高中数学破题致胜微方法(求函数解析式):12.利用周期性求函数解析式 Word版含解析

高中数学破题致胜微方法(求函数解析式):12.利用周期性求函数解析式 Word版含解析
高中数学破题致胜微方法(求函数解析式):12.利用周期性求函数解析式 Word版含解析

利用周期性求函数解析式

周期性是函数的一种性质,当我们通过题目的已知条件,能够判断函数是周期函数时,再相关性质,求函数的解析式,就能简单一些了。今天我们就根据实际例子,看看如何利用周期性,求函数的解析式。

先看例题

例:设f (x )是定义在区间(,)-∞+∞上,且以2为周期的函数,对k Z ∈,用k I 表示区间(21,21)k k -+,已知当0x I ∈时,2

()f x x =,求f (x )在k I 上的解析式

解:由已知,当k =0时,0(1,1)I =-

我们利用区间转移的方法,如果k x I ∈

即0(21,21)2x k k x k I ∈-+?-∈ 121x k ?-<-<

则有:2

(2)(2)f x k x k -=-

又因为该函数以2为周期,所以有(2)(),f x k f x -=

所以函数在k I 上的解析式为:2()(2)f x x k =-

一般规律:

区间转移:

将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间。

进而求出,该区间上的函数解析式

再看一个例题加深印象

练:设f (x )是定义在R 上的奇函数,且其图象关于直线x =1对称,当[]2,0x ∈-时,()22.f x x x +=

当[]2,4x ∈时,求f (x )的解析式

首先通过题目条件,证明函数为周期函数

因为函数关于x =1对称,且函数为奇函数

所以有()(2)()f x f x f x +=-=-

又因为(2)()f x f x +=-

所以:()()(4)(2)[]f x f x f x f x +=-+=--=

所以函数为周期函数,且周期T =4

因为函数在[]2,0x ∈-上的解析式已知,所以

由[]2,4,4[2,0],x x ∈-∈-

可得:()22(4)2(4)(4)68.f x f x x x x x ----==+=+

总结:

1.根据题目条件,判断、证明函数为周期函数.

2.将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间.

3.根据题目条件,以及函数性质,确定所求区间上的解析式

练习:

1.设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间2,3]上时,f (x )=-2(x -3)2+4,求当x ∈1,2]时f (x )的解析式.若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值.

2.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在0,1]上是一次函数,在1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5.

(1)证明:f (1)+f (4)=0;

(2)试求y =f (x ),x ∈1,4]的解析式;

(3)试求y =f (x )在4,9]上的解析式.

答案:

2. (1)证明:∵y=f(x)是以5为周期的周期函数,

∴f(4)=f(4-5)=f(-1),

又y=f(x)(-1≤x≤1)是奇函数,∴f(1)=-f(-1)=-f(4),∴f(1)+f(4)=0. (2)解:当x∈1,4]时,由题意,可设f(x)=a(x-2)2-5(a≠0),由f(1)+f(4)=0 得a(1-2)2-5+a(4-2)2-5=0,

解得a=2,∴f(x)=2(x-2)2-5(1≤x≤4).

∴当0≤x ≤1时,f (x )=-3x ,

当-1≤x <0时,f (x )=-3x ,

当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15,

当6<x ≤9时,

1<x -5≤4,f (x )=f (x -5)=2(x -5)-2]2-5=2(x -7)2

-5. ∴f (x )=??

?≤<--≤≤+-)96( 5)7(2)64( 1532x x x x .

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

人教版高中数学必修一-第三章-函数的应用知识点总结

高中数学必修一第三章函数的应用知识点总结(详细) 第三章函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。(实质上是函数y=f(x)与x轴交点的横坐标) 2、函数零点的意义:方程f(x)=0 有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点 3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c也是方程f(x)=0 的根。 4、函数零点的求法:求函数y=f(x)的零点: (1)(代数法)求方程f(x)=0 的实数根; (2)(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0). 1)△>0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点. 2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点. 二、二分法 1、概念:对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。 2、用二分法求方程近似解的步骤: ⑴确定区间[a,b],验证f(a)f(b)<0,给定精确度ε; ⑵求区间(a,b)的中点c;

高中数学必修一《集合与函数的概念》经典例题

高中数学必修一第一章《集合与函数概念》综合测 试题试题整理:周俞江 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正 确答案的代号填在题后的括号内(本大题共12个小题, 每小题5分,共60分). 1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A I ( ) A. }{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2. 若{{}|0,|12A x x B x x =<<=≤<,则A Y B=( ) A . {}|0x x ≤ B .{}|2x x ≥ C .{0x ≤≤ D .{}|02x x << 3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.x x y y ==,1 B .1,112-=+?-=x y x x y C.55 ,x y x y == D .2)(|,|x y x y == 4.函数x x x y +=的图象是( ) 5.0≤f 不是映射的是A .1:3f x y x ?? →= B .1 :2 f x y x ??→= C .1:4f x y x ??→= D .1:6f x y x ??→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1 B .0 C .0或1 D .1或2 7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( ) A .2-≥k B .2-≤k C .2->k D .2-

9.有下面四个命题: ①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称; ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1 B .2 C .3 D .4 10.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 11.若函数))(12()(a x x x x f -+= 为奇函数,则=a ( ) A.21 B.32 C.43 D.1 12.已知函数x x x x f 22 11)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x 21+ B.x x 212+- C.x x 212+ D.x x 21+- 13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 14.已知函数[](]?????∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或4 15.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 A .增函数 B .减函数

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

高一数学必修一集合与函数的概念单元测试题附答案解析

高一数学必修一集合与函数的概念单元测试题 附答案解析 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

高一数学必修一 集合与函数的概念单元测试 附答案解析 (时间:120分钟 满分:150分) 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( ) A .{0} B .{0,2} C .{-2,0} D .{-2,0,2} 2.设f :x →|x |是集合A 到集合B 的映射,若A ={-2,0,2},则A ∩B =( ) A .{0} B .{2} C .{0,2} D .{-2,0} 3.f (x )是定义在R 上的奇函数,f (-3)=2,则下列各点在函数f (x )图象上的是( ) A .(3,-2) B .(3,2) C .(-3,-2) D .(2,-3) 4.已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .5 D .9 5.若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( ) A .f (x )=9x +8 B .f (x )=3x +2 C .f (x )=-3x -4 D .f (x )=3x +2或f (x )=-3x -4 6.设f (x )=??? x +3 x >10, fx +5 x ≤10,则f (5)的值为( ) A .16 B .18 C .21 D .24 7.设T ={(x ,y )|ax +y -3=0},S ={(x ,y )|x -y -b =0},若S ∩T ={(2,1)},则 a , b 的值为( ) A .a =1,b =-1 B .a =-1,b =1 C .a =1,b =1 D .a =-1,b =-1 8.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) C .(-1,0) 9.已知A ={0,1},B ={-1,0,1},f 是从A 到B 映射的对应关系,则满足f (0)>f (1)的映射有( ) A .3个 B .4个 C .5个 D .6个 10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2- x 1)[f (x 2)-f (x 1)]>0,则当n ∈N *时,有( ) A .f (-n )

高中数学函数的解析式

课题:___函数的解析式___ 教学任务 教 学 目 标 知识与技能目标会求简单函数的解析式 过程与方法目标 学生通过“回顾-反思-巩固-小结”的过程中 总结简单函数的解析式三种类型及解法。理解掌握 换元法、待定系数法,体会建立数学模型。培养学 生分类讨论的数学思想。 情感,态度与价值 观目标 使学生认识到数学与生活紧密相连,数学活动充满着探索与创 造,让他们在学习活动中培养独立的分析和建模的能力。 重点理解掌握应用换元法、待定系数法求简单函数的解析式 难点能初步掌握用数学模型解决实际问题,并能注意实际问题中的定义域 教学过程设计 问题与情境 设计 意图 活动1课前热身(资源如下) 1、设 ? ? ? ? ? < = > + = )0 (0 )0 ( )0 (1 ) ( x x x x x fπ,则f{f[f(-1)]}=_______ ___ 2、若一次函数f(x),使f[f(x)]=9x+1,则() f x= 3、已知:) (x f=x2-x+3 ,则 f(x+1) = , f( x 1 )= 4、若 x x x f - = 1 ) 1 (求f(x) = 5、客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙 地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙 地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过 的路程s与时间t之间关系的图象中,正确的是(). A. B. C. D. . 从正 反两 种情 况出 发,让 学生 回忆 体会 函数 解析 式用 法和 求法。 活动2类型解法 函数的解析式的几种类型及解法: 1、已知所要求的函数类型(一次、二次、反比例、指对数等), 利用待定系数法来求; 2、已知复合函数一般用变量代换(换元)法; 3、涉及实际问题求解析式,需建立数学模型即:把实际问题转 化为数学问题。 培 养学 生用 自己 的语 言来 总结 类型 与解 法 活动3提高探究 资源1、求满足下列条件的函数() f x的解析式: ①已知一次函数() f x,满足3(1)2(1)217 f x f x x +--=+. ②若二次函数满足(0)0 f=,且(1)()1 f x f x x +=++ ③设二次函数f(x)满足f(x-2)=f(-x-2),且图象在y轴上的截距为1,在x轴上截得 的线段长为2 2. 掌 握利 用待 定系 数法 求解 析式。

人教版高中数学公式整理

人教版高中数学公式整理 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值

二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下: (1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据

(1)在给定区间的子区间形如 ,,不同上含参数的不等式(为参 数)恒成立的充要条件是 。 (2)在给定区间 的子区间上含参数的不等式(为参数) 恒成立的充要条件是 。 (3) 在给定区间 的子区间上含参数的不等式(为参数) 的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数) 有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式

, 或且 ,成立 且或 13.四种命题的相互关系(右图): 14.充要条件记表示条件,表示结论 1充分条件:若,则是充分条件. 2必要条件:若,则是必要条件. 3充要条件:若,且,则是充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 15.函数的单调性的等价关系 (1)设那么 上是增函数; 上是减函数. (2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.

高一数学必修一集合与函数的概念

高一数学必修一集合与函数的概念 第一章集合与函数概念 一:集合的含义与表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们 能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。 把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确 定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 3、集合的表示:{…} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来{a,b,c……} b、描述法: ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {xR|x-3>2},{x|x-3>2} ②语言描述法:例:{不是直角三角形的三角形}

③Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:aA (2)元素不在集合里,则元素不属于集合,即:a¢A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 6、集合间的基本关系 (1).“包含”关系(1)—子集 定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:(或BA) 注意:有两种可能(1)A是B的一部分; (2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA (2).“包含”关系(2)—真子集

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

高中数学求函数解析式的各种方法

函数解析式 1、已知2(21)42f x x x +=-,求()f x 表达式。 2、已知1()2()23f x f x x +=+,求()f x 表达式。 3、已知2(1)21f x x +=+,求(1)f x -,()f x 。 4、已知23()2()23f x f x x --=-,不求()f x 的解析式,直接求(0)f ,(2)f 。 5、已知2 211()11x x f x x --=++,求()f x 解析式。 6、设()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x,y 都有()()(21)f x y f x y x y -=--+,求()f x 。 7、若函数2 2()1x f x x =+,求111(1)(2)()(3)()(4)()234f f f f f f f ++++++。 8、已知函数()x f x ax b =+,(2)1f =且方程()0f x x -=有唯一解,求()f x 表达式。 9、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 。 10、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 11、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 12、已知函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 13、设,)1(2)()(x x f x f x f =-满足求)(x f 。 14、设)(x f 为偶函数,)(x g 为奇函数,又,1 1)()(-=+x x g x f 试求)()(x g x f 和的解析式。 15、设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 。 16、已知f (x +1)=x +2x ,求()f x 的解析式。 17、已知f (x + x 1)=x 3+31x ,求()f x 的解析式。 18、已知函数()f x 是一次函数,且满足关系式3(1)2(1)217f x f x x +--=+,求()f x 的解析式。 19、已知2(1)lg f x x +=,求()f x 。 20、已知()f x 满足1 2()()3f x f x x +=,求()f x 。

人教版高一数学函数及其性质知识点归纳与习题

O O O O (1) (2) (3) (4) 时间 时间 时间 时间 离开家的距离 离开家的距离 离开家的距离 离开家的距离 人教版高一数学函数及其性质知识点归纳与习题 第一部分 函数及其表示 知识点一:函数的基本概念 1、函数的概念: 一般地,设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A→B 为从集合A 到集合B 的一个函数。记作: A x x f y ∈=,)(。 x 叫自变量,x 的取值范围A 叫做函数的定义域,y 叫函数值,y 的取值范围叫函数的值域。 说明:①函数首先是两个非空数集之间建立的对应关系 ②对于x 的每一个值,按照某种确定的对应关系f ,都有唯一的y 值与它对应,这种对应应为数与数之间的“一对一”或“多对一”。 ③认真理解)(x f y =的含义:)(x f y =是一个整体,)(x f 并不表示f 与x 的乘积,它是一种符号,可以是解析式,也可以是图象,还可以是表格; 2、函数的三要素:定义域,值域和对应法则 3、区间的概念:三种区间:闭区间、开区间、半开半闭区间 4、两个函数相等:同时满足(1)定义域相同;(2)对应法则相同的两个函数才相等 5、分段函数: 说明:①在求分段函数的函数值时,首先要确定自变量在定义域中所在的范围,然后按相应的对应关系求值。 ②分段函数是一种重要的函数,它不是几个函数,而是同一个函数在不同范围内的表示方法不同。 6、函数图像 练习 1.下列图象中表示函数图象的是 ( ) (A ) (B) (C ) (D) 2.下列各组函数中,表示同一函数的是( ) A .x x y y ==,1 B .1,112 -=+?-=x y x x y C .3 3 ,x y x y = = D . 2 )(|,|x y x y == 3.下列所给4个图象中,与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。 A 、(1)(2)(4) B 、(4)(2)(3) C 、(4)(1)(3) D 、(4)(1)(2) 4.下列对应关系:( ) ①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根 ②,,A R B R ==f :x x →的倒数 ③,,A R B R ==f :2 2x x →- ④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方 其中是A 到B 的映射的是 A .①③ B .②④ C .③④ D .②③ 5.在国内投寄平信,每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重()040x x <≤克的函数,其表达式为()f x =____ ____ 6.设函数? ??<+≥-=10110 2)(2x x x x x f ,则)9(f = ,)15(f = 7.设函数?? ?<-≥-=5 35 2)(2 x x x x x f ,若)(x f =13,则x= 。 8.函数()1,3,x f x x +?=?-+? 1, 1,x x ≤>则()()4f f = . 9.下列各组函数是同一函数的有 ①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =; ③0 ()f x x =与0 1()g x x = ;④2()21f x x x =--与2 ()21g t t t =--。 10.作出函数(]6,3,762 ∈+-=x x x y 的图象 x y 0 x y 0 x y 0 x y 0

高一数学集合与函数测试题及答案

第一章 集合与函数 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 如图,U 是全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是 A.(M S P ) B.(M S P ) C. (M P ) (S C U ) D.(M P ) (S C U ) 2. 函数 ]5,2[,142 x x x y 的值域是 A. ]61[, B. ]13[, C. ]63[, D. ),3[ 3. 若偶函数)(x f 在]1,( 上是增函数,则 A .)2()1()5.1(f f f B .)2()5.1()1(f f f C .)5.1()1()2( f f f D .)1()5.1()2( f f f 4. 函数|3| x y 的单调递减区间为 A. ),( B. ),3[ C. ]3,( D. ),0[ 5. 下面的图象可表示函数y=f(x)的只可能是 y y y y 0 x 0 x 0 x 0 x A. B. C. D. 6. 函数5)(3 x c bx ax x f ,满足2)3( f ,则)3(f 的值为 A. 2 B. 8 C. 7 D. 2 7. 奇函数)(x f 在区间[1,4]上为减函数,且有最小值2,则它在区间]1,4[ 上 A. 是减函数,有最大值2 B. 是增函数,有最大值2 C. 是减函数,有最小值2 D. 是增函数,有最小值2 8.(广东) 客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是 A. B. C. D. 9. 下列四个函数中,在(0,+∞)上为增函数的是

高中数学破题致胜微方法(求函数解析式):12.利用周期性求函数解析式 Word版含解析

利用周期性求函数解析式 周期性是函数的一种性质,当我们通过题目的已知条件,能够判断函数是周期函数时,再相关性质,求函数的解析式,就能简单一些了。今天我们就根据实际例子,看看如何利用周期性,求函数的解析式。 先看例题 例:设f (x )是定义在区间(,)-∞+∞上,且以2为周期的函数,对k Z ∈,用k I 表示区间(21,21)k k -+,已知当0x I ∈时,2 ()f x x =,求f (x )在k I 上的解析式 解:由已知,当k =0时,0(1,1)I =- 我们利用区间转移的方法,如果k x I ∈ 即0(21,21)2x k k x k I ∈-+?-∈ 121x k ?-<-< 则有:2 (2)(2)f x k x k -=- 又因为该函数以2为周期,所以有(2)(),f x k f x -= 所以函数在k I 上的解析式为:2()(2)f x x k =- 一般规律: 区间转移: 将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间。 进而求出,该区间上的函数解析式 再看一个例题加深印象 练:设f (x )是定义在R 上的奇函数,且其图象关于直线x =1对称,当[]2,0x ∈-时,()22.f x x x +=

当[]2,4x ∈时,求f (x )的解析式 首先通过题目条件,证明函数为周期函数 因为函数关于x =1对称,且函数为奇函数 所以有()(2)()f x f x f x +=-=- 又因为(2)()f x f x +=- 所以:()()(4)(2)[]f x f x f x f x +=-+=--= 所以函数为周期函数,且周期T =4 因为函数在[]2,0x ∈-上的解析式已知,所以 由[]2,4,4[2,0],x x ∈-∈- 可得:()22(4)2(4)(4)68.f x f x x x x x ----==+=+ 总结: 1.根据题目条件,判断、证明函数为周期函数. 2.将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间. 3.根据题目条件,以及函数性质,确定所求区间上的解析式 练习: 1.设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间2,3]上时,f (x )=-2(x -3)2+4,求当x ∈1,2]时f (x )的解析式.若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值. 2.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在0,1]上是一次函数,在1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5. (1)证明:f (1)+f (4)=0; (2)试求y =f (x ),x ∈1,4]的解析式; (3)试求y =f (x )在4,9]上的解析式. 答案:

人教版高中数学必修一函数解析式的求法大盘点

函数解析式的求法大盘点 函数解析式的求解方法较多,在此,我归纳了几类供大家学习,希望对大家有所帮助。 一. 方程组法 型型和此法主要适用(x) )()()()()(c tx bf x af x c x t bf x af =+=+。 。即函数的解析式为得:替换为解析:把。 联立方程组,即可解出替换为分析:把的解析式。 ,求满足函数例3)(3)(-)(2)-()(2)(,)(,)()(2)()(.1x x f x x f x x f x f x x f x f x x x f x x x f x x f x f x f ==????=-=----=-- 。即函数的解析式为得:替换为解析:把。联立方程组,即可解出替换为分析:把的解析式。,求满足函数例)2(31)()2(31)(1 )(2)1()1(2)(,1)(,1)()1(2)()(.2x x x f x x x f x x f x f x x f x f x x x f x x x f x x f x f x f +--=+--=???? ????-=--=----=-- 点评:方程组法求函数解析式关键是根据所给表达式列出方程组。 )()()()()()()()()()(x f x t c x bf x t af x c x t bf x af x t x x c x t bf x af 即可解出,即替换为型需把???????=+=+=+, ).()()()()()()((x) )()(x f tx c x bf tx af x c tx bf x af tx x c tx bf x af 即可解出,即替换为型需把???=+=+=+

(完整版)2高中数学函数解题技巧方法总结

高中数学函数知识点总结 1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是y x x x = --432 lg ()()()(答: ,,,)022334Y Y 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数 x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 余切函数 x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域 函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? []的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [](答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解 出x 的范围,即为 [])(x g f y =的定义域。 例 若函数 )(x f y =的定义域为?? ? ???2,21,则)(log 2x f 的定义域为 。 分析:由函数 )(x f y =的定义域为?? ? ???2,21可知:221≤≤x ; 所以)(log 2x f y =中有2log 212≤≤x 。

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

高中数学:第一章 集合与函数的概念 1.2.1

1.2.1集合之间的关系 学习目标 1.理解子集、真子集的概念. 2.理解集合相等并能用符号和Venn图表达集合间的关系. 3.掌握列举有限集的所有子集的方法.

知识点一子集与真子集 思考1如果把“马”和“白马”视为两个集合,则这两个集合中的元素有什么关系? 答案所有的白马都是马,马不一定是白马. 思考2我们知道集合A是它本身的子集,那么如何刻画至少比A少一个元素的A的子集?答案用真子集. 梳理 1.子集与真子集 2.子集的性质 (1)规定:空集是任意一个集合的子集.也就是说,对任意集合A,都有??A. (2)任何一个集合A都是它本身的子集,即A?A. (3)如果A?B,B?C,则A?C. (4)如果A?B,B?C,则A?C. 知识点二集合的相等 思考“中国的直辖市”构成的集合记为A,由北京、上海、天津、重庆四个城市构成的集

合记为B,请问集合A与集合B的元素有什么关系?你认为集合A与集合B有什么关系?答案A中的元素与B中的元素完全相同,A与B相等. 梳理集合的相等 知识点三集合关系与其特征性质之间的关系 1.一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,于是x具有性质p(x)?x具有性质q(x),即p(x)?q(x). 反之,如果p(x)?q(x),则A一定是B的子集,其中符号“?”是“推出”的意思. 2.如果命题“p(x)?q(x)”和命题“q(x)?p(x)”,都是正确的命题,这时我们常说,一个命题的条件和结论可以互相推出,互相推出可用符号“?”表示,于是,上述两个正确的互逆命题可表示为p(x)?q(x),显然,如果p(x)?q(x),则A=B;反之,如果A=B,则p(x)?q(x). 类型一集合间关系的判断 命题角度1概念间的包含关系 例1设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为() A.P?N?M?Q B.Q?M?N?P

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ; (2)二次函数2 y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a ﹤0时,值域244ac b B y y a ??-??=≤?????? 。 (3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。 (二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+, (1) 求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。 (四)课堂练习: 1. 用区间表示下列集合: {}{}{}{}4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或 2. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3. 课本P 19练习2。

相关文档
最新文档