的理想选择。
而作为新能源汽车的关键组成部分之一,电池的热管理系统设计和控制变得尤为重要。
本文将探讨新能源汽车电池热管理系统的设计原则、组成部分以及控制策略,旨在提高电池的性能和寿命,确保车辆安全稳定运行。
1. 新能源汽车电池热管理系统的设计原则电池的温度是影响其性能和寿命的关键因素之一。
新能源汽车电池热管理系统的设计应遵循以下原则:1.1 温度控制与均衡新能源汽车电池热管理系统需要保持电池的温度在一个合适的范围内,并实现整体和单体电池之间的温度均衡。
合适的温度范围可以提高电池的效率、延长寿命,并确保车辆的安全运行。
1.2 高效的热传递为了保持电池温度的控制,电池热管理系统需要设计高效的热传递路径。
这包括散热系统、冷却系统和温度传感器等组件,以确保电池能够及时、有效地排放或吸收热量。
1.3 安全性和可靠性电池热管理系统的设计应考虑到车辆在不同环境和负载条件下的安全性和可靠性。
特殊的冷却控制策略和系统保护措施需要被设计和实施,以保护电池不受损害并避免过热或过冷。
2. 新能源汽车电池热管理系统的组成部分新能源汽车电池热管理系统由多个组成部分组成,以实现电池的温度控制和均衡。
以下是常见的几个组件:2.1 散热系统散热系统通常采用散热片、散热管和散热风扇等元件,用于排放电池产生的热量。
这些散热元件通过传导、对流和辐射的方式,将热能传递到周围环境中,以保持电池的温度在合适的范围内。
2.2 冷却系统冷却系统通过循环流体(如水或制冷剂)来吸收并带走电池中的热量,以保持电池温度的控制。
冷却系统通常由冷却泵、冷却管路和冷却器等组件组成,根据需要调节循环流体的流量和温度,以确保电池的稳定操作。
2.3 温度传感器和控制系统温度传感器用于检测电池或其周围环境的温度,并将数据反馈给控制系统。
控制系统根据传感器数据,采取相应的控制策略,如调节散热风扇的转速、冷却泵的流量或冷却器的温度,以实现电池温度的控制和均衡。
能源汽车电池热管理系统

目前电池热管理系统的标准化程度较低,不同厂商之间的系统差异较大,不利于行业的发展。解决方案 是推动电池热管理系统的标准化工作,制定统一的标准和规范,促
04
在保证性能和安全性的前提下,尽可能降低热 管理系统的成本。
电池热管理系统的设计方法
01
02
03
液体冷却
通过液体(如冷却液、制 冷剂等)循环流动,将电 池产生的热量带走并散发 到环境中。
空气冷却
利用空气流动将电池产生 的热量带走,常见于自然 对流和强制对流两种方式。
相变材料冷却
利用相变材料在相变过程 中吸收大量热量,并通过 材料的特性将热量散发到 环境中。
能源汽车电池热管理系统
$number {01}
目 录
• 能源汽车电池热管理概述 • 能源汽车电池热管理系统的工作
原理 • 能源汽车电池热管理系统的设计 • 能源汽车电池热管理系统的优化
与改进 • 能源汽车电池热管理系统的发展
趋势与展望
01
能源汽车电池热管理概述
电池热管理的定义
1 2
3
电池热管理
包括水泵、散热器、管道等,用于冷却液的循 环流动,将热量带走并散发到空气中。
电池组
能源汽车的动力来源,通过电池热管理系统进 行温度控制,保证电池的正常运行。
电池热管理系统的功能
温度控制
通过散热器和冷却液循环系统,将电 池组温度维持在适宜的工作范围内, 保证电池性能和寿命。
节能减排
适宜的温度环境有助于提高电池的充 放电性能、容量和寿命。
电池热管理系统在新能源汽车领域的应用前景
01
纯电动汽车
纯电动汽车是未来新能源汽车的主要发展方向,电池热管理系统在纯电
新能源汽车电池热管理系统

2. 重大前期电池热管理研究工作基础
原始模型的CFD仿真分析
长安杰勋
长安志翔 恒通客车
90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 45.00 40.00 1 3 5 7 9 11 13 15 17 19
第一层 第二层 第三层
CFD分析时取入口空气的初始温度35℃,电池发热功率为 650W,入口空气流量为140m3/h。仿真结果为:最高温度76.08℃, 最低温度51.48℃,温差为24.6℃,出口空气温度49.5℃。
1.电池热管理系统研究的意义及现状
美国NREL与开发商、制造商、DOE以及USABC合作,一直在 进行蓄电池热管理系统的研究,在世界此方面的研究中处于领 先水平。
1.电池热管理系统研究的意义及现状
我国春兰、长安、重庆大学、清华大学、上海交通大学在国家 863等专项的支持下,开展了电池热管理系统的研究。
中混圆形电池瞬态仿真分析及实验验证
60
充放电电流/A
30 20 10 0 -10 0 -20 -30 -40 时间/min 50 100 150 200 250
发热功率/W
300
长安杰勋
长安志翔 恒通客车
50 40
1500 1200 900 600 300 0 0 50 100 150 时间/min 200 250 300
由于此项目将于年底验收,故分析 结果及优化结构不能给出。
2. 重大前期电池热管理研究工作基础
长安杰勋
长安志翔 恒通客车
原始方案CFD仿真分析 优化方案一 优化方案二 优化方案三
2. 重大前期电池热管理研究工作基础
原始方案CFD仿真分析
2024版新能源汽车电池热管理系统PPT课件

冷却系统设计与选
型
介绍适用于电池热管理系统的冷 却系统设计原则,包括冷却液选 择、冷却管道设计、散热器设计 等,以及冷却系统的选型建议。
04
电池热管理系统性能评价
Chapter
性能评价指标及方法
01
02
03
温度均匀性
散热效率
能耗
衡量电池组内温度分布的一致性, 通过温度传感器测量并计算温差。
评价热管理系统在特定条件下的 散热能力,通过对比实验和模拟 分析得出。
电池热管理系统重要性
电池性能与热环境关系 热管理系统对电池寿命和安全性的影响 提高新能源汽车整体性能的意义
课件目的与结构
课件目的
介绍新能源汽车电池热管理系统的 原理、设计及应用
课件结构
概述、热管理系统原理、设计方法 与实例、应用与展望
02
电池热管理系统基本原理
Chapter
电池工作原理及热特性
针对实验结果,分析热管理系统 的优缺点,提出改进建议。
温度均匀性分析 散热效率评价 能耗分析 结果讨论
根据实验数据绘制温度分布图, 评估热管理系统的温度均匀性。
根据功率计等设备采集的数据, 计算热管理系统的能耗并进行评 估。
05
新能源汽车电池热管理系统应 用案例
Chapter
纯电动汽车电池热管理系统应用
能量管理策略
探讨基于电池能量状态的控制策略,如SOC、 SOH等,用于优化电池的能量利用和延长电池寿 命。
关键部件设计与选型
传感器设计与选型
阐述适用于电池热管理系统的温 度传感器、电流传感器、电压传 感器等的设计与选型原则。
控制器设计与选型
探讨电池热管理系统控制器的设 计原则,包括控制算法、硬件电 路、软件编程等,以及控制器的 选型建议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取进口流量1200m3/h, I=150A,则发热功率为16.28KW。由仿真 结果可以看出,最高温度已降到105℃,最大温差为15℃。
2. 重大前期电池热管理研究工作 优化方案二 基础
进风
出风
取总进口流量3200m3/h, I=100A,则时发热功率为7.255KW。进 风口处电池温度高达65℃ ,出风口处温度为39℃ ,前后温差较大。
CFD分析时取入口空气的初始温度35℃,电池发热功率为650W, 入口空气流量为140m3/h。仿真结果为:最高温度60.03℃,最低温 度50.85℃,温差为9.5℃。
2. 重大前期电池热管理研究工作 优化方案二CFD分析结果 基础
54 53 52 51 50 49 1 3 5 7 9 11 13 15 17 19 电池1区 电池2区 电池3区
实验设备
重大自主研发的温度采集器 T型康铜传感器 红外摄像仪
3. 单体电池研究基础
研究对象
3. 单体电池研究基础
研究方法 1.获得仿真时所需要的几何参数和物性参数; 2.建立单体电池详细的三维模型,进行温度场瞬态仿真分析,仿真结果 与实验数据进行对比,进一步修改模型; 3.简化模型,以用于实际的工程应用。
优化方案三
2. 重大前期电池热管理研究工作 原始方案CFD仿真分析 基础
取进口流量1400m3/h, I=150A, 则发热功率为16.28KW。由仿真结 果可以看出,此结构的最高温度达 115℃,最大温差达30℃,电池组 温度分布严重不均匀。
2. 重大前期电池热管理研究工作 优化方案一 基础
2. 重大前期电池热管理研究工作 B样电池包优化方案 基础
400 300 200 100 0 105 137 155 174 194 212 266 284
压差△P/Pa
流量Q/m3 h-1
400 350 300 250 风机特性曲线 系统管路特性曲线
压差
200 150 100 50 0
0
30
2. 重大前期电池热管理研究工作 原始模型的CFD仿真分析 基础
在极限工况发热功率为1750W时 ,最高温度和最低温度温差 约33℃,变工况最大温差为17.2℃,远大于温差在5℃内的要求。
2. 重大前期电池热管理研究工作 A样电池包优化方案一(改变倾斜角度和电池的间距) 基础
370
24 个 电 池 模 块 的 温 度 ( K)
新能源汽车 电池热管理系统
内
容
1. 电池热管理系统研究的意义及现状
2. 电池热管理研究工作基础 3. 单体电池研究基础
1.电池热管理系统研究的意义及现状
动力电池的成本、性能、寿命在很大程度上决定了HEV 的成本和可靠性; 电池的温度和温度场的均匀性对蓄电池的性能和寿命 有很大的影响。
因此:进行电池散热结构的优化设计与散热性能的预 测,对提高混合动力汽车及动力电池的成熟度和可靠性具 有重要的现实意义。
60
90
120
150 流量
180
210
240
270
300
通过在不同压差下仿真分析,得出管路特性曲线,然后与风 机特性曲线求交点,以确定风机的工作点。
6% 爬 坡 工 况 充 放 电 电 流 图 80 6% 爬 坡 工 况 65 50
55 城市模拟堵车工况 45 35 25 15 5 -5 -15
-30 70 90 急加速急减速工况(二)
CFD分析时取入口空气的初始温度35℃,电池发热功率为 650W,入口空气流量为140m3/h。仿真结果为:电池壳体表面最高 温度53.457℃,最低温度49.423℃,温差为4.03℃。进出口压力 损失为142.2Pa,出口空气温度为46.12℃。各单个模块的不均匀 性,除了进风口第一排的三个电池迎风面和背风面的温差在6℃, 其他各模块的均匀性均在5℃以内。
2. 重大前期电池热管理研究工作 圆形电池热管理系统整车实验验证 基础
对CV8圆形电池进行了五种工况的实验,分别是: 6%爬坡、 10%爬坡、城市堵车、高速、急加速急减速。
数据处理时温度已补偿,均取各个工况的温度和温差来比较, 经验证CV8圆形电池优化方案二满足要求。
2. 重大前期电池热管理研究工作 中混圆形电池瞬态仿真分析及实验验证 基础
600
一 个 循 环 的 时 间 (s)
电池的位置不动,通过增加圆弧形的导流板、长条形的引 流板以及菱形的引流板,减少了前部电池的热交换面积,为后 部电池增加了冷却风量,极限工况温差11.6℃。变工况温差 5.83℃。
2. 重大前期电池热管理研究工作 A样电池包优化方案三(给电池包热阻) 基础
2. 重大前期电池热管理研究工作 外围冷却系统CFD仿真分析及实验验证 基础
DC/DC内部半导体元器件温度上限为75度,IPU温度上限 为85度,计算结果所得到的DC/DC温度值已经超过了上限。
优化方案的CFD分析 结果中IPU和DC/DC评估点 处的温度分别为65.4℃和 67.7℃,低于许用温度值, 满足散热性能要求 由CFD仿真及实验可以 看出,此方案设计合理。
第二腔
第一腔
2. 重大前期电池热管理研究工作基 热管理系统原始方案整车实验验证 础 原始模型的CFD仿真分析
A样电池包优化方案 B样电池包优化方案
2. 重大前期电池热管理研究工作基 热管理系统原始方案整车实验验证 础
试验在长安公司试验环境 舱中进行,按双方设定循环工 况试验,试验发现电池组温度 分布严重不均衡。
发热功率/W
2. 重大前期电池热管理研究工作 强混项目简介 基础
先对电池包进行流场分析,确定 DC/DC、上下层电池组的流量分配,为 下一步温度场分析打下基础。
由于此项目将于年底验收,故分析 结果及优化结构不能给出。
2. 重大前期电池热管理研究工作 原始方案CFD仿真分析 优化方案一 基础 优化方案二
第一层 第二层 第三层
CFD分析时取入口空气的初始温度35℃,电池发热功率为 650W,入口空气流量为140m3/h。仿真结果为:最高温度76.08℃, 最低温度51.48℃,温差为24.6℃,出口空气温度49.5℃。
2. 重大前期电池热管理研究工作 优化方案一CFD分析结果 基础
62 60 58 56 54 52 50 48 46 1 3 5 7 9 11 13 15 17 19 bat1 bat2 bat3
1.电池热管理系统研究的意义及现状
美国NREL与开发商、制造商、DOE以及USABC合作,一直在 进行蓄电池热管理系统的研究,在世界此方面的研究中处于领 先水平。
1.电池热管理系统研究的意义及现状
我国春兰、长安、重庆大学、清华大学、上海交通大学在国家 863等专项的支持下,开展了电池热管理系统的研究。 第三腔
60 50 40 30 20 10 0 -10 0 -20 -30 -40 时间/min 50 100 150 200 250
1500 1200 900 600 300 0 0 50 100 150 时间/min 200 250 300
充放电电流/A
300
电池模块最高温度不超过48℃,模块间最大温差不超过3℃,散热强度 和散热均衡性良好。表明电池组在生、散热方面满足了混合动力电动汽车对 动力电池的使用要求。
0
100
200
300
400
500 600 700 时 间 ( s)
800
900 1000 1100
0
100
200
300
400
500 600 时 间 ( s)
700
800
900
1000
正在以上述电流数值为边界条件进行瞬态仿真分析。
2. 重大前期电池热管理研究工作 中混原始模型的CFD仿真分析 中混优化方案一CFD分析结果 基础 中混优化方案二CFD分析结果
2. 重大前期电池热管理研究工作 优化方案三 基础
进风口 出风口 进风口 出风口
出风口
取总进口流量3200m3/h, I=100A,则发热功率为7.255KW。进 风口处电池温度49℃,出风口处电池温度43℃,温差为6 ℃左右。
3. 单体电池研究基础
研究目的 该项目通过测量电池单体在多种工况下表面温度场的变化,并将其与电池 温度场数值分析结果进行对比,希望能够获得一种简化并可靠的电池内部温度 场数值分析方法。通过该项目,一方面对长安目前采用的多种电池进行评价, 包括电池效率、放热及材料一致性以及温度对电池寿命的影响等性能;另一方 面,建立起可用于工程项目的单体电池温度场分析模型,提高电池箱开发的成 功率。
城市模拟堵车工况充放电电流图
急加速急减速工况充放电电流(二)图
充 放 电 电 流 ( A)
充 放 电 电 流 ( A)
35 20 5 -10 -25 -40
充 放 电 电 流 ( A)
50
30
10
-10
-25 -35
-50 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 时 间 ( s)
350
24个 电 池 模 块 的 温 度 ( K)
345 340 335 330 325 320 315 310 305 300 0 100 200 300 400
第 13组 电 池 第 1-24组 电 池 升 温 情 况 第 8组 电 池
500
600
一 个 循 环 的 时 间 ( s)
有个叫马天长的中医治疗男科病非常厉害,他徽|亻言:msdf003 我在他那里治疗过三个疗程,恢复的很好
中混外围冷却系统CFD仿真分析及实验验证 中混圆形电池热管理系统整车实验验证 中混圆形电池瞬态仿真分析及实验验证 强混项目简介