高中数学人教b版必修123 幂函数含解析
人教版(B版课标)高中数学必修二第四章指数函数、对数函数与幂函数4.2.3对数函数的性质与图像课件

∴ loga5.1 < loga5.9 ②若0<a<1则函数在区间(0,+∞)上是减函数; ∵5.1<5.9
∴ loga5.1 > loga5.9
注意:若底数不确定,那就要对底数进行分类讨论 即0<a<1 和 a > 1
例题小结:
比较两个对数值的大小时:
1.视察底数是大于1还是小于1,若底数不确
x 5
(2) y 2 log 2 x
注意:对数函数的定义与指数函数类似,
都是情势定义,注意辨别.
二、探索研究:
对数函数:y = loga x (a>0,且a≠1)图像与性质
学生活动1: 用描点法画出下面函数的图像,并视察图像, 找出图像的特征,总结函数的性质.
y log 2 x
y log 1 x
对数函数及其性质
导
湖南长沙马王堆汉墓女尸“辛追夫人”出土,考 古学家们通过检验“夫人”身上的每一个碳14含 量P,就可以推算出马王堆古墓的年代。
t log P 1 5730 2
思考: t 能不能看 成是 P 的函数?
复习回顾:
1.对数函数的定义.
2.画出图像 y log 2 x y log3 x
-2
-3
y=log x
-4
这两个函数的图像 有什么关系呢?
关于x轴对称
由换底公式得:y log 1 x log 2 x
2
又由点(x0,y0)与点(x0,-y0)关于x轴对称, 所以y=log2x 和 y=log0.5x图像关于x轴对称. 那么其中一个函数图像也就可以由另一图像经过对 称而得.
在(0,+∞)上是 减函数
当x>1时, y>0
人教高中数学必修二B版《指数函数、对数函数的综合应用》指数函数、对数函数与幂函数研讨复习说课教学课件

指数函数、对数函数与幂函数
习题课——指数函数、对数函数的综合应用
课件
-1-
课标阐释
1.掌握指数函数的图像和
性质,并能利用此性质解决
相关问题.
2.掌握对数函数的图像和
性质,并能利用此性质解决
相关问题.
3.了解指数函数与对数函
数之间的内在联系.
思维脉络
课前篇自主预习
1.填空.
探究二
探究三
当堂检测
对数函数的综合应用
例2 已知函数f(x)=lg(ax2+2x+1).
(1)若f(x)的值域为R,求实数a的取值范围;
(2)若f(x)的定义域为R,求实数a的取值范围.
分析:本题考查与对数函数有关的定义域、值域问题的逆向问题.
理解:函数f(x)的值域为R与定义域为R的含义及区别是解题的关键.
∴当x∈(3,+∞)时,y=lg(x2-2x-3)是增函数,
x∈(-∞,-1)时,y=lg(x2-2x-3)是减函数.
∴当x∈[4,+∞)时,f(x)≥f(4)=lg(16-2×4-3)=lg 5.即当x∈[4,+∞)时,
函数f(x)的值域是[lg 5,+∞).
综上可知,函数y=lg(x2-2x-3)的单调递增区间是(3,+∞),单调递减
又∵f(x)是奇函数,
∴f(x)=-f(-x)=-log2(-x).
log2 , > 0,
综上可知,f(x)= 0, = 0,
-log2 (-), < 0.
1
(2)由(1)得 f(x)≤2等价于
< 0,
= 0,
> 0,
人教高中数学必修二B版《对数与对数函数》指数函数、对数函数与幂函数说课复习(对数函数的性质与图像)

y=logax+k,y=loga|x|,y=|logax+k|等,其图像可由y=logax的图像,通过
平移变换、对称变换或翻折变换得到.
课堂篇探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
延伸探究将以上例题中的函数改为“f(x)=|log3(x+1)|”再研究以下
思维辨析
当堂检测
解:(1)log0.27和log0.29可看作是函数y=log0.2x,当x=7和x=9时对应
的两个函数值,由y=log0.2x在(0,+∞)上是减函数,得log0.27>log0.29.
(2)函数y=log3x(x>1)的图像在函数y=log6x(x>1)的图像的上方,故
log35>log65.
当0<x<1时,y1>y2.
(2)当0<a2<a1<1时,根据对数函数图像的变化规律知当x>1
时,y1<y2;当0<x<1时,y1>y2.
对于含有参数的两个对数值的大小比较,要注意根据对数的底数
是否大于1进行分类讨论.
课堂篇探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
变式训练 2 设 a=log2π,b=log2√3,c=log3√2,则(
人教版高中数学B版必修二
指数函数、对数函数与幂函数
4.2 对数与对数函数
4.2.3 对数函数的性质与图像
课件
-1-
课标阐释
思维脉络
1.理解对数函数的概念,体会对
数函数是一类重要的函数模型.
【优品】高中数学人教版必修1+2.3幂函数+课件(系列三)

[答案] n<q<m<p
跟踪练习
(1)函数
5 y=x3
的图象大致是(
)
1 (2)当 α∈{-1,2,1,3}时,幂函数 y=xα 的图象不可能经 过第________象限.
[答案] (1)B (2)二、四
[解析] (1)函数
5 y=x3
= x5是定义域为 R 的奇函数,且
3
此函数在定义域上是增函数,其图象关于原点对称,排除 A,
[思路分析]
本题将正比例函数、反比例函数、二次函数
和幂函数放在一起考查,要注意区别它们之间的不同点,根据 k 各自定义: (1)正比例函数 y = kx(k≠0); (2)反比例函数 y = x (k≠0);(3)二次函数 y=ax2+bx+c(a≠0);(4)幂函数 y=xα(α 是常数),转化为系数和指数的取值问题.
-
2 3
.
因为幂函数
2 y=x-3
7 2 在(0,+∞)上单调递减,且 < < 10 2
2 2 7 -2 2 1.21,所以( ) 3 >( )-3 >1.21-3 , 10 2 2 4 10 2 2 - - 即(- )3 >(- ) 3 >1.1 3 . 7 2
(3)因为 0<3.8 所以
2 3.95
[答案] ④⑤
[解析] ①中,x2 的系数为 3,故不是幂函数;②中,y= 1 x +1 不是 x 的形式,故不是幂函数;③中,y=- =-(x-1), x
2 α
1 -1 系数是-1,故不是幂函数;④中,y= =x 是幂函数;⑤中, x
2 y=x3
是幂函数;⑥中,y=2x 是指数函数.
命题方向二 幂函数的图象
外,其余完全一样.一年以后,法国数学家笛卡儿将其进 行了改进,把罗马数字改用阿拉伯数字,成了今天的样子. 此后由英国数学家渥里斯(Wallis,1616~1703)、牛顿等人分 别引入负指数幂和分数指数幂的概念及符号,从而使幂的 概念及符号发展得更完备了.那么,什么是幂?幂与an又有 什么关系呢?
高中数学 第四章 指数函数、对数函数与幂函数 4.1.1 实数指数幂及其运算学案(含解析)新人教B版

第四章指数函数、对数函数与幂函数4.1 指数与指数函数4.1.1 实数指数幂及其运算素养目标·定方向课程标准学法解读1.理解n次方根、n次根式的概念,能正确运用根式运算性质化简求值.2.理解有理数指数幂的含义,能正确运用其运算法则进行化简、计算.3.理解无理数指数幂,了解指数幂的拓展过程.4.掌握实数指数幂的运算法则.1.通过学习n次方根、n次根式概念及有理数指数幂含义,提升数学抽象素养.2.通过根式运算性质、有理数指数幂运算法则的应用,提升数学运算素养.3.通过学习无理数指数幂,了解无限逼近思想,提升数学抽象素养.4.通过实数指数幂运算法则的应用,提升数学运算素养.必备知识·探新知知识点n次方根(1)定义:给定大于1的正整数n和实数a,如果存在实数x,使得__x n=a__,则x称为a的n次方根.(2)表示:n为奇数n为偶数a∈R a>0a=0a<0x=__na__x=__±na__0不存在思考:对于式子na中a一定是非负数吗?如不是,其范围是什么?提示:不一定是非负数,其范围由n的奇偶决定;当n为奇数时,a∈R;当n为偶数时,a≥0.知识点根式(1)当n a 有意义时,na 称为根式,n 称为__根指数__,a 称为被开方数. (2)性质:①(na )n=__a __;②nan=⎩⎪⎨⎪⎧__a __,n 为奇数,__|a |__,n 为偶数.思考:(na )n与na n中的字母a 的取值范围是否一样?提示:取值范围不同.式子(na )n中隐含a 是有意义的,若n 为偶数,则a ≥0,若n 为奇数,a ∈R ;式子na n中,a ∈R .分数指数幂的意义 知识点正分数 指数幂n 为正整数,na 有意义,且a ≠0时,规定a 1n =__na __ 正分数m n,a m n =__(n a )m __=n a m负分数 指数幂s 是正分数,a s 有意义且a ≠0时,规定a -s =__1as __思考:分数指数幂中的m n有什么规定?提示:m n为既约分数,如果没有特殊说明,一般总认为分数指数中的分数都是既约分数. 知识点无理数指数幂当a >0且t 是无理数时,a t是一个确定的__实数__. 思考:当a >0时,式子a x 中的x 的范围是什么? 提示:x ∈R . 知识点实数指数幂的运算法则(a >0,b >0,r ,s ∈R )(1)a r a s=__ar +s__.(2)(a r )s =__a rs__. (3)(ab )r=__a r b r__.关键能力·攻重难题型探究题型n 次方根的概念及相关问题┃┃典例剖析__■典例1 (1)求使等式a -3a 2-9=(3-a )a +3成立的实数a 的取值范围;(2)设-3<x <3,求x 2-2x +1-x 2+6x +9的值. [分析] (1)利用a 2=|a |进行讨论化简. (2)利用限制条件去绝对值号. [解析] (1)a -3a 2-9=a -32a +3=|a -3|a +3,要使|a -3|a +3=(3-a )a +3成立,需⎩⎪⎨⎪⎧a -3≤0,a +3≥0,解得-3≤a ≤3,即实数a 的取值范围为[-3,3].(2)原式=x -12-x +32=|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2;当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2,-3<x <1,-4,1≤x <3.规律方法:1.对于na ,当n 为偶数时,要注意两点:(1)只有a ≥0时才有意义;(2)只要na 有意义,na 必不为负.2.当n 为偶数时,na n先化为|a |,再根据a 的正负去绝对值符号. ┃┃对点训练__■1.(1)若4a -2+(a -3)0有意义,则a 的 取值范围是__[2,3)∪(3,+∞)__;(2)已知x ∈[1,2],化简(4x -1)4+6x -26=__1__.[解析] (1)由⎩⎪⎨⎪⎧a -2≥0,a -3≠0,得a ≥2,且a ≠3.(2)∵x ∈[1,2],∴x -1≥0,x -2≤0,∴(4x -1)4+6x -26=x -1+|x -2|=x -1-(x -2)=1.题型根式与分数指数幂的互化┃┃典例剖析__■典例2 (1)用根式表示下列各式:a 15 ;a 34 ;a -23 ;(2)用分数指数幂表示下列各式:3a 5;3a 6;13a2.[分析] 利用分数指数幂的定义求解.[解析] (1)a 15 =5a ;a 34 =4a 3;a -23 =1a 23 =13a 2.(2)3a 5=a 53 ;3a 6=a 63 =a 2;13a 2=1a 23=a -23 .规律方法:根式与分数指数幂互化的规律(1)根指数化为,分数指数的分母,被开方数(式)的指数――→化为分数指数的分子. (2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算法则解题.┃┃对点训练__■2.(1)用根式表示下列各式:x 35 ;x -13 ; (2)用分数指数幂表示下列各式: ①b 3a 2·a 2b 6(a >0,b >0); ②a -4b 23ab 2(a >0,b >0).[解析] (1)x 35 =5x 3;x -13 =13x.(2)①b 3a 2·a 2b 6=b 3a 2·a b 3=a -12 . ②a -4b23ab 2=a -4b 2·ab213 =a -4b 2a 13 b 23 =a -113 b 83 =a -116 b 43 .题型有理(实数)指数幂的运算法则的应用┃┃典例剖析__■典例3 化简:(1)(5x -23 y 12 )·⎝ ⎛⎭⎪⎫-14x -1y 12 ·⎝ ⎛⎭⎪⎫-56x 13 y -16 (其中x >0,y >0);(2)0.064-13 -⎝ ⎛⎭⎪⎫-780+[(-2)3] -43 +16-0.75;(3)32+3×27-33; (4)(1+2)[(-2-1)-2(2)12 ]12 +(2)1-3×(2)1+3.[分析] 利用幂的运算法则计算.[解析] (1)原式=⎣⎢⎡⎦⎥⎤5×-14×-56·x -23 +(-1)+13·y 12 +12 -16=2524x -43 y 56 .(2)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716. (3)32+3×27-33 =32+3×(33)-33 =32+3×3-3=32+3-3=32=9.(4)(1+2)[(-2-1)-2(2)12 ]12 +(2)1-3×(2)1+3=(1+2)[(2+1)-2·(2)12 ]12 +(2)1-3+1+3=(1+2)[(2+1)-2×12(2)12 ×12 ]+(2)2=(1+2)·[(2+1)-1·(2)14 ]+2=(2)14 +2=2+218 .规律方法:指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.┃┃对点训练__■ 3.化简与求值(1)⎝ ⎛⎭⎪⎫-338 -23 +(0.002)-12 -10(5-2)-1+(2-3)0; (2)3a 32·a -3·a-5-12 ·a -1213.[解析] (1)原式=(-1) -23 ⎝ ⎛⎭⎪⎫338-23 +⎝ ⎛⎭⎪⎫1500-12-105-2+1=⎝ ⎛⎭⎪⎫278-23 +(500) 12 -10(5+2)+1=49+105-105-20+1=-1679. (2)原式=(a 32 ·a -23 )13 ·[(a -5)-12 ·(a -12 )13] 12 =(a 0) 13 ·(a 52 ·a -23 )12=(a -4) 12 =a -2.易错警示┃┃典例剖析__■典例4 化简(1-a )[(a -1)-2·(-a ) 12 ] 12 .[错解] 原式=(1-a )(a -1)-1·(-a ) 14 =-(-a ) 14 .[辨析] 误解中忽略了题中有(-a ) 12 ,即-a ≥0,a ≤0,则[(a -1)-2] 12 ≠(a -1)-1. [正解] ∵(-a ) 12 存在,∴-a ≥0,故a -1<0,原式=(1-a )·(1-a )-1(-a ) 14 =1 (-a)4.。
人教高中数学必修二B版《对数与对数函数》指数函数、对数函数与幂函数说课教学课件复习(对数运算)

课件
(1)将下列指数式化成对数式:
①54=625;②2-6=614;③3a=27;④13m=5.73. (2)将下列对数式化成指数式并求 x 的值:
①log64x=-23;②logx8=6;③lg 100=x.
栏目 导引
第四章 指数函数、对数函数与幂函数
【解】
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
栏目 导引
第四章 指数函数、对数函数与幂函数
求 f(x)=logx11- +xx的定义域.
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
x>0,
解:要使函数式 f(x)有意义,需x11≠ -+1xx,>0,
【答案】 D
栏目 导引
第四章 指数函数、对数函数与幂函数
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
由于对数式中的底数 a 就是指数式中的底数 a,所以 a 的取值 范围为 a>0,且 a≠1;由于在指数式中 ax=N,而 ax>0,所以 N>0.
所以 x=8-32=2-2=14,故选 A.
高中数学人教版必修一《2.3幂函数》教学课件

1.a>0时,(1)图象都经过点(0,0)和 (1,1); (2)函数在( 0,+∞)上是增函数。
2.a<0时,(1)图象都经过点(1,1); (2)函数在( 0,+∞)上是减函数,且向右无穷接 近x轴,向上无穷接近y轴。
x -2 -1.5 -1 -0.5 0 x3 x 0.5 1 1.5 2 x3
定义域:_____________ 值 域:_____________ 奇偶性: _____________ 单调性: _____________
x
012
3
x0.5___
值 域:_____________
奇偶性: _____________
单调性: _____________
定义域:_____________
值 域:_____________
奇偶性: _____________
单调性: _____________
y x
几个幂函数的图象和性质
定义域 R
R
R [ 0,+∞) {x|x≠0}
值域
R
[ 0,+∞)
R [0,+∞) {y|y≠0}
奇偶性 奇
偶 奇 非奇非偶 奇
单调性
↗
[0,+∞)↗
(- ∞,0) ↘ ↗
(0,+∞) ↘
↗
(- ∞,0)↘
公共点
例3、用所学的图象和性质,比较下列各组值的大小:
(2)幂函数y x3在,是增函数
例3、用所学的图象和性质,比较下列各组值的大小:
【解析】(1)若 f(x)为正比例函数,
高中数学 第四章 指数函数、对数函数与幂函数 4.4 幂函数学案(含解析)新人教B版必修第二册-新人

4.4 幂函数学习目标1.通过具体问题,了解幂函数的概念.2.从描点作图入手,画出y=x,y=x2,y=x3,y=x12,y=x-1的图像,总结出幂函数的共性,巩固并会加以应用.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.自主预习1.一般地,幂函数的表达式为,其特征是以幂的为自变量,为常数.2.幂函数的图像及性质(1)在同一坐标系中,幂函数y=x,y=x2,y=x3,y=x12,y=x-1的图像如图.结合图像,填空.(1)所有的幂函数图像都过点,在(0,+∞)上都有定义.(2)当α>0时,幂函数图像过点,且在第一象限内单调;当0<α<1时,图像上凸,当α>1时,图像.(3)若α<0,则幂函数图像过点,并且在第一象限内单调,在第一象限内,当x从+∞趋向于原点时,函数在y轴右方无限地逼近于y轴,当x趋于+∞时,图像在x轴上方无限逼近x轴.(4)当α为奇数时,幂函数图像关于对称;当α为偶数时,幂函数图像关于对称.(5)幂函数在第象限无图像.课堂探究例1(1)下列函数:①y=x3;②y=(12)x;③y=4x2;④y=x5+1;⑤y=(x-1)2;⑥y=x;⑦y=a x(a>1).其中幂函数的个数为()A.1B.2C.3D.4(2)已知y=(m2+2m-2)x x2-2+2n-3是幂函数,求m,n的值.跟踪训练1(1)已知幂函数f(x)=k·xα的图像过点(12,√22),则k+α等于()A.12B .1C.32D.2(2)已知f (x )=ax 2a+1-b+1是幂函数,则a+b 等于( )A.2B.1C.12D.0例2 比较下列各题中两个值的大小.(1)2.31.1和2.51.1;(2)(x 2+2)-13和2-13.跟踪训练2 比较下列各组数的大小. (1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1.例3 讨论函数y=x 23的定义域、奇偶性,通过描点作出它的图像,并根据图像说明函数的单调性.核心素养专练1.以下结论正确的是( )A.当α=0时,函数y=x α的图像是一条直线 B.幂函数的图像都经过(0,0),(1,1)两点C.若幂函数y=x α的图像关于原点对称,则y=x α在定义域内y 随x 的增大而增大 D.幂函数的图像不可能在第四象限,但可能在第二象限 2.下列不等式成立的是( ) A.(13)-12>(12)-12B.(34)23<(23)23C.(23)2>(32)2D.8-78<(19)783.函数y=x -3在区间[-4,-2]上的最小值是 .4.若幂函数f (x )=(m 2-m-1)x x2-2x -3在(0,+∞)上是减函数,则实数m= .参考答案自主预习1.y=x α底数 指数2.(1)(1,1) (2)(0,0),(1,1) 递增 下凸 (3)(1,1) 递减 (4)原点(0,0) y 轴 (5)四 课堂探究例1 (1)B解析:幂函数有①⑥两个. (2)由幂函数定义求参数值.解:由题意得{x 2+2x -2=12x -3=0,解得{x =-3,x =32或{x =1,x =32. 所以m=-3或1,n=32.跟踪训练1 (1)C解析:由幂函数的定义知k=1.又f (12)=√22,所以(12)x =√22,解得α=12,从而k+α=32.(2)A解析:因为f (x )=ax2a+1-b+1是幂函数,所以a=1,-b+1=0,即a=1,b=1,则a+b=2.例2 (1)考查幂函数y=x 1.1,因为在其区间[0,+∞)上是增函数,而且2.3<2.5,所以2.31.1<2.51.1. (2)考查幂函数y=x -13,因为其在区间(0,+∞)上是减函数,而且a 2+2≥2,所以(a 2+2)-13≤2-13.跟踪训练2 解:(1)因为幂函数y=x 0.5在(0,+∞)上是单调递增的, 又25>13,所以(25)0.5>(13)0.5.(2)因为幂函数y=x -1在(-∞,0)上是单调递减的, 又-23<-35,所以(-23)-1>(-35)-1.例3 因为y=x 23=√x 23,所以不难看出函数的定义域是实数集R .记f (x )=x 23,则f (-x )=(-x )23=√(-x)23=√x 23=x 23=f (x ),所以函数y=x 23是偶函数,因此,函数图像关于y轴对称.通过列表描点,可以先作出y=x 23在x ∈[0,+∞)时的函数图像,再根据对称性,可作出它在x ∈(-∞,0]时的图像,如图.由图像可以看出,函数在区间(-∞,0]上单调递减,在区间[0,+∞)上单调递增. 核心素养专练1.D2.A3.-18解析:因为函数y=x-3=1x3在(-∞,0)上单调递减,所以当x=-2时,y min=(-2)-3=-18.4.2解析:由题意,得m2-m-1=1,得m=2或m=-1.当m=2时,m2-2m-3=-3,符合要求.当m=-1时,m2-2m-3=0不符合要求.故m=2.学习目标1.掌握幂函数的概念、图像和性质.2.熟悉α=1,2,3,12,-1时的五类幂函数的图像、性质及其特点.3.能利用幂函数的图像与性质解决综合问题.自主预习1.在关系式N=a b(a>0,a≠1)中.①如果把b作为自变量,N作为因变量,这是什么函数?②如果把N作为自变量,b作为因变量,这是什么函数?③如果把a作为自变量,N作为因变量,这是什么函数?2.观察函数y=x,y=x2,y=x12,y=x-3,这几个函数有什么共同特点?把这几个函数的解析式改写成统一的形式.幂函数的定义:3.给出下列函数,其中是幂函数的有.①y=3x2②y=x2-1③y=-1x ④y=1x2⑤y=x-13⑥y=2x课堂探究1.问题①:给出下列函数:y=x,y=x12,y=x2,y=x-1,y=x3,考察这些解析式的特点,是否为指数函数?问题②:根据问题①,如果让我们起一个名字的话,你将会给它们起个什么名字呢?请给出一个一般性的结论.2.问题③:我们前面学习指对数函数的性质时,用了什么样的思路?研究幂函数的性质呢?问题④:根据函数y=x12,y=x3的性质画出图像.问题⑤:画出y=x,y=x12,y=x2,y=x-1,y=x3五个函数图像,通过对以上五个函数图像的观察,你能类比出一般的幂函数的性质吗?3.例题讲解例1已知y=(m2+2m-2)x x2-1+2n-3是定义域为R的幂函数,求m,n的值.例2比较下列各题中两个值的大小.(1)2.31.1,2.51.1;(2)(a2+2)-13,2-13.变式训练1比较下列各组的大小.(1)-8-78和-(19)78;(2)(-2)-3和(-2.5)-3;(3)(1.1)-0.1和(1.2)-0.1;(4)(4.1)25,(3.8)-23和(-1.9)34.例3讨论函数y=x23的定义域、奇偶性,通过描点作出它的图像,并根据图像说明函数的单调性.变式训练2求下列幂函数的定义域,并指出其奇偶性、单调性.(1)y=x25;(2)y=x-34;(3)y=x-2.核心素养专练1.(多选题)给出下列说法,其中正确的是()A.幂函数的图像均过点(1,1)B.幂函数的图像都在第一象限内出现C.幂函数在第四象限内可以有图像D.任意两个幂函数的图像最多有两个交点2.已知幂函数f(x)的图像经过点(8,4),则f(127)的值为()A.19B.9 C.13D.33.已知a=243,b=425,c=2513,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b4.若幂函数y=(m2-3m+3)x m-2的图像不过原点,则()A.1≤m≤2B.m=1或m=2C.m=2D.m=15.(开放性题)(1)已知函数f(x)=xα的定义域为[0,+∞),则满足条件的α可以是.(写出两个满足条件的α值)(2)已知幂函数f(x)=xα的图像经过点(0,0),(1,1),(-1,1),(4,2)中的三个点,则满足条件的α可以是.6.如图所示是6个函数的图像,则图中的a,b,c,d从大到小排列为.7.已知幂函数f(x)=xα的图像经过点(2,18),则α=,若f(a+1)<f(3-2a),实数a的取值集合为.8.求出下列函数的定义域,并判断函数的奇偶性.(1)f(x)=x2+x-2;(2)f(x)=x+3x23(3)f(x)=x3+x13;(4)f(x)=2x4+x-12.9.在同一个直角坐标系中,作出下列函数的图像,并总结出一般规律.(1)y=x-3,y=x-13,(2)y=x94,y=x49.参考答案自主预习略 课堂探究1.略2.略3.例1 m=-3,n=32例2 (1)2.31.1<2.51.1 (2)(a 2+2)-13≤2-13变式训练1 (1)-8-78<-(19)78(2)(-2)-3<(-2.5)-3(3)(1.1)-0.1>(1.2)-0.1(4)(-1.9)34<(3.8)-23<(4.1)25例3 通过列表描点,可以先作出y=x 23在x ∈[0,+∞)时的函数图像,再根据对称性,可作出它在x ∈(-∞,0]时的图像.作图略.由图像可以看出,函数y=x 23在区间(-∞,0]上单调递减,在区间[0,+∞)上单调递增.变式训练2 (1)定义域为R,是偶函数,在[0,+∞)单调递增,在(-∞,0]上单调递减. (2)定义域为(0,+∞),非奇非偶函数,在(0,+∞)上单调递减.(3)定义域为(-∞,0)∪(0,+∞),是偶函数,在(-∞,0)上单调递增,在(0,+∞)上单调递减. 核心素养专练1.AB2.D3.A4.B5.(1)α=12或α=34 (2)2或12 6.d>b>c>a 7.-3 (-∞,-1)∪(23,32)8.(1){x|x ≠0},偶函数 (2)R,非奇非偶函数 (3)R,奇函数 (4){x|x>0},非奇非偶函数 9.作图略.(1)幂函数在(0,+∞)都有定义,并且函数图像都通过点(1,1). (2)如果α>0,则幂函数的图像过点(0,0),(1,1)并在(0,+∞)上为增函数. (3)如果α<0,则幂函数的图像过点(1,1),并在(0,+∞)上为减函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学业分层测评(二十三) 幂函数
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知幂函数y=f (x)的图象过点12,22,则log2f (2)的值为( )
A.12 B.-12
C.2 D.-2
【解析】 设log2f (2)=n,则f (2)=2n,∴f (x)=xn,
又∵由幂函数y=f (x)的图象过点12,22,
∴12n=22=12 ⇒n=12,故选A.
【答案】 A
2.(2016·滨州高一检测)已知幂函数f (x)=xa,当x>1时,恒有f (x)<x,则
a的取值范围是( )
A.0<a<1 B.a<1
C.a>0 D.a<0
【解析】 当x>1时,f (x)<x恒成立,即xa-1<1=x0恒成立,因为x>1,
所以a-1<0,解得a<1,故选B.
【答案】 B
3.如图3-3-3所示,给出4个幂函数的图象,则图象与函数的大致对应是
( )
图3-3-3
【解析】 因为y=x3的定义域为R且为奇函数,故应为图①;y=x2为开
口向上的抛物线且顶点为原点,应为图②.同理可得出选项B正确.
【答案】 B
4.已知幂函数f (x)的图象经过点(4,2),则f (x)的增区间为( )
A.(-∞,+∞) B.(-∞,0)
C.(0,+∞) D.(1,+∞)
【解析】 设幂函数f (x)=xn,则4n=2,解得n=12,即有f (x)=x,则
有x≥0,
则增区间为(0,+∞).故选C.
【答案】 C
【答案】 B
二、填空题
6.若幂函数y=(m2-2m-2)x-4m-2在x∈(0,+∞)上为减函数,则实数m
的值是________.
【解析】 因为函数y=(m2-2m-2)x-4m-2既是幂函数又是(0,+∞)上的
减函数,
所以 m2-2m-2=1,-4m-2<0⇒ m=3或m=-1,m>-12,解得m=3.
【答案】 3