电动汽车热管理系统

合集下载

电动汽车热管理系统主要组件

电动汽车热管理系统主要组件
• 三、电池冷却器主要是chiller总成。
一、前端冷却模块系统
1、散热器总成
序号 1 2 3 4 5 6 7 8
中文名称 散热管 翅片 支撑板 主片 密封胶条 左水室 右水室 组合螺栓
材料名称 4343/3003/7002
3003 4343/3003 4343/3003/7072
EPDM PA66-GF30 PA66-GF30
电动汽车热管理系统主要 组件
概述
• 电动汽车热管理系统主要包括前端冷却模块系统、空调系统、电 池冷却器。主要包含的下级组件的明细和材料供参考。
• 一、前端冷却模块系统主要包括散热器总成、冷凝器总成、电子 扇总成。
• 二、空调系统主要包括内外循环风口总成、蒸发器总成、暖风箱 总成、空调控制器总成ECC。
8 外循环进风口海绵条 35kg/m³ 黑色PU发泡 燃烧特性满足GB8410-2006,标准要求<100mm/min,实际离火熄灭
二、空调箱系统
2、蒸发器总成
序号 1
中文名称 蒸发芯体
2
膨胀阀(1.0T)
3
蒸发温度传感器
4
室内温度传感器
5
蒸发上壳体
6
蒸发下壳体
7
空调排水管
8
蒸发箱进出口密封海绵
9
PIC18F45K80 NCV7708B TJA1040T
MCU采用PIC高端的8位MCU PIC18F45K80,32K Flash,44Pin,32K FLASH,2K RAM,256字节EEPROM
芯片具有短路保护、过温保护以及欠压、过压保护功能,同时提供故障诊断
供电电压 5V ,通信速率可达1M
燃烧特性满足GB8410-2006,标准要求<100mm/min,实际离火熄灭

model y热管理系统原理

model y热管理系统原理

model y热管理系统原理随着电动汽车的普及,热管理系统成为了一个越来越重要的主题。

热管理系统是指一套系统,通过控制温度和热量的分配,保证车辆的正常运行,并延长电池寿命。

而Model Y作为特斯拉公司推出的最新款电动SUV,其热管理系统的设计也是相当重要的,下面就让我们来了解一下Model Y热管理系统的原理。

第一部分:机械部分Model Y的热管理系统主要由三个部分组成:散热器、冷却器和加热器。

这三个部分的作用是通过冷却和加热来维持车辆的温度。

其中,冷却器和散热器都是由铝制成的,而加热器则是由电阻丝构成的。

散热器的作用是让空气通过车辆的前部进入车内,从而降低车内的温度。

而冷却器则是通过循环水来冷却电池和电机,避免因过热而影响车辆的性能。

加热器则是用来加热车内的空气,以保证在寒冷的天气中车内温度的舒适度,同时也有助于电池的寿命。

第二部分:控制系统除了机械部分的设计,Model Y的热管理系统还涉及到了控制系统的设计,这也是系统的核心部分。

控制系统主要由三个方面组成:传感器、控制器和软件。

传感器的作用是监测车辆的温度和热量分布,以及电池的电量和电压等数据。

这些数据被传送到控制器中,以便后者进行判断和计算。

控制器的作用是根据传感器的数据来控制散热器、冷却器和加热器的工作,以满足车辆的温度需求。

软件则是用来编写控制器的代码,以实现系统的自动化控制。

总之,Model Y的热管理系统是一个相当复杂的系统,需要机械部分和控制系统之间的协同作用,才能保证车辆的正常运行。

只有在严格控制温度和热量分布的情况下,才能实现车辆的最佳性能,并延长车辆的使用寿命。

新能源汽车整车热管理系统介绍

新能源汽车整车热管理系统介绍

新能源汽车整车热管理系统介绍一、背景相较于传统燃油车热管理的对象为发动机、变速箱和空调等系统,新能源汽车的热管理新增了动力电池、电驱动等热管理对象。

从内燃机到电动车零部件的变化燃油车热管理系统主要包括空调制冷系统,和以发动机为热源的座舱暖风系统。

其主要零部件包括机械式空调压缩机、膨胀阀、蒸发器、冷凝器、以及发动机暖风系统等。

传统燃油车汽车热管理系统•新能源汽车(电动汽车)包括座舱、电池、电机电控热管理。

座舱热管理系统包括空调冷风、热泵暖风或PTC暖风,具有加热和制冷需求,主要零部件包括电动压缩机、电子膨胀阀、蒸发器、冷凝器、热交换器、PTC或者热泵冷凝器等。

新能源汽车热管理系统新能源汽车产业链中游主要包括空调热管理系统、电机电控冷却系统以及电池热管理系统等模块或者总成,由上游水泵、冷凝器等零部件组装而成,为下游整车提供功能安全和使用寿命的保障。

新能源热管理系统产业链中产品更复杂:由于其热管理系统的覆盖范围、实现方式相较传统燃油汽车发生了较大改变,其对于零部件节能性、安全性等方面的要求相对更高。

上游零部件中新增了Chiller、PCT加热器、四通阀等零部件,中游热管理系统中的热泵空调系统、电池冷却系统使得系统复杂程度进一步上升。

新能源汽车产业链系统品名图例作用电池、电机、电子设备等电子/电磁膨胀调节系统流量热管理系统阀电池、电机、电子设备等热管理系统冷却板内充冷却液,用于电池冷却电池、电机、电子设备等热管理系统电池冷却器电池系统换热电池、电机、电子设备等热管理系统电子水泵、水阀用于电池及电子设备水冷却减速器冷却系统油冷器、油泵电机和减速器冷却系统空调系统电动压缩机产生高压气体空调系统PTC/热泵通过加热或热交换产生热量空调系统膨胀阀控制制冷剂流量空调系统贮液器贮存制冷、过滤杂质与吸收水分空调系统冷凝器将冷却剂从气态变成液态,将其热量释放出来至周围空气中空调系统蒸发器让低温低压制冷剂吸收空气中热量关键部件解析小结:新能源汽车热管理系统部件趋于多样化和电气化,复杂性更高,带来新增市场机会。

model y热管理系统原理

model y热管理系统原理

model y热管理系统原理
我找到了一篇针对电动汽车热管理系统介绍的文章,其中提到了与Model Y 相关的内容,以下是根据此文结合其他互联网知识回答您的问题:
Model Y 采用的是电动汽车热管理系统。

该系统主要包括电池热管理和内部通风系统两部分。

电池热管理主要是为了保证电池在工作温度范围内,以提高电池寿命、安全性和性能。

而内部通风系统则是为了保证车内温度适宜,让乘客在舒适的环境中行驶。

具体来说,电池热管理系统采用了自然风冷和液冷两种方式,通过水冷板和散热器将电池热量有效地散发出去,并且在低温环境下通过电加热的方式加热电池。

这种热管理方式可以最大程度地确保电池在正常工作范围内,提高了车辆的安全性和稳定性。

内部通风系统采用了有源空气过滤技术,在车内氛围不佳时会自动启动,并产生负离子来净化空气。

同时,Model Y 还配备了智能空调系统,可以对车内环境进行自动控制,提高车内空气质量和乘客的舒适度。

总之,Model Y 的热管理系统主要通过液冷和自然风冷两种方式保证电池温度的稳定,同时配备有通风和空调系统,以提供舒适的驾乘体验。

新能源汽车热管理系统技术探析

新能源汽车热管理系统技术探析

新能源汽车热管理系统技术探析新能源汽车的崛起带动了热管理系统技术的不断进步与创新。

为了解决电池温度控制、热能利用等问题,汽车制造商不断研发新技术,从而提高新能源汽车的性能和可靠性。

本文将深入探讨新能源汽车热管理系统的技术原理、应用和未来发展趋势。

1.新能源汽车热管理系统的重要性新能源汽车采用电动驱动系统,其动力电池是其核心部件之一。

在电池工作过程中,温度的控制至关重要。

过高的温度会缩短电池寿命,降低能量密度,甚至导致安全隐患;而过低的温度则会影响电池的可用功率和能量回收效率。

因此,一个高效的热管理系统能够增强电池的性能和寿命,提高新能源汽车的续航里程。

2.新能源汽车热管理系统的技术原理新能源汽车热管理系统的核心任务是对电池和电动驱动系统进行温度控制和热能利用。

具体来说,热管理系统通过以下几种技术手段实现:热传导技术:利用导热材料将电池与散热器之间的热量传导出去,保持电池的适宜工作温度。

冷却技术:通过水冷、空冷或液冷等方式,将电池的余热散发出去,降低电池温度。

加热技术:在低温环境下,通过加热装置为电池提供热量,提高电池的工作效率和寿命。

热回收技术:将电池放出的热能转化为电能或供暖能源,提高整体能量利用效率。

3.新能源汽车热管理系统的应用现代新能源汽车热管理系统已经广泛应用于电池管理系统、电机控制系统和车内空调系统等方面。

通过合理调控温度,热管理系统能够提高电池充电效率、延长电池寿命,优化电机工作状态,提高整车能耗效率。

热管理系统还能够为车内创造一个舒适的驾乘环境,提供稳定的供暖和制冷效果。

4.新能源汽车热管理系统的发展趋势随着新能源汽车市场的快速发展,热管理系统技术也在不断演进。

未来,新能源汽车热管理系统将朝着以下几个方面发展:智能化:新一代热管理系统将采用智能控制技术,通过对车辆工况和环境参数的实时监测和分析,自动调节温度,提高系统的能效和安全性。

集成化:将热管理系统与其他车辆系统进行深度集成,实现信息共享和资源共享,优化整车能量管理,提高系统的整体效果。

纯电动汽车非热泵型整车热管理系统的控制方法_概述说明

纯电动汽车非热泵型整车热管理系统的控制方法_概述说明

纯电动汽车非热泵型整车热管理系统的控制方法概述说明1. 引言1.1 概述本文旨在探讨纯电动汽车非热泵型整车热管理系统的控制方法。

随着全球对环境污染问题的日益关注以及能源资源的稀缺性,纯电动汽车作为一种无排放的交通工具逐渐受到广泛关注和应用。

而在纯电动汽车的运行中,整车热管理系统对于保证电池和其他关键部件的正常工作具有重要意义。

1.2 文章结构本文共分为五个章节,每个章节都从不同角度深入探讨了纯电动汽车非热泵型整车热管理系统的控制方法。

其中,第一章是引言部分,介绍了文章整体内容和结构;第二章对纯电动汽车热管理系统进行了简要介绍,并重点概述了非热泵型整车热管理系统;第三章详细介绍了该系统的控制方法及原理;第四章则评估了该系统效果并提出优化策略;最后一章总结全文,同时展望未来可能的发展方向。

1.3 目的本文旨在通过对纯电动汽车非热泵型整车热管理系统的控制方法进行研究和分析,以提供一种有效的控制方案,能够在保证整车关键部件正常工作的同时最大限度地提高能源利用效率和降低能源消耗。

希望通过本文的研究成果,为纯电动汽车的发展和推广提供有力支持,并为相关领域的研究人员和从业者提供参考和借鉴。

2. 纯电动汽车非热泵型整车热管理系统概述2.1 纯电动汽车热管理系统简介纯电动汽车是基于电能储存装置作为唯一能量来源的汽车,其独特的工作模式和特殊的功耗需求使得其热管理系统具有一定的挑战性。

纯电动汽车热管理系统主要负责维持电池组、驱动电机、电子设备和乘客舱内部环境温度的平衡,以保证整车的正常运行。

2.2 非热泵型整车热管理系统概述非热泵型整车热管理系统是指利用非热泵技术实现纯电动汽车的温度控制和能量管理。

相对于传统的汽油或混合动力汽车,纯电动汽车由于没有引擎废热可利用,所以需要采取其他方式来满足不同组成部件的散热和加温需求。

在非热泵型整车热管理系统中,通常包括以下几个关键组成部分:1. 电池组散热系统:纯电动汽车的核心部件之一是高压锂离子电池组,其性能和寿命受温度影响较大。

新能源汽车热管理系统

新能源汽车热管理系统

新能源汽车热管理系统随着全球对环境保护意识的增强和对石油资源的有限性的认识,新能源汽车逐渐成为汽车行业的发展趋势。

其中,新能源汽车热管理系统作为关键技术之一,对于新能源汽车的性能和稳定性起着至关重要的作用。

本文将从新能源汽车热管理系统的定义、工作原理、技术挑战以及未来发展趋势等方面进行探讨。

一、新能源汽车热管理系统的定义新能源汽车热管理系统是指对新能源汽车中的电池、电动驱动系统以及动力电子装置等进行热控制和热调节的系统。

其主要功能是在不同工作状态下保持电池和动力系统的温度在合理范围内,以确保新能源汽车性能的稳定和寿命的延长。

二、新能源汽车热管理系统的工作原理新能源汽车热管理系统的工作原理可以分为主动控制和被动控制两种方式。

1. 主动控制:主动控制是通过电池温度和系统负载的实时监测与分析,采用液冷或风冷散热装置,配合电子控制单元,实时调节热量的传递和散发,以保持系统的稳定性和性能。

2. 被动控制:被动控制主要依靠热管、散热片等被动元件对系统进行热管理。

这些元件能够吸收和释放热量,将高温区域的热量传导到低温区域,保持系统温度的均衡。

三、新能源汽车热管理系统的技术挑战新能源汽车热管理系统在实际应用中面临着以下技术挑战:1. 温度均衡:新能源汽车热管理系统需要保证电池和电动驱动系统温度的均衡,以避免温度过高或过低对系统性能和寿命的影响。

2. 快速响应:新能源汽车的工作状态变化较快,热管理系统需要具备快速响应的能力,以保持系统温度的稳定。

3. 效能提升:新能源汽车的续航里程和充电效率都受到温度的影响,热管理系统需要提升散热效果,以提高系统的工作效能。

四、新能源汽车热管理系统的未来发展趋势随着新能源汽车的普及和技术的不断进步,新能源汽车热管理系统也将朝着以下方向发展:1. 多能源集成:随着混合动力和纯电动技术的不断融合,新能源汽车热管理系统将更好地适应多能源的需求,提供更加全面的温度控制和优化调节。

2. 智能化控制:利用先进的传感器和控制算法,新能源汽车热管理系统将实现智能化的温度控制,根据实时数据做出精确决策,提高系统的工作效率和稳定性。

新能源汽车热管理系统故障解析方法

新能源汽车热管理系统故障解析方法

新能源汽车热管理系统故障解析方法随着环保意识的增强和对能源消耗的担忧,新能源汽车的市场份额不断增加。

然而,新能源汽车的热管理系统故障问题也逐渐凸显出来。

本文将探讨新能源汽车热管理系统故障解析方法,以帮助车主更好地应对这些问题。

首先,我们需要了解新能源汽车热管理系统的基本原理。

新能源汽车热管理系统主要由电池热管理系统和电动机热管理系统组成。

电池热管理系统负责控制电池温度,以确保电池的正常工作和寿命。

电动机热管理系统则负责控制电动机的温度,以提高电动机的效率和寿命。

当新能源汽车热管理系统出现故障时,车主可以通过以下方法进行解析:1. 故障诊断工具的使用现代汽车配备了各种故障诊断工具,如故障码读取器和数据记录仪。

车主可以使用这些工具来读取故障码和记录相关数据,从而更好地了解热管理系统的故障原因。

例如,如果故障码显示电池温度过高,那么可能是电池冷却系统故障导致的。

2. 温度传感器的检查温度传感器是热管理系统的重要组成部分,负责监测电池和电动机的温度。

如果温度传感器出现故障,可能导致系统无法准确地控制温度。

车主可以通过检查温度传感器的连接和电阻值来判断其是否正常工作。

3. 冷却系统的检查冷却系统是热管理系统的核心部分,负责散热和降温。

如果冷却系统出现堵塞或泄漏等问题,将导致热管理系统无法正常工作。

车主可以通过检查冷却液的流动情况、冷却系统的密封性和散热器的清洁度来判断冷却系统是否存在问题。

4. 车辆使用环境的影响新能源汽车的热管理系统故障也可能与车辆使用环境有关。

例如,在极寒的冬季,电池和电动机的温度可能会下降,导致热管理系统无法正常工作。

车主可以通过提前预热车辆或安装加热设备来解决这个问题。

总之,新能源汽车热管理系统故障解析方法涉及故障诊断工具的使用、温度传感器的检查、冷却系统的检查以及车辆使用环境的影响等方面。

车主可以通过这些方法来定位和解决热管理系统故障,确保新能源汽车的正常运行。

同时,建议车主定期进行系统维护和保养,以减少故障的发生,并及时寻求专业技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201710538323.X(22)申请日 2017.06.29(71)申请人 知豆电动汽车有限公司地址 315600 浙江省宁波市宁海县力洋镇储家山路1号(72)发明人 尹湘林 鲍文光 王红梅 闫优胜 樊晓浒 何志刚 (74)专利代理机构 杭州杭诚专利事务所有限公司 33109代理人 尉伟敏(51)Int.Cl.B60H 1/00(2006.01)B60H 1/32(2006.01)B60H 1/22(2006.01)B60L 11/18(2006.01)(54)发明名称电动汽车热管理系统(57)摘要本发明公开了一种电动汽车热管理系统,包括乘员舱热管理模块和动力系统热管理模块,乘员舱热管理模块包括电动压缩机、冷凝器、冷凝风扇、膨胀阀、HVAC系统、第一水泵、水PTC加热器和连接管路,动力系统热管理模块包括动力电池包、水壶、第二水泵、散热器、散热器风扇、第三水泵、控制器、逆变器、电机、热电板式换热器和连接管路。

动力系统热管理模块采用热电板式换热器来实现。

热电板式换热器根据珀耳帖效应,具有加热和制冷功能。

本发明具有结构简单,可靠性好,控温精确,热利用率高,能有效提高电动汽车电池使用效率和延长电动汽车行驶里程的特点。

权利要求书1页 说明书4页 附图3页CN 107310344 A 2017.11.03C N 107310344A1.一种电动汽车热管理系统,其特征是,包括乘员舱热管理模块和动力系统热管理模块,乘员舱热管理模块包括制冷循环密闭系统和采暖循环密闭系统,制冷循环密闭系统包括电动压缩机(1)、冷凝器(2)、冷凝风扇(3)、膨胀阀(4)、HVAC系统(5)和连接管路,采暖循环密闭系统包括第一水泵(6)、水PTC加热器(7)和连接管路,动力系统热管理模块包括第一流体循环密闭系统和第二流体循环密闭系统,第一流体循环密闭系统包括动力电池包(8)、水壶(9)、第二水泵(10)、热电板式换热器(17)和连接管路,第二流体循环密闭系统包括散热器(11)、散热器风扇(12)、第三水泵(13)、控制器(14)、逆变器(15)、电机(16)、热电板式换热器(17)和连接管路。

2.根据权利要求1所述的电动汽车热管理系统,其特征是,动力系统热管理模块中的热电板式换热器包括第一流体进口(21)、第一流体出口(22)、第二流体进口(23)和第二流体出口(24),第一流体进口通过连接管路与第二水泵出口连接,第一流体出口通过连接管路与动力电池包进口连接,第二流体进口通过连接管路与第三水泵出口连接,第二流体出口通过连接管路与控制器进口连接。

3.根据权利要求1所述的电动汽车热管理系统,其特征是,热电板式换热器和散热器对动力系统热管理模块进行热管理。

4.根据权利要求2所述的电动汽车热管理系统,其特征是,第一流体和第二流体同时经过热电板式换热器进行加热或制冷,第一流体从热电板式换热器流出时的温度与第二流体从热电板式换热器流出时的温度差可以通过热电板式换热器工作电流大小进行调节,温度差调节在5℃-10℃比较合适。

5.根据权利要求1所述的电动汽车热管理系统,其特征是,当动力电池包不需要制冷或加热时,热电板式换热器停止工作,仅作流通通道,控制器、逆变器和电机依靠散热器和散热风扇进行降温。

6.根据权利要求1或2或3或4或5所述的电动汽车热管理系统,其特征是,HVAC系统包括蒸发器(18)、鼓风机(19)、暖风芯体(20)和连接管路,蒸发器进口通过连接管路与膨胀阀出口连接,蒸发器出口通过连接管路与电动压缩机进口连接,暖风芯体进口通过连接管路与水PTC加热器出口连接,暖风芯体出口通过连接管路与第一水泵进口连接。

权 利 要 求 书1/1页CN 107310344 A电动汽车热管理系统技术领域[0001]本发明涉及电动汽车技术和热电技术领域,尤其是涉及一种结构简单,可靠性好,控温精确,热利用率高,能有效提高电动汽车电池使用效率和延长电动汽车行驶里程的电动汽车热管理系统。

背景技术[0002]目前,电动汽车作为一种降低石油消耗、低污染、低噪声的新能源汽车,被认为是解决能源危机和环境恶化的重要途径。

与传统内燃机汽车一样,电动汽车也需要进行热管理,主要包括乘员舱的热管理和动力系统的热管理。

在现有的电动汽车热管理方法中,乘员舱采用空调制冷,水或者空气PTC加热采暖。

动力系统包括动力电池、控制器、逆变器和驱动电机四部分组成。

其中动力电池部分为低温系统,根据动力电池固有特性,在15℃到35℃之间为其最佳工作温度区间,超过其最佳工作温度区间,电池的使用寿命和效率降低。

另外,动力电池在充放电过程中也会产生大量的热量。

故需要一套热管理系统对动力电池进行加热或者冷却,保证动力电池在其最佳工作温度区间内进行工作,且能保证使用过程的安全性。

而控制器、逆变器和驱动电机在使用过程中产生大量的热,工作允许温度范围低于70℃即可,称之为高温系统部分。

此部分只需要对其进行降温处理。

[0003]目前存在一种电动汽车热管理方法中,乘员仓采用空调制冷,水或者空气PTC加热采暖。

动力电池包的冷却采用制冷剂和水换热进行降温,升温则采用水PTC加热。

而控制器、逆变器和驱动电机的降温采用散热器和散热风扇进行降温处理。

[0004]此热管理系统复杂,动力电池包的制冷和乘员舱的制冷同时采用制冷剂进行热交换管理,需要多余的一个制冷剂-水换热器和一个电磁膨胀阀才能实现,增加系统成本,且温度控制不精确,控制复杂,可靠性降低。

动力电池包的升温采用水PTC加热进行,热效率低,且消耗动力电池电能,降低续航里程。

发明内容[0005]本发明是为了克服现有技术缺陷,电动汽车热管理系统结构复杂,系统成本高,温度控制不精确,可靠性低,热效率低和会降低续航里程的问题,提供了一种结构简单,可靠性好,控温精确,热利用率高,能有效提高电动汽车电池使用效率和延长电动汽车行驶里程的电动汽车热管理系统。

[0006]为实现上述目的,本发明采用以下技术方案:一种电动汽车热管理系统,包括乘员舱热管理模块和动力系统热管理模块,乘员舱热管理模块包括制冷循环密闭系统和采暖循环密闭系统,制冷循环密闭系统包括电动压缩机、冷凝器、冷凝风扇、膨胀阀、HVAC系统和连接管路,采暖循环密闭系统包括第一水泵、水PTC加热器和连接管路,动力系统热管理模块包括第一流体循环密闭系统和第二流体循环密闭系统,第一流体循环密闭系统包括动力电池包、水壶、第二水泵、热电板式换热器和连接管路,第二流体循环密闭系统包括散热器、散热器风扇、第三水泵、控制器、逆变器、电机、热电板式换热器和连接管路。

[0007]本发明中,乘员舱热管理模块包括制冷和采暖两模块。

乘员舱制冷采用蒸发器蒸发实现;乘员舱采暖用水PTC加热器系统实现。

动力系统热管理模块采用热电板式换热器来实现。

热电板式换热器根据珀耳帖效应,具有加热和制冷功能,使热电板式换热器两个换热流道形成两种不同温度的流体进行循环。

且两种不同温度流体温差越小,所述的热电板式换热器的效率越高。

本发明具有结构简单,可靠性好,控温精确,热利用率高,能有效提高电动汽车电池使用效率和延长电动汽车行驶里程的特点。

[0008]作为优选,动力系统热管理模块中的热电板式换热器包括第一流体进口、第一流体出口、第二流体进口和第二流体出口,第一流体进口通过连接管路与第二水泵出口连接,第一流体出口通过连接管路与动力电池包进口连接,第二流体进口通过连接管路与第三水泵出口连接,第二流体出口通过连接管路与控制器进口连接。

热电板式换热器加热端和制冷端分别组成两套独立的流体循环系统;根据珀耳帖效应原理,要实现加热端和制冷端之间的切换,不需要更换管路,只需要转换热电板式换热器的电源正负极即可。

[0009]作为优选,热电板式换热器和散热器对动力系统热管理模块进行热管理。

[0010]作为优选,第一流体和第二流体同时经过热电板式换热器进行加热或制冷,第一流体从热电板式换热器流出时的温度与第二流体从热电板式换热器流出时的温度差可以通过热电板式换热器工作电流大小进行调节,温度差调节在5℃-10℃比较合适。

[0011]作为优选,当动力电池包不需要制冷或加热时,热电板式换热器停止工作,仅作流通通道,控制器、逆变器和电机依靠散热器和散热风扇进行降温。

[0012]作为优选,HVAC系统包括蒸发器、鼓风机、暖风芯体和连接管路,蒸发器进口通过连接管路与膨胀阀出口连接,蒸发器出口通过连接管路与电动压缩机进口连接,暖风芯体进口通过连接管路与水PTC加热器出口连接,暖风芯体出口通过连接管路与第一水泵进口连接。

乘员舱制冷采用蒸发器蒸发实现;乘员舱采暖用水PTC加热器系统实现。

[0013]因此,本发明具有如下有益效果:(1)系统结构简单,部件数量少,可靠性高;(2)热电板式换热器无运动部件,无磨损,寿命高,控温精确,热利用率高;(3)能有效提高电动汽车电池使用效率;(4)能延长电动汽车行驶里程。

附图说明[0014]图1是本发明中动力系统热管理模块的一种制冷管理系统结构示意图;图2是本发明中动力系统热管理模块的一种加热管理系统结构示意图;图3是本发明中乘员舱热管理模块的一种结构示意图;图中:电动压缩机1、冷凝器2、冷凝风扇3、膨胀阀4、HVAC系统5、第一水泵6、水PTC加热器7、动力电池包8、水壶9、第二水泵10、散热器11、散热器风扇12、第三水泵13、控制器14、逆变器15、电机16、热电板式换热器17、蒸发器18、鼓风机19、暖风芯体20、第一流体进口21、第一流体出口22、第二流体进口23、第二流体出口24。

具体实施方式[0015]下面结合附图与具体实施方式对本发明做进一步的描述:如图1所示的一种电动汽车热管理系统,包括动力系统热管理模块,动力系统热管理模块包括第一流体循环密闭系统和第二流体循环密闭系统,第一流体循环密闭系统包括动力电池包8、水壶9、第二水泵10、热电板式换热器17和连接管路,第二流体循环密闭系统包括散热器11、散热器风扇12、第三水泵13、控制器14、逆变器15、电机16、热电板式换热器17和连接管路。

热电板式换热器包括第一流体进口21、第一流体出口22、第二流体进口23、第二流体出口24,第一流体进口通过连接管路与第二水泵出口连接,第一流体出口通过连接管路与动力电池包进口连接,第二流体进口通过连接管路与第三水泵出口连接,第二流体出口通过连接管路与控制器进口连接。

图1中,热电板式换热器的流体进口端接电源正极,热电板式换热器的流体出口端接电源负极,动力系统热管理模块启用制冷循环。

[0016]在动力系统热管理模块中,第一流体从热电板式换热器的第一流体出口流出,经动力电池包、水壶和第二水泵,回流到热电板式换热器,完成第一循环。

相关文档
最新文档