新能源汽车电池热管理系统设计

新能源汽车电池热管理系统设计

新能源汽车电池热管理系统设计

电池包作为电动汽车上装载电池组的主要储能装置,是混动/电动汽车的关键部件,其性能直接影响混动/电动汽车的性能。目前电池普遍存在比能量和比功率低、循环寿命短、使用性能受温度影响大等缺点。由于车辆空间有限,电池工作中产生的热量累积,会造成各处温度不均匀从而影响电池单体的一致性。从而降低电池充放电循环效率,影响电池的功率和能量发挥,严重时还将导致热失控,影响系统安全性与可靠性。为了使电池组发挥最佳的性能和寿命,需要对电池进行热管理,将电池包温度控制在合理的范围内。

电池热管理的主要功能包括:电池温度的准确测量和监控;电池组温度过高时的有效散热;低温条件下的快速加热;保证电池组温度场的均匀分布;电池散热系统与其他散热单元的匹配。

电池包的冷却有风冷和液冷两种方式。研究表明风冷方式易实现,但电池包温度梯度变化较大,不利于电池稳定工作。通过冷却液与空调系统的制冷剂进行换热的液冷方式逐渐成为主流。对新能源汽车电池热问题的科学管理,需要考虑多个系统的相互影响。各系统之间的影响关系如解决方案

为了解决电池热管理中,流体系统之间复杂的耦合关系,可以采用Dymola软件的蒸发循环库、液冷库、电池库等搭建一维仿真模型。去模拟整

个模型系统,分析不同系统之间的耦合关系,从而实现对复杂系统的优化控制。

蒸发循环模型

2018年新能源汽车热管理系统分析报告

2018年新能源汽车热管理系统分析报告

投资聚焦 研究背景 汽车电动化浪潮下,新能源汽车热管理系统的需求高增长;与传统汽车热管理系统相比,新能源汽车热管理系统的单车价值量更高。我们在本篇报告中深度研究了汽车电动化浪潮下热管理行业的变化,并结合分析推导出投资策略。 创新之处 (1)在本报告中,我们从空调系统、电池热管理系统及整体解决方案三个方面,对电动车和传统燃油车热管理系统的异同进行了定性和定量分析,进而对电动车热管理系统的市场需求进行了测算。 (2)本报告投资策略的标的选择范围更广,我们在A股和新三板两个市场中选择优质标的。 投资观点 汽车电动化趋势下,热管理行业迎来变革期。微观角度来看,与传统燃油汽车相比,电动车热管理系统的变化包括:(1)热管理模块新增电池热管理系统、电机电控热管理系统等;(2)空调系统动力源由发动机变为电能,系统复杂程度明显提升;(3)热管理整体解决方案需更加重视功能实现和能耗管理的平衡。以上变化反应在行业层面为:(1)热管理系统的单车价值量明显提升,行业空间也相应增加;(2)行业格局或将出现变化。 根据我们的测算,2020年全球电动车热管理系统需求约300亿元,CAGR约50%,其中,中国市场需求约125亿元(CAGR44%),海外市场需求约175亿元(CAGR59%)。 我们认为在汽车电动化浪潮中,既有的汽车热管理竞争格局已有松动迹象,国内企业存在弯道超车的可能性。我们首次给予汽车热管理行业“买入”评级,建议关注: 1、A股:三花智控(002050.SZ,全球空调阀门龙头)、奥特佳(002239.SZ,汽车空调压缩机龙头)、松芝股份(002454.SZ,客车空调龙头)、银轮股份(002126.SZ,汽车热交换器龙头)、中鼎股份(000887.SZ,密封件龙头)等; 2、新三板:昊方机电(831710.OC)、瑞阳科技(834825.OC)等。风险因素 (1)新能源汽车政策变化影响行业发展的风险:新能源汽车行业仍在早期发展阶段,政策会对行业发展产生较大影响,若监管部门发布相关政策,可能会冲击行业发展。 (2)技术路线更替风险:技术进步是新能源汽车行业发展的驱动力之一,新产品的产业化可能会对上一代产品产生冲击,进而替代原有的技术路线。 (3)市场竞争加剧风险:新能源汽车行业拥有很大发展空间,有大量企业参与竞争,行业产能可能在短期内超过需求,从而出现产能过剩的风险。

动力电池pack生产工艺流程

动力电池pack生产工艺流程_动力电池PACK四大工艺介绍 2018-04-17 17:13 ? 885次阅读 动力电池PACK四大工艺 1、装配工艺 动力电池PACK一般都由五大系统构成。 那这五大系统是如何组装到一起,构成一个完整的且机械强度可靠的电池PACK呢?靠的就是装配工艺。 PACK的装配工艺其实是有点类似传统燃油汽车的发动机装配工艺。 通过螺栓、螺帽、扎带、卡箍、线束抛钉等连接件将五大系统连接到一起,构成一个总成。

2、气密性检测工艺 动力电池PACK一般安装在新能源汽车座椅下方或者后备箱下方,直接是与外界接触的。当高压电一旦与水接触,通过常识你就可以想象事情的后果。因此当新能源汽车涉水时,就需要电池PACK有很好的密封性。 动力电池PACK制造过程中的气密性检测分为两个环节: 1)热管理系统级的气密性检测; 2)PACK级的气密性检测; 国际电工委员会(IEC)起草的防护等级系统中规定,动力电池PACK 必须要达到IP67等级。

2017年4月份的上海车展,上汽乘用车就秀出了自己牛逼的高等级气密性防护技术。将充电状态下的整个PACK放到金鱼缸中浸泡7天,金鱼完好无损,且PACK内未进水。 3、软件刷写工艺 没有软件的动力电池PACK,是没有灵魂的。 软件刷写也叫软件烧录,或者软件灌装。 软件刷写工艺就是将BMS控制策略以代码的形式刷入到BMS中的CMU和BMU中,以在电池测试和使用过程中将采集的电池状态信息数据,由电子控制单元进行数据处理和分析,然后根据分析结果对系统内的相关功能模块发出控制指令,最终向外界传递信息。

4、电性能检测工艺 电性能检测工艺是在上述三个工艺完成后,即产品下线之前必做的检测工艺。 电性能检测分三个环节: 1)静态测试: 绝缘检测、充电状态检测、快慢充测试等; 2)动态测试; 通过恒定的大电流实现动力电池容量、能量、电池组一致性等参数的评价。 3)SOC调整; 将电池PACK的SOC调整到出厂的SOC SOC:StateOfCharge,通俗的将就是电池的剩余电量。 关于电池PACK的电性能检测参数,每个公司其实都有自己定义的标准,都不一样。但是国家对于新能源汽车动力的电性能要求是有规定的,国标如下: 《GB/T31484-2015电动汽车用动力蓄电池循环寿命要求及试验方法》《GB/T31486-2015电动汽车用动力蓄电池电性能要求及试验方法》

新能源汽车核心技术详解:电池包和BMS、VCU、-MCU

新能源汽车核心技术详解:电池包和BMS、VCU、 MCU 电子创新网| 2001-15-20 11:54 2014年国内新能源汽车产销突破8万辆,发展态势喜人。为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。 1 新能源汽车分类 在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。 1.1消费者角度 消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。 1.2技术角度

图1 技术角度分类 技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。 2 新能源汽车模块规划 尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制

未来新能源汽车电池行业研究分析(精)

未来新能源汽车电池行业分析(精)

————————————————————————————————作者:————————————————————————————————日期: 2

新能源电动汽车最主要的部件是动力电池、电动机和能量转换控制系统,而动力电池要实现快速充电、安全等高性能,是技术门槛最高、也是利润最集中的部分。中投顾问新能源汽车行业部指出,新能源汽车对电池要求很高,必须具有高比能量、高比功率、快速充电和深度放电的性能,而且要求成本尽量低、使用寿尽量长。 据发布的《2009-2012年中国电池行业投资分析及前景预测报告》显示,新能源汽车将朝着“镍氢——锂电——燃料电池”产业化路径发展。短期能够兑现业绩的只有镍氢动力电池,磷酸铁锂电池的不成熟,以及工信部出台的新能源汽车准入新标准也让镍氢电池生产商看到了中短期的希望。不过,3-5年内在锂电池技术成熟后,镍氢电池市场将被锂电池逐渐蚕食。 再者,近年来燃料电池(FC技术的突飞猛进使得氢能的梦想在21世纪开始变成现实。而以氢为动力的燃料电池汽车(FCV得到了世界各国政府和企业的高度重视,并且取得了重大进展,预计在未来的5--10年内FCV将正式进人市场,以加氢站、输氢管道建设为标志的“氢经济”初露端倪。 研究发现,日本的锂电池供应商占有较大的优势地位,并已开始着手制定统一的锂电池规格、安全标准、充电方式。而美国为了不让自己由对进口石油的依赖变成对外国锂电池的依赖,也在扶持电动车和锂电池制造企业,美国能源部也于2009年批准了250亿美元的贷款。相比较之下,欧洲的汽车企业虽然在绿色节能环保方面非常激进,甚至更为激进,但他们在改进传统的发动机(如使其“小型化”,利用汽/柴油直喷技术等方面,或者氢动力车方面,优势更为明显。 1. 政策利好镍氢电池迎来投资盛宴 产业研究中心获悉,2010年6月25日工信部对外公布了《新能源汽车生产企业及产品准入管理规则》,并于7月1日起施行,到2010年12 月31日前适用。根据工信部出台的新标准,以镍氢电池生产的混合动力乘用车被归类为成熟产品,允许在全国范围内销售使用,对镍氢电池产业是一大利好。 1.1. 镍氢电池发展现状分析 3

电动汽车电池组热管理系统的关键技术

第22卷 第3期 2005年3月 公 路 交 通 科 技 Journal of Highway and T ransportation Research and Development V ol 122 N o 13 Mar 12005 文章编号:1002Ο0268(2005)03Ο0119Ο05 收稿日期:2004Ο03Ο16 基金项目:国家高技术研究发展计划(863计划)重大专题项目(2003AA501100) 作者简介:付正阳(1978-),男,北京人,清华大学汽车工程系硕士研究生,主要从事电动汽车方面的研究1 电动汽车电池组热管理系统的关键技术 付正阳,林成涛,陈全世 (清华大学 汽车安全与节能国家重点实验室,北京 100084) 摘要:电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。关键词:电动汽车;电池组;热管理系统 中图分类号:T M911141 文献标识码:A K ey Technologie s of Thermal Management System for EV Battery Packs FU Zheng Οyang ,LIN Cheng Οtao ,CHEN Quan Οshi (S tate K ey Laboratory of Autom otive Safety and Energy ,Tsinghua University ,Beijing 100084,China ) Abstract :Research and development of battery thermal management system (BT MS )is very im portant for the operation safety and relia 2bility of electric vehicle (E V )1In this paper ,by analyzing the in fluence of tem perature on the per formance and service life of batteries ,the desired function of a BT MS was outlined ,a procedure for designing BT MS was introduced 1Several key technologies during designing a BT MS were introduced and analyzed ,including optimum operating tem perature range of a battery ,heat generation mechanism ,ac 2quisition of the therm odynamic parameters ,calculation of tem perature distribution ,selection of heat trans fer medium ,design of cooling structure and s o on 1 K ey words :E lectric vehicle ;Battery pack ;Thermal management system 0 引言 能源与环境的压力使传统内燃机汽车的发展面临前所未有的挑战,各国政府、汽车公司、科研机构纷纷投入人力物力开发内燃机汽车的替代能源和动力,这大大促进了电动汽车的发展。 电池作为电动汽车中的主要储能元件,是电动汽车的关键部件[1,2],直接影响到电动汽车的性能。电池组热管理系统的研究与开发对于现代电动汽车是必需的,原因在于:(1)电动汽车电池组会长时间工作 在比较恶劣的热环境中,这将缩短电池使用寿命、降 低电池性能;(2)电池箱内温度场的长久不均匀分布将造成各电池模块、单体性能的不均衡;(3)电池组的热监控和热管理对整车运行安全意义重大。 清华大学从承担国家“八五”电动汽车攻关项目以来,在电动汽车、混合动力汽车和燃料电池汽车关键技术的研究中,积极开展了电池组热管理系统的研究,并在样车上进行了道路试验,目前电池组热管理系统的优化设计与改进工作正在进行中。本文是对前阶段研究工作的总结和今后工作的展望。

浅论新能源汽车电池包装配生产技术

浅论新能源汽车电池包装配生产技术 新能源汽车的核心技术是电池包,电池包生产装配的质量对新能源汽车的性能有着较大影响,因此,电池包的研发和装配生产技术备受业内关注。文章对新能源汽车电池包装配生产技术进行了分析探讨。 标签:新能源汽车;电池包;装配 一、新能源汽车电池概述 我国新能源汽车行业发展迅猛,新能源汽车核心技术是电池包,其生产装配质量直接影响新能源汽车的性能。当前我国新能源汽车主要应用的是蓄电池,主要特点如下。 (1)铅酸蓄电池。其电极材料由铅及其氧化物构成,电解液是硫酸溶液,具有电压稳定、价格底的优点,但缺点是比能低、使用周期短、日常维护较为频繁。目前,铅酸蓄电池已经广泛应用于低速电动汽车领域。 (2)镍氢电池。镍氢电池有阳极材料和阴极材料构成,前者主要是氢氧化镍,后者主要是钒、锰、镍等金属合成材料构成,镍氢电池的能量体积密度比铅酸电池高3倍左右,比功率却是铅酸电池的10倍。但是低温环境下容量会减小,高温环境下充电的耐受性差,镍等部分原材料价格昂贵,过度放电会损伤电池的性能,在一定程度上限制其荷电状态。 (3)锂离子电池。锂离子电池性能高、成本低,是新能源汽车应用的大势所趋。新型锂离子电池采用高电压/高容量正负极材料和高压电解液代替,电池成本、比能量和能量密度比传统锂离子电池优势明显,应用于新能源汽车动力系统中,经济性和便利性得到大幅提升。 二、新能源汽车常见电池包的结构分类 (1)油电混合动力汽车电池包。油电混合动力汽车是指同时具备热动力源与电动力源两种动力来源的汽车。电机不能直接驱动车轮,而是辅助发动机进行车轮驱动。电池包也不需要外接电源,需通过发动机将其多余的能量转化为电能储存在电池包内,当发动机再次需要电动机辅助驱动时,电池包内的电能转化为动能传输给电机,由电机辅助发动机驱动汽车。也就是说,电池包只是在起步、加速、制动等环节辅助发动机工作,具有较小的体积和较轻的质量。目前,油电混合动力汽车多使用镍氢电池,一般通过自然通风冷却装置冷却,较为简单,电池包体积小,一般设置在座椅后面的后备厢,便于车内空间的布置,不仅方便电池包的生产装配,也便于日常维护和保养。 (2)插电混合动力汽车电池包。插电混合动力汽车也同时具备热动力源与电动力源两种动力来源,与油电混合动力汽车相比电机能单独直接驱动,电池包

新能源汽车、电动汽车整车装配流程、报告

电动汽车电动汽车整车装配工艺流程卡 车辆型号出厂编号/VIN代码 电机编号控制器编号 调速踏板编号充电器编号 组合仪表编号车身颜色 蓄电池编号 1 2 3 4 5 6 7 8 工序号工序名称力矩控制项目责任人 1-1 1.车门门锁、车门限位器 2.充电器、充电器座、电喇叭 3.车门流水条 1-2 1.线卡热塑管 2.车架线束,连接控制器和后蓄电池电缆4根 3.接前桥制动软管组件、通后桥制动管 4.驻车软轴1 1-3 1.前减震器(左/右) 2.横摆臂和转向臂(左/右) 3.平衡杆、平衡杆胶套 4.前制动器(左/右) 5.接制动毂油管 6.室内制动管路两通转向器 7.转向球头、转向拉杆、转向防尘套 1.固定减震器螺母 2.连接横摆臂、转向臂螺母螺栓 3.固定转向器螺母螺栓 4.固定平衡杆螺母螺栓 5.固定制动器螺栓 6.固定制动鼓螺母 1-4 1.后桥总成组件 2.后悬限位块 3.后减震弹簧 4.接前地板制动管路 1-5 1.制动踏板组件 2.室内接制动泵油管1/2 3.制动油壶,加制动液 4.驻车制动器 5.粗调刹车 6.装前车轮 7.粗调前束 1.固定制动踏板螺栓 2.固定前轮螺母 2-1 1.顶蓬密封条 2.顶蓬线束 3.后尾翼组件 4.粘前轮包左右装饰件 2-2 1.车身线束、手刹继电器、闪光器、制动开关 2.加速踏板、刮水电机、喷水嘴、 3.暖风机、喷水壶 4.转换器、扩音机 2-3 1.蓄电池、蓄电池减震垫 2.前、后组合灯,密封塞 2-4 1.蓄电池布线和固定 2.后蓄电池压板 word文档可自由复制编辑

2-5 1.玻璃升降器(左/右)、玻璃导轨胶条 2.车门玻璃(左/右) 3.车门玻璃挡水条(左/右) 4.电动门窗(选装)、中控锁(选装) 工序号工序名称力矩控制项目责任人 2-6 1.内饰 2.内后视镜、遮阳板、内把手 3.外后视镜、前后侧风窗胶条 4.天线 2-7 1.方向柱 2.仪表板研配 3.前后风挡玻璃和胶条 4.粘侧围前/后风窗玻璃、雨刷 5.粘顶盖密封条 1.固定转向柱螺母螺栓 2-8 1.仪表板组件 2.点火开关、组合开关 3.组合开关罩、方向盘 1.固定方向盘螺母 2-9 1.地板皮、中蓄电池罩 2.车门密封条 3.安全带、倒顺开关 4.前后保险杠组件、密封塞、后轮包装饰件 5.车门内护板、前格栅 1.固定安全带的螺栓 2-10 1.下线调试 2.座椅安装,踏板胶块、轮辋装饰件 3.粘标示、入库 整车下线日期: 整车下线检验卡 检验项目实测数据结论检验员 速度表示值标称值(30km/h) 制动性能制动距离(30km/h) 前照灯发光强度 (cd) 左右 前轮定位 前束角(o) 车轮外倾角(o) 其它检验项目 检验项目结论检验项目结论 外观检验车身、装配检验风挡、门窗使用安全玻璃全车灯光齐全有效 方向盘最大自由转向量符合要求后视镜齐全有效 转向系工作可靠雨刮器齐全有效制动踏板自由行程符合要求轮胎符合标准 轮胎螺母紧固可靠制动系无渗油漏气 后桥无漏油驱动、变速系统 紧固件检查3~10km行驶试验 雨淋试验 word文档可自由复制编辑

新能源汽车的核心部件大剖析:电池系统篇

新能源汽车的核心部件大剖析:电池系统篇电池系统的选择和设计 如前文所介绍的情况,各家车厂面临油耗和排放的挑战,不断推出新能源汽车的情况,电池系统成了当前汽车电子电气系统中,一个最为昂贵也最为受人重视的子系统。本文将从电池系统的需求、车用电池的状态,以及当前车厂和电池厂的关系角度来介绍电池系统。 电池系统是在混合动力、插入式混合动力和纯电动汽车中用来存储电能,并提供给电驱动系统的需要的能量。电池中的电能,其来源主要有三种,电池处在较低的荷电状态(SOC)时,车辆利用发动机带动高压发电机给电池供电;刹车的时候,能量回收的时候的电能以及充电模式下,从电网得来的能量,如图1所示,在电池的不同的状态,相应的车辆也处在不同的工作模式下。 图1 电池状态vs 车辆模式 电池系统的选择和设计,很大一部分的参数来自于设计什么样的车型,不同

的车型的规范,将直接决定电池系统和电驱动系统的参数,如下图2所示,根据所需要开发的新能源车的具体参数,其电池系统的基本规范也可以确定下来。而电池系统的基本构成,粗略的来说是从电池单体开始,构建电池模组,配置合适电子和电气系统,在电池包层面进行布置和安全分析。 图2 车型规范对电池系统规范的转化 电池单体的选择 1)电池单体的选择 从基本来看,电池单体选择是考虑电池容量、化学体系和单体形状。 ? 单体类型:可选的有铅酸、镍镉(NiCd)、镍氢(NiMH)、高温电池(NaS 和NaNiCl2)、液流电池和锂离子电池,从综合来看,目前只能依靠锂离子电池来作为储能单元。而离子电池内的化学体系,其参数差异也很大。 ? 密度:对电池来说,两个比较重要的参数是能量密度(决定存储电能)和功率密度(决定放电能力),这两者往往不可兼得。值得注意的是,从电极材料理论密度到单体密度再到电池包密度,由于其他不储能的部分,这两个参数往往递减迅速。 ? 寿命:可分为循环寿命和使用寿命两个参数。循环寿命取决于充放电深度、电压、温度和电流(负荷);使用寿命包括不使用的时间,与温度和电压有

汽车热管理综述

汽车热管理现状发展综述 自从汽车产生以来,排放以及燃油经济性有关先进科学技术陆续应用到了内燃机上,汽车性能得到了明显的改善。在内燃机燃烧系统、气体热交换系统以及发动机控制系统的发展与改进方面,我们都花费了大量的精力。为了提高发动机的性能,但是,在之后的35年,我们都在发动机及其动力总成上花费了很大的精力,收获却越来越小,成本越来越高。幸运的是,现代工业已经发现并探索出了“最后的领地”—汽车热管理。 何为汽车热管理系统?汽车热管理系统是从系统集成和整体角度出发,统筹热量与发动机及整车之间的关系,采用综合手段控制和优化热量传递的系统。先进的热管理系统设计必须同时考虑发动机冷却系统与润滑系统、暖通空调系统(HV AC)以及发动机舱内外的相互影响,采用系统化、模块化设计方法将这些系统进行设计集成、制造集成,集成为一个有效的热管理系统。其必须能根据行车工况和环境条件,自动调节冷却强度以保持相应的部件在最佳的温度范围内工作,改善汽车各方面的性能,例如燃油经济型、驾驶舒适性等。因此,开发高效可靠的汽车热管理系统已经成为发动机进一步提高功率、改善经济性所必须突破的关键技术问题。因此采用先进的热管理系统设计理念,应用汽车现代设计方法和手段,对汽车热管理系统进行深入研究具有十分重要的意义。 1.国内汽车热管理系统的研究现状 发动机冷却系统作为发动机正常稳定运行的重要辅助系统,国内学者和企业对其研究一直在不断地深入和扩展。在燃烧放热,活塞、缸套、气缸盖温度场与热负荷,缸内气体流动与传热,散热器设计,风扇设计优化,排气系统传热等方面做了大量的研究工作。 目前,国内对汽车整车或者整机的热管理研究并不成熟,还处于初级阶段。国内对整车或者整机的研究主要集中在某几个高校,如同济大学、浙江大学、西安交通大学、清华大学等;而只有几所高校研究发动机的整机热管理,并且还处于起步阶段;而对于整车的热管理研究,国内几乎没有可以承担的。国内大部分企业主要针对某些零部件做单一的研究,并没有把部件统一起来作为整体来考虑。 对于小型轿车来说,冷却系统趋于向高性能方向发展,电控应用技术越来越多;但是对于重型车辆来说,改变并不是很大。重型汽车热管理系统基本结构在过去的40—50年里变化不大,有些部件(冷却液泵和节温器)的设计基本上没改变过。传统的节温器通常采用的是注蜡式节温器,它只能在一定的冷却液温度(80一85℃)内进行单点控制(节温器在85℃时开启,80℃时关闭),不能满足未来的冷却系统对冷却液流量精确控制的要求。研究表明。在25℃大气温度时,路上运行的负载车辆,其节温器打开(大循环)时间仅占总时间的10%。另外,

新能源汽车用电池包支架结构设计

新能源汽车用电池包支架结构设计 发表时间:2019-09-19T15:24:14.913Z 来源:《中国西部科技》2019年第11期作者:刘争光 [导读] 本文主要对新能源汽车用电池包使用过程中容易出现的问题进行了分析,并介绍了电池包支架结构的设计与试验过程。通过在设计过程中有针对性的解决电池包散热与强度问题,最终使本次设计满足了新能源汽车的使用要求。 惠州亿纬锂能股份有限公司 引言 汽车作为人类重要的交通工具,给人类的生产和生活带来了极大了便利,但其对能源的消耗也十分巨大,对环境的污染也较为严重,因此,随着科学技术的不断发展,人类开始探索采用新能源为汽车提供动力。尤其是近几年新能源汽车技术的不断成熟,新能源汽车已经随处可见,而且已经成为汽车领域未来发展的必然趋势。现阶段新能源汽车所采用的动力能源主要是依靠电池包提供的电能。电池包是新能源汽车的主要储能部件,其直接关系到新能源汽车的性能。目前,新能源汽车的电池主要使用的是镍氢动力电池,由于其本身具有比能量高、比功率高、无污染以及使用寿命长等优势,已经在新能源汽车中得到了广泛应用。但同是镍氢电池特别是汽车所使用的高功率镍氢电池对温度变化较为敏感,需要在稳定的、特定温度范围的环境下才能发挥出最佳效能,这就需要我们对电池包的结构进行科学合理的设计,以保证电池包的正常使用。 一、电池包易发生的问题 (一)电池发热快 由于电池的放电倍率会因车辆低速、高速、加速、减速等行驶状态的变换而产生变化,这就会导致电池放电倍率在变化过程中产生不同的生热速率,从而造成大量热能的产生,给电池的性能造成严重影响。 (二)电池包不易散热 新能源汽车和传统汽车一样,本身重量较大,带动汽车运动的动力能源需求很高,这就需要较多的电池数量来达到相应的指标。但由于汽车本身装载空间有限,这就使得这些电池必须紧密排列连接才能满足要求。因此,在实际行驶过程中,除了会出现电池发热快的问题以外,还会因电池排列紧密引起电池包中间温度过高,而边缘热量较少,造成每个单体电池之间的温度不均衡,并且不利于电池的均匀散热。而这种镍氢电池发热快、散热不均匀的问题,造成电池包在运行中的环境温度更为复杂多变,使得各单体电池、电池模块内组与容量的不一致性问题更加严重。此外,热量的长时间积累所导致的部分电池过分放电与部分电池过分充电,会严重影响电池的寿命与性能,同时还会带来安全隐患。如果电池在高温下不能及时得到散热通风,会使整个电池包系统温度过高或分布不均匀,进而降低整个电池包的电循环效率,使电池包的功率与能量无法得到充分发挥,严重时还会造成热失控,最终降低整个电池包的安全可靠性。 (三)电池之间的连接容易受损 汽车在行驶过程中会因路况不同产生各种震动,这就使电池包必须能经受得住震动考验。特别是各个电池之间相互连接的部位较为脆弱,过度震动会对其造成损坏,从而使电池包的性能与使用寿命受到影响。这就使得电池包的结构在设计的时候不但要充分考虑到如何帮助镍氢动力电池包散热,还要考虑到如何减震才能充分发挥出电池性最佳性能,延长电池的使用寿命。此外,电池包的结构设计也要尽可能的增强其本身强度,从而通过自身强度与减震方面来保证电池包的安全可靠性。 二、电池包支架结构设计 电池数量以及单体电池的连接方式通常是电池包结构设计时需要参考的因素。在本次设计中,电池包中电池的数量为126只,平均分成18支8.4V的电池棒并以串联形式组合起来。在电池支架材料选择上,选用具有优良耐热性、强度高、耐化学药品性以及加工方便等优点的尼龙66型号支架。电池支架分上中下三层设计,中间留出的两层空隙用于放置电池模块,在排列上每层有9支电池模块。这种设计将电池包整体体积减到最小,最大程度上节省了车内的装载空间。 电池包支架内部电池模块安放位置采用圆弧设计,能够有效提升电池模块在支架内部的稳定性。同时依据电池模块端的样式将支架两端做镶嵌式密合设计,使电池模块在支架内的可能发生的转动概率减到最校此外,将正负极符号标于支架两端,能够避免电池模块正负极反接而导致电池损坏。最后,通过在接线盒两端装设接线盒,可以防止外界金属与连接片接触引起电池包短路。 三、电池包散热系统设计 在传热学理论中,固体与液体、气体接触都会产生传热现象。在换热系数方面,液体的对流换热系数相较气体的对流换热系数要更高,因此,液体与固体接触时具有更强的对流换热能力。由于传热系数的大小能够反映出交换热量的多少,因此换热效果随着传热系数的增大而增强。这就要求在散热系统设计时要选择合适的传热介质。 虽然液体换热能力强,作为传热介质时的效果更明显,但如果选用液体来充当传热介质,就必须对液体的导电性、密封性、安全性以及后续维修的便捷性进行充分的考虑。此外,电池包的整体重量也是需要重视的问题。在变相材料的选择上,如液体石蜡的传热能力最强,并且在达到变相温度时会因吸收或释放大量热量而保持温度恒定,因此,液体石蜡可以作为首眩合适的选用变相材料不仅可以确保电池顺利的达到热平衡,更能对电池温度上下限进行很好的控制,从而防止温度的过高或过低现象的出现。但目前来说,变相材料在研发和制造成本上较高,因此其在电池包散热领域的应用还不能得到广泛普及。 由于本电池包结构受限,在散热设计上运用的是强制风散热模式,通过让空气沿电池包内预留的风道从一侧流往另外一侧的串行式通风来实现带走热量的效果。 另外,本设计中还运用了两只散热风扇并将其安装在电池包的一端来实现强制风冷。电池包内部留有6个位置用来放置温度传感器,当电池包内部温度超过一定值后会被温度传感器检测到,进而启动散热风扇来对电池包进行散热,而当电池包温度降低到合理范围时,则会自动停止散热风扇。这种设计可以通过让电池包在合适的温度下进行工作来达到最佳效果,同时散热风扇依据电池包温度自动启停还能够减少对能源的消耗。总体来说,这种散热模式具有质量轻、结构简单、散热效果好以及性价比高的优点。 四、电池包散热性和结构强度测试结果 (一)散热性能 将电池包放置在(20±5)℃的环境温度条件下,依据QC/T744-2006标准对电池包进行连续测试,最终得出电池包内温度小于30℃,属于电

新能源汽车电池包关键连接技术

新能源汽车电池包关键连接技术 1 序言 近年来,受益于国家优惠政策,新能源汽车行业得到了蓬勃发展,其销量也在逐年递增。为了适应并扩大市场需求,解决“里程焦虑”的问题,新能源汽车正不断地追求着轻量化。电池包作为新能源汽车开发中十分重要的部件,其趋同的技术与生产水平备受人们的关注[1]。目前,行业内普遍使用的电池包箱体有:铝型材电池包箱体、铸铝电池包箱体和钣金电池包箱体等。钣金电池包箱体安全性、可靠性高,多数使用在公共交通工具上,如公交车。对于小型轿车而言,多数使用的是铝制电池包箱体。 铝制电池包箱体承载结构主要分为两种:底板承载式结构和框架承载式结构。大众公司在研究中发现框架承载式结构更容易实现轻量化以及满足不同结构下的强度要求,并将此结构应用于奥迪A6EV车型上[2]。依据承载结构的不同,其对应的生产工艺流程、方法也存在一定的差别。本文针对电池包箱体制造的关键连接技术:钨极氩弧焊、熔化极气体保护焊、搅拌摩擦焊、激光焊以及新兴的螺栓自拧紧技术(FDS)和胶接技术等分别进行介绍。 2 传统熔化焊 2.1交流钨极氩弧焊 钨极氩弧焊(TIG焊)属于非熔化极惰性气体保护焊的一种,是在惰性气体的保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝(也可以不加焊丝),从而形成优质焊缝的焊接方法[3]。交流TIG焊在焊接时具

有电弧与熔池的可见性好、操作简单、焊缝外观无焊灰及不需清洁等优点,并且具有清理氧化膜的作用,因此非常适合铝制电池包箱体的焊接。此外,对于空间狭小的短焊缝焊接以及密封性要求高的焊缝也尤为合适。例如,比亚迪和吉利旗下多款混动车型的电池包箱体,在生产制造过程中均大量采用交流TIG焊,实现壳体的连接,保证工件气密性,其TIG焊缝约占箱体总焊缝量的80%。某车型电池包下箱体焊缝如图1所示,箱体结构紧凑,型材刚度大,可以选择交流TIG焊。然而,随着箱体结构的演变,箱体尺寸在变大、型材结构在变薄、焊接结构在优化以及焊后尺寸精度要求在提高,因此交流TIG焊的优势并不凸显。相反,其缺点:焊接速度慢、焊接热输入大、焊后变形大、不易控制等,限制了箱体的高效生产。因此,热输入小、变形小、工作效率高的熔化极气体保护焊开始渐渐取代TIG焊。 图1 某车型电池包下箱体焊缝 2.2CMT焊 CMT(Cold Metal Transfer)是一种全新的MIG/MAG焊接工艺,它是利用一个较大的脉冲电流使得焊丝顺利起弧,并在焊丝端部熔化长大,在熔滴即将发生脱落的时刻,电流急剧衰减至几乎为零,利用熔滴与熔池的表面张力、熔滴自身重力和焊丝的机械回抽作用,实现熔滴的完美过渡,从而形成连续的焊缝[4]。相比传统MIG焊,CMT技术具有热输入小、无飞溅、电弧稳定以及焊接速度快等优点,可用于多种材料的焊接,在铝制电池托盘的生产制造中占据着举足轻重的地位。例如,比亚迪、北汽旗下多款车型所使用的电池包下箱体结构,多采用CMT焊接技术,其焊缝约占箱体焊缝的70%。箱体简易结构如图2所示,边框与底板(采用间断

新能源汽车电池热管理调研报告

1. 新能源汽车电池热管理 1.1 市场情况 汽车热管理主要作用是为驾驶舱提供舒适温度环境,使汽车各部件在适合的温度范围工作。而新能源汽车的热管理包括空调系统、电池热管理、电子设备热管理和电机热管理,整体价值将达到整车的8%-10%左右。由于温度对电池安全、寿命、性能乃至整车续航里程都产生直接影响,因此电池热管理是新能源汽车热管理的核心。 相比传统汽车,新能源汽车电池热管理系统为新增加的系统,为从0到1的增量市场。以乘用车为例,液冷模式下单车价值在1500元左右。液冷模式的电池热管理系统包括电子膨胀阀、冷却板、电池冷却器、电子水泵等价值量较大的部件,系统整体单车价值约为1500元。该情况下,新能源汽车热管理系统价值量有望由传统汽车2000元左右提升至6000元,预估2020年国内市场规模有望达到70亿。 表1 电池热管理系统(液冷)单车价值量拆分 冷却板150 4~6 600~900 电池冷却器200 1 200 电子水泵250~300 1 250~300 电子膨胀阀150 1 150 其他200 合计1400~1700 (来源:长江证券研究所)1.2 电池热管理技术 电池热管理主要分为三个内容: 1)在电池温度较高时进行冷却,防止电池热失控; 2)在电池温度较低时进行加热,确保电池低温下的充电性能和安全性; 3)对电池系统进行保温,提高电池热管理效率,减少热管理能耗。 电池热管理系统的重点在于冷却,且根据冷却介质的不同,可分为风冷、液冷、相变材料冷却三种方式。目前已实现商用的是风冷和液冷,而相变材料冷却方案由于技术尚不成熟,尚未在汽车领域使用,短期内商业化可能性不大。 表1 不同电池冷却方案优劣势对比

比亚迪发展简史

比亚迪股份有限公司发展简史

比亚迪股份有限公司创立于1995年,是一家拥有IT,汽车和新能源三大产业群的高新技术民营企业。目前,比亚迪在全国范围内,已在广东、北京、陕西、上海等地共建有九大生产基地,总面积将近700万平方米,并在美国、欧洲、日本、韩国、印度、台湾、香港等地设有分公司或办事处,现员工总数已超过15万人。 2003年,比亚迪收购西安秦川汽车有限责任公司(现“比亚迪汽车有限公司”),正式进入汽车制造与销售领域,开始民族自主品牌汽车的发展征程。发展至今,比亚迪已建成西安、北京、深圳、上海、长沙五大汽车产业基地,在整车制造、模具研发、车型开发等方面都达到了国际领先水平,产业格局日渐完善并已迅速成长为中国最具创新的新锐品牌。汽车产品包括各种高、中、低端系列燃油轿车,以及汽车模具、汽车零部件、双模电动汽车及纯电动汽车等。代表车型包括F3、F3R、F6、F0、G3、G3R、L3/G6、速锐等传统高品质燃油汽车,S8运动型硬顶敞篷跑车、高端SUV车型S6和MPV车型M6,以及领先全球的F3DM、F6DM双模电动汽车和纯电动汽车E6等。 2008年10月6日,比亚迪以近2亿元收购了半导体制造企业宁波中纬,整合了电动汽车上游产业链,加速了比亚迪电动车商业化步伐。通过这笔收购,比亚迪拥有了电动汽车驱动电机的研发能力和生产能力。作为电动车领域的领跑者和全球二次电池产业的领先者,比亚迪将利用独步全球的技术优势,不断制造清洁能源的汽车产品。 2008年12月15日,全球第一款不依赖专业充电站的双模电动车——比亚迪F3DM双模电动车在深圳正式上市。2009年,比亚迪计划将推出纯电动汽车。 比亚迪的汉语拼音“Bi Ya Di”首个字母缩写BYD,比亚迪公司用其企业文化“build your dreams”来诠释,意为“打造你的梦想”。2012年中日发生钓鱼岛争端时,“BYD”被网友戏称为“保鱼岛”。几年前,2008年,BYD一度被人联系到中国人的粗话,不过,比亚迪似乎不受这个影响,或者说反而受到了正面的影响,发展越来越好,2008年后,比亚迪股票因为受到巴菲特青睐的缘故,港股最高涨到元港币。随后几年,比亚迪陆续推出新产品,包括S6、G6、速锐

2018年汽车热管理系统行业深度分析报告

2018年汽车热管理系统行业深度分析报告

投资要点: ?技术路线:从传统到新能源,热管理系统复杂性提升汽车热管理系 统广泛意义上包括对所有车载热源系统进行综合管理与优化,热管理系统主要是用于冷却和温度控制,例如对发动机、润滑油、增压空气、燃料、电子装置以及EGR的冷却,对发动机舱及驾驶室的温度控制。热管理系统工作性能的优劣,直接影响汽车的整体性能,对于整车的重要性不言而喻。新能源汽车的发展,对于汽车热管理系统是一场大的变革。传统燃油车的热管理架构主要包括了空调系统以及动力总成热管理系统。新能源汽车由于动力源发生了变化,新增了三电系统,因此要对电池、电机、电控等进行热管理的重新构建。此外,新能源汽车的空调系统因为动力方式的转变也产生较大的变革,从压缩机部件到制暖系统都需要进行技术的升级以及产品的替换。总体而言,从传统燃油车到新能源汽车,汽车热管理系统变得更加复杂,对于整车的重要性愈加提升。 ?产品空间:传统叠加新能源,热管理市场扩容1)节能减排带来传 统燃油车热管理部件新需求。节能推动涡轮增压器市场渗透率持续提升。针对2020年我国乘用车产品平均燃料消耗量达到5L/100km 的目标,涡轮增压(小排量化)成为提升发动机能量转化效率的重要技术,预计到2020年汽油机涡轮增压的比例会上升到40%。节能减排推动尾气处理(EGR)渗透率持续提升。到2020年,我们预测柴油车EGR装机率将逐步达到60%,汽油车EGR装机率达20%。涡轮增压器和尾气处理(EGR)市场渗透率的提升,将直接带动中冷器、电子水泵、EGR冷却器等热管理零部件需求量提升。 2)电动化趋势下,催生新能源汽车热管理新增量市场。目前电动化已经成为汽车行业最主要的趋势之一,各国政府出台相关政策推动,而各家车企也都不同程度的投入到新能源汽车的研发生产中。在政策与产业的联合助力下,新能源汽车发展迅速。单车价值方面,由于新能源汽车热管理系统相对于传统燃油车增加了电机电控冷却系统和电池热管理系统,形成新的产品需求如电子膨胀阀、电池冷却器、电池水冷板、电子水泵等,因此单车价值从传统车的2200元左右提升至4600元左右。3)预计到2020年,传统燃油车热管理系统全球市场规模超2200亿元,新能源汽车热管理系统全球市场规模超200亿元。 ?竞争格局:传统市场行业集中度较高,新能源市场中外厂商共谋未

新能源汽车核心技术详解:电池包和BMS、VCU、 MCU

新能源汽车核心技术详解:电池包和BMS、VCU、MCU 导读:为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,北汽福田新能源系统开发部部长杨伟斌结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。 2014年国内新能源汽车产销突破8万辆,发展态势喜人。为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。 1 新能源汽车分类 在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。 1.1消费者角度 消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。 表1 消费者角度分类 1.2技术角度

图1 技术角度分类 技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。 2 新能源汽车模块规划 尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU 和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制器。三级模块体系中,包

相关文档
最新文档