三角函数最值问题

合集下载

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。

三角函数最值的特征解法

三角函数最值的特征解法

三角函数最值的特征解法三角函数是高中数学中非常重要的内容之一,涉及到三角函数的最值问题是解析几何中非常经典的问题,也是数学中的一个重要研究方向之一、三角函数的最值问题可以用几何方法解决,也可以通过数学分析的方法解决。

几何方法解决三角函数最值问题:一、用三角形的面积求解:对于给定的三角形ABC,若要求最大值或最小值,则把三角形的三个顶点坐标x,y表示成已知直角边x与角度的函数形式(坐标x=af(θ),坐标y=bg(θ)),作直角坐标中的参数方程,然后求它的面积。

一般地,对于三角形的最大或最小面积问题,以到形如y=af(x)与y=bg(x)的直线为直角边的直角三角形的面积最小或最大。

这只是抛物线和双曲线的纵坐标当作已知直角边进行求解的特例。

二、利用三角形的性质求解:对于给定的三角形ABC,已知ΔABC正弦的值,即sinA, sinB, sinC,则根据三角形的面积公式Δ=1/2ABSinc,我们可以求出最大或最小的三角形的面积,进而求出三角形的最值。

通过数学分析的方法解决三角函数最值问题:一、利用函数导数的零点求解:对于给定的三角函数f(x),我们可以通过求f(x)的导数,然后求导数的零点来求解函数的极值点。

对于一个周期函数,我们只需关注一个周期内的导数的零点。

通过求解导数的零点,可以找到函数的极值点。

二、利用函数的变化趋势求解:通过观察函数的图像或者利用函数的性质,可以确定函数的最值点。

例如,对于周期函数,我们只需关注一个周期内的函数变化趋势即可。

通过观察函数的周期、周期内的对称性等特点,可以推测出函数的最值点。

三、利用辅助角的方法求解:对于给定的三角函数f(x),复杂的问题可以通过引入辅助角来简化。

通过引入辅助角,可以将原问题转化为一个更简单的三角函数问题,从而求解函数的最值。

四、利用三角函数的周期性求解:对于三角函数的最值问题,我们可以利用函数的周期性来求解。

通过观察函数的周期,可以确定函数的最值点。

三角函数的最值

三角函数的最值

三角函数的最值三角函数是基本的数学函数,在各种实际的应用中神奇地出现。

平面三角函数是微分学中最具有代表性的函数之一,它有着深远的影响和广泛的应用。

本文主要讨论的是三角函数的最值问题,以帮助读者更加深入地了解它。

首先,我们将来讨论三角函数的最值。

首先,圆弧的最高和最低点之间的关系可以作为求最值之间的关系。

通过分析,可以得出一般最值的表达式,即有极值关系的三角函数的最值为:cosθ =1,此时θ为正负90度。

因此,可以得出三角函数的最大值为:sinθ = 1,最小值为:sinθ = -1 。

其次,要进一步理解三角函数的最值,我们可以利用三角函数的切线的特性来求解。

在一个函数的极值点上,函数在该点的切线都是水平的,而有极值的三角函数也是如此,在最大值点和最小值点上,切线都是水平的,它们有公式:sinθ = 0。

得到有极值的三角函数的最值公式:sinθ =1,从而可以求出三角函数的最值。

再次,我们可以采用三角函数的尺规法来求解三角函数的最值。

尺规法是一种在函数图像上求解函数最值的方法,它规定一条水平线从函数曲线的最小值点穿过函数曲线的最大值点,这条水平线上的定点就是函数的最值点,由此可以求出函数的最值。

在此,可以得出三角函数的最值公式:sinθ =1,其中θ为正负90度。

最后,我们通过泰勒公式进一步分析三角函数的最值。

考虑到在函数发展的高阶项上,泰勒展开式能够有效地把三角函数进行展开,从而得到函数的极限值。

通过泰勒展开式,我们可以得出三角函数的极限值:sinθ =1,从而可以求出三角函数的最值。

本文从三个方面论述了三角函数的最值:圆弧的最高点和最低点之间的关系,由切线特性可以求出的最值公式,以及由尺规法和泰勒公式得出的最值公式,期望通过本文能够帮助读者更加深入地理解三角函数的最值问题。

总之,通过本文的讨论,我们可以得出三角函数的最值公式:sin θ =1,其中θ为正负90度,帮助我们更好地理解三角函数的最值问题。

三角函数最值问题求法

三角函数最值问题求法

三角函数最值问题求法三角函数是高中数学中常见的一种函数类型,它与三角形的边长和角度之间的关系密切相关。

在解决三角函数最值的问题时,我们通常需要根据特定的条件和信息来确定函数的最大值或最小值。

下面将详细介绍三角函数最值问题的求解方法。

1.函数的定义域和值域分析:在解决三角函数最值问题之前,我们首先要对函数的定义域和值域进行分析。

不同的三角函数具有不同的定义域和值域,对于正弦函数和余弦函数,其定义域是整个实数集,值域是[-1,1];而对于正切函数,其定义域是除去kπ(k∈Z)的全体实数,值域是整个实数集。

2.函数的周期性利用:三角函数具有周期性的特点,即对于一些三角函数f(x),存在正整数T,使得对于任意实数x,有f(x+T)=f(x)。

利用函数的周期性特点,我们可以通过分析一个周期内的变化趋势,从而确定函数的最值。

常见的周期为π或2π。

在具体求解过程中,我们可以通过将函数的自变量进行换元,使其处于一个周期内进行分析。

3.导数的求解和极值点分析:如果一个三角函数是连续的,并且在一些区间内可导,则可以通过求导数的方法来确定指定区间上的局部最值。

我们可以通过求导数并令其等于零,求解出导数为零的点,然后通过第一、第二导数的正负性进行判断,得出函数的极值点和最值。

同时,我们还可以利用导数的符号变化来确定驻点和极值点的位置。

4.图像分析法:对于特定的三角函数问题,我们可以通过观察函数的图像来推测函数的最值。

通过绘制函数的图像,并结合定义域和值域的分析,我们可以直观地判断出函数在一些区间上的最值。

对于常见的正弦函数、余弦函数和正切函数,我们可以通过观察其图像的特点,确定函数在一个周期内的最值位置。

5.利用特殊三角函数的性质:在求解三角函数最值问题时,我们可以利用特殊的三角函数性质来进行分析。

例如,正弦函数和余弦函数在定义域内是交错递增和递减的,因此我们可以通过分析数值的正负性来确定函数在一些区间上的最值。

而正切函数在定义域上的周期是π,其在相邻两个零点之间是增函数还是减函数,从而确定函数的极值点。

三角函数的最值

三角函数的最值

∴f(x) 的单调递增区间为 [k- 3 , k+ ](kZ); 6 (2)由 2x+ = 得 x= [0, 2 ], 6 6 2 故当 x= 时, f(x) 取最大值 3+a. 由题设 3+a=4, ∴a=1. 6
5.设 [0, ], 且 cos2+2msin-2m-2<0 恒成立, 求 m 的取 2 值范围. 解:由已知 0≤sin≤1 且 1-sin2+2msin-2m-2<0 恒成立. 令 t=sin, 则 0≤t≤1 且 1-t2+2mt-2m-2<0 恒成立. 即 f(t)=t2-2mt+2m+1=(t-m)2-m2+2m+1>0 对 t[0, 1] 恒成立. 故可讨论如下: (1)若 m<0, 则 f(0)>0. 即 2m+1>0. 解得 m>- 1 , ∴- 1 <m<0; 2 2 (2)若 0≤m≤1, 则 f(m)>0. 即 -m2+2m+1>0. 亦即 m2-2m-1<0. 解得: 1- 2<m<1+ 2 , ∴0≤m≤1; (3)若 m>1, 则 f(1)>0. 即 0m+2>0. ∴mR, ∴m>1. 综上所述 m>- 1. 即 m 的取值范围是 (- 1 , +∞). 2 2
∴当 t=-1, 即 x= 时, y 取最大值 27. 当 t= 2 , 即 x= 时, y 取最小值 20-8 2 4 .
5.已知函数 f(x)=2asin2x-2 3 asinxcosx+a+b(a0) 的定义域 为[0, ], 值域为 [-5, 1], 求常数 a, b 的值. 2 解: f(x)=a(1-cos2x)- 3 asin2x+a+b =-a(cos2x+ 3 sin2x)+2a+b

十一种类型的三角函数最值问题(附题目详解)

十一种类型的三角函数最值问题(附题目详解)

十一种类型的三角函数最值问题1.利用三角函数的有界性求最值利用正弦函数、余弦正数的有界性:∣sinx ∣≤1,∣cosx ∣≤1,可求形如y=Asin(ωx+φ),y=Acos(Asin(ωx+φ)(A ≠0, φ≠0)的函数最值.例:已知函数y=12 cos 2x+32 sinxcosx+1,x ∈R,当函数y 取得最大值时,求自变量x 的集合.2.反函数法 例:求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c bx a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,先用反解法,再用三角函数的有界性去解。

3.配方法—---转化为二次函数求最值例:求函数y=f(x)=cos 22x-3cos2x+1的最值.4.引入辅助角法y=asinx+bcosx 型处理方法:引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。

Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。

例:已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。

[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。

5. 利用数形结合 例: 求函数y xx=+s in c o s 2的最值。

解:6、换元法例:若0<x<2π,求函数y=(1+1sinx )(1+1cosx )的最小值.7. 利用函数在区间内的单调性8. 例: 已知()π,0∈x ,求函数xx y sin 2sin +=的最小值。

[分析] 此题为xax sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解。

如何解答三角函数最值问题

如何解答三角函数最值问题

解题宝典三角函数最值问题的类型很多.要提高解答三角函数最值问题的效率,需要掌握不同类型三角函数最值问题的特点,对三角函数式进行合理的化简或转化,充分利用三角函数的性质与图象来解题.本文重点探讨一下几类常见三角函数最值问题的解法.一、f ()x =A sin ()ωx +φ+k 型对于形如f ()x =A sin ()ωx +φ+k 、f ()x =A cos(ωx +φ)+k 、f ()x =A tan ()ωx +φ+k 的三角函数最值问题,一般要利用三角函数y =sin x 、y =cos x 、y =tan x 的性质和图象来求其最值.例1.求函数y =12sin æèöø2x +π3在区间[-π4,π6]上的最值.解:∵x ∈[-π4,π6],∴-π6≤2x +π3≤2π3,由正弦函数y =sin x 的图象可知-12≤sin æèöø2x +π3≤1,-14≤12sin æèöø2x +π3≤12,∴函数y =12sin æèöø2x +π3在区间[-π4,π6]上的最大值是12,最小值是-14.解答形如f ()x =A sin ()ωx +φ+k 、f ()x =A cos(ωx +φ)+k 、f ()x =A tan ()ωx +φ+k 的三角函数最值问题,要首先从y =sin x 、y =cos x 、y =tan x 的性质和图象入手,在y =sin x 、y =cos x 、y =tan x 图象的基础上作相应的变换,找出对应的最值点、与坐标轴的交点、对称轴等,从而快速确定函数在定义域内的最值.二、f ()x =λsin x +μcos x +t 型对于f ()x =λsin x +μcos x +t (λ、μ不全为0,t ∈R)型三角函数的最值问题,应先把函数式进行恒等变换,利用辅助角公式,将其转化为f ()x =λ2+μ2⋅sin(x +φ)+t (其中cos φ=λλ2+μ2,sin φ=μλ2+μ2,tan φ=μλ)的形式,或转化为f ()x =μ2+λ2cos(x +φ)+t 的形式;然后根据正弦或余弦函数的有界性来求其最值.例2.在直角坐标系中,曲线C 的参数方程是ìíîïïïïx =1-t 21+t 2,y =4t 1+t 2,(t 为参数)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是2ρcos θ+3ρsin θ+11=0,求曲线C 上的点到直线l 的最短距离.解:将参数方程设为{x =cos α,y =2sin α,(α为参数,-π<α<π)根据点到直线的距离公式,可得曲线C 上任意一点(cos α,2sin α)到直线l 的距离为d =||||||4cos æèöøα-π3+117,当α=-2π3时,||||||4cos æèöøα-π3+11取得最小值7,则曲线C 到l 的最短距离是7.目标式2cos α+23sin α+11形如f ()x =λsin x+μcos x +t ,要求三角函数的最值,需要先利用辅助角公式进行恒等变换,将目标式转化成余弦函数式4cos æèöøα-π3;然后再根据余弦函数的有界性求其最值.三、f ()x =k sin 2x +m sin x +n (k ≠0)型对于形如f ()x =k sin 2x +m sin x +n (k ≠0)、f ()x =k cos 2x +m cos x +n (k ≠0)的三角函数最值问题,一般采用换元法求解.首先令sin x =t 、cos x =k ,得到二次函数;再利用二次函数和正余弦函数的性质求最值.例3.求函数f ()x =sin æèöø2x +3π2-3cos x的最小值.解:f ()x =sin æèöø2x +3π2-3cos x=-2cos 2x -3cos x +1,令cos x =t ,t ∈[-1,1],得y =-2t 2-3t +1=-2æèöøt +342+178,当t =1时,函数最小值是-4.原函数可化成f ()x =k cos 2x +m cos x +n 的形式,于是通过换元,将三角函数式转化为关于t 的二次函数式,这样便可直接根据二次函数的性质求最值.在解题时,需重点关注二次函数的定义域,此时二次函数的定义域受三角函数cos x =t 的单调性和有界性影响.四、f ()x =λsin x +t μcos x +n 或f ()x =μcos x +nλsin x +t(λμ≠0)型对于此类三角函数最值问题,一般有两种解法.一余涛涛38解题宝典是解析法,将函数f ()x =μcos x +nλsin x +t化成f ()x =μλ.cos x +n μsin x +t λ,再用换元法,令k =cos x +n μsin x +t λ,这样就得到线性函数f ()k =μλ.k (λμ≠0),即可根据线性函数的单调性求最值;或将k 看作是单位圆上的一个动点(sin x ,cos x )与定点(-t λ,-nμ)连线的斜率的最值,通过数形结合来解题.二是利用三角函数的有界性,通过恒等变形,将函数式转化成整式,再根据辅助角公式和三角函数的有界性来求最值.例4.求函数f ()x =sin x -1cos x +1的最大值.解法一:设P ()x ,y 是圆x 2+y 2=1上的动点,点A ()-1,1,k 是P 、A 两点所在直线的斜率,则PA 的直线方程是y -1=k (x +1),整理得kx -y +k +1=0.可知当直线与圆相切时,直线PA 的斜率最大,∵圆心到PA 直线的距离d ==1,解得k =0,∴f ()x =sin x -1cos x +1的最大值是0.解法二:将y =sin x -1cos x +1(x ≠(2k +1)π)变形,可得y +1=sin x -y cos x =1+y 2sin (x +φ),即sin ()x +φ=y +11+y 2,而||||||||y +11+y2=|sin (x +φ)|≤1,得||y +1≤1,则y ≤0,即函数()x =sin x -1cos x +1的最大值是0.解法一主要是运用了解析法,将函数最值问题转化为求单位圆x 2+y 2=1上的动点P (x ,y )与定点A (-1,1)连线斜率的最值,通过数形结合求得最值.解法二主要是利用正弦函数的有界性,通过三角恒等变换,将函数式转化为sin ()x +φ,再根据正弦函数的有界性|sin (x +φ)|≤1,建立关于y 的不等式,从而求得y 的最值.五、f ()x =λsin x +nμsin x 型对于形如f ()x =λsin x +nμsin x 、f ()x =λcos x +n μcos x 、f ()x =λtan x +n μtan x(λ、μ、n 为常数)的三角函数最值问题,通常利用基本不等式来求最值.当不能使用基本不等式求解时,可设t =sin x ,将原函数变为f ()t =λt +n μt ,再利用对勾函数的单调性求最值.还可以利用导数法来求最值.例5.当π4≤x ≤π2时,求函数f ()x =cos x +1cos x 的最小值.解法一:函数可变形为f ()x =cos x +12cos x+12cos x ,由基本不等式得cos x +12cos x≥2,当且仅当cos x=12cos x (即x =π4)等号成立,∵12cos x ≥,∴f ()x.解法二:∵π4≤x ≤π2,∴0<cos x ≤,令t =cos x ,∴0<t ≤,∴f ()t =t+1t为减函数,∴当t =时,f ()t =t +1t 有最小值解法三:对函数求导数,可得f ′()x =sin 3xcos 2x,∵π4≤x ≤π2,∴f ′()x >0,由此可判断出函数f ()x =cos x +1cos x在区间[π4,π2]x =π4时,函数f ()x =cos x +1cos x 取得最小值.解法一主要运用了基本不等式a +b ≥2ab(a >0,b >0),由于cos x +12cos x为两式的和,且其积为定值,在两式相等时可取等号,这就满足了运用基本不等式的应用条件:一正、二定、三相等.解法二主要运用对勾函数f ()x =x +ax的性质.运用对勾函数的性质求最值,需熟记对勾函数的单调性和最值点.解法三主要运用到导数法来求得最值.可见,求解三角函数最值问题是有规律可循的.(1)一般是从三角函数的解析式入手,明确其结构特征,充分利用函数的性质与图象来寻找解题思路;(2)对于比较复杂的三角函数式,需要利用诱导公式、同角的三角函数关系式、两角和差公式、二倍角公式等进行恒等变换,将函数式化简或转化成单一的三角函数式来求最值;(3)在求三角函数最值时,可灵活运用换元法、基本不等式法、解析法、三角函数的有界性进行解题.掌握这些方法与规律就能有效提高求三角函数最值问题的效率.(作者单位:江苏省无锡市洛社高级中学)39。

求三角函数最值的四种方法

求三角函数最值的四种方法

求三角函数最值的四种方法解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性如有界性等,另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数二次函数等最值问题.下面介绍几种常见的三角函数最值的求解策略1.配方转化策略对能够化为形如y =a sin 2x +b sin x +c 或y =a cos 2x +b cos x +c 的三角函数最值问题,可看作是sin x 或cos x 的二次函数最值问题,常常利用配方转化策略来解决.[典例1] 求函数y =5sin x +cos 2x 的最值.[解] y =5sin x +()1-2sin 2x =-2sin 2x +5sin x +1=-2⎝⎛⎭⎪⎫sin x -542+338. ∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π-π2,k ∈Z 时, y min =-2×8116+338=-6;当sin x =1,即x =2k π+π2,k ∈Z 时,y max =-2×116+338=4.[题后悟道]这类问题在求解中,要注意三个方面的问题:其一要将三角函数准确变形为sin x 或cos x 的二次函数的形式;其二要正确配方;其三要把握三角函数sin x 或cos x 的范围,以防止出错,若没有特别限制其范围是[-1,1].2.有界转化策略对于所给的三角函数能够通过变形化为形如y =A sin(ωx +φ)等形式的,常常可以利用三角函数的有界性来求解其最值.这是解决三角函数最值问题常用的策略之一.[典例2] 设函数f (x )=4cos ⎝⎛⎭⎪⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0. 求函数y =f (x )的最值.[解] f (x )=4⎝ ⎛⎭⎪⎫32cos ωx +12sin ωx sin ωx +cos 2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx=3sin 2ωx +1,因为-1≤sin 2ωx ≤1,所以函数y =f (x )的最大值为3+1,最小值为1- 3.[题后悟道]求解这类问题的关键是先将所给的三角函数化为一个角的三角函数问题,然后利用三角函数的有界性求其最值.3.单调性转化策略借助函数单调性是求解函数最值问题常用的一种转化策略.对于三角函数来说,常常是先化为y =A sin(ωx +φ)+k 的形式,再利用三角函数的单调性求解.[典例3] 函数f (x )=22sin ⎝ ⎛⎭⎪⎫x +π4-32在⎣⎢⎡⎦⎥⎤π,17π12上的最大值为________,最小值为________.[解析] 由π≤x ≤17π12,得5π4≤x +π4≤5π3. 因为f (x )=22sin ⎝ ⎛⎭⎪⎫x +π4-32在⎣⎢⎡⎦⎥⎤π,5π4上是减函数,在⎣⎢⎡⎦⎥⎤5π4,17π12上是增函数,且f (π)>f ⎝ ⎛⎭⎪⎫17π12,所以当x =5π4时,f (x )有最小值为22sin ⎝⎛⎭⎪⎫5π4+π4-32=-22-32. 当x =π时,f (x )有最大值-2.[答案] -2 -22-32[题后悟道]这类三角函数求最值的问题,主要的求解策略是先将三角函数化为一个角的三角函数形式,然后再借助于函数的单调性,确定所求三角函数的最值.4.数形结合转化策略对于形如y =b -sin x a -cos x 的三角函数最值问题来说,常常利用其几何意义,将y =b -sin x a -cos x 视为定点(a ,b )与单位圆上的点(cos x ,sin x )连线的斜率来解决.[典例4] 求函数y =-sin x 2-cos x(0<x <π)的最小值. [解] 将表达式改写成y =0-sin x 2-cos x,y 可看成连接点A (2,0)与点P (cos x ,sin x )的直线的斜率.由于点(cos x ,sin x )的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的直线与半圆相切于点B ,则k AB ≤y <0.可求得k AB =tan 5π6=-33. 所以y 的最小值为-33⎝ ⎛⎭⎪⎫此时x =π3.[题后悟道]这类三角函数的最值问题,求解策略就是先将函数化为直线斜率的形式,再找出定点与动点满足条件的图形,最后由图形的几何意义求出三角函数的最值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要................................................................................................................................................... I I ABSTRACT ......................................................................................................................................... I II 第一章绪论.. (1)1.1 三角函数的起源与发展 (1)1.2 三角函数的最值问题 (1)第二章解决三角函数最值问题的方法技巧 (3)2.1 利用三角函数的定义、性质与函数图像解决最值问题 (3)2.2 利用转化(或化归)思想解决最值问题 (4)2.3 利用换元法解决最值问题 (7)2.4 利用数形结合解决最值问题 (11)2.5 利用不等式解决最值问题 (12)第三章三角函数最值的简单应用 (14)3.1 在数列中的简单应用 (14)3.2 在不等式中的简单应用 (15)3.3 在几何中的简单应用 (16)3.4 在复数中的简单应用 (17)第四章结论 (19)参考文献......................................................................................................... 错误!未定义书签。

致谢................................................................................................................. 错误!未定义书签。

三角函数最值问题的若干讨论学生:指导教师:摘要三角函数的最值问题是三角函数基础知识的综合应用,在近几年的高考试题中经常出现,成为高考中的一个命题热点,同时也是高中数学必修课中的几大内容之一。

解决三角函数的最值问题不仅会用到三角函数的基本定义、单调性、奇偶性、周期性、有界性和三角函数图像,而且还会用到三角函数的多种恒等变化。

同时,在三角函数的最值问题中常常涉及到初等函数、不等式、方程、几何等方面问题;而且在解决一些不等式、数列等问题中也会用三角函数的最值来求解。

由此看来,三角函数的最值问题具有一定的综合性和灵活性。

本文将从具体的是实例出发,介绍并分析求解三角函数最值问题的几种基本方法和几种比较典型的解题方法,找出一般的解题方法和技巧;在介绍三角函数最值在数列、不等式等题型中的简单应用。

关键字:三角函数;最值;方法;技巧;应用TRIGONOMETRIC NUMBER OF DISCUSSIONS ON THE QUESTION OF THE MOST V ALUEStudent:teacher:ABSTRACT Trigonometry problem is the most value of trigonometric function that the basic knowledge of comprehensive application, In recent years the high exams often appears in, become a hot spot in the university entrance exam proposition, also the high school mathematics required courses in one of several major contents. To solve the most value of trigonometric function, not only can use ask basic trigonometric definition, monotony, parity, the periodicity, the boundedness and trigonometric functions image, and will use trigonometry multiple identical changes. Meanwhile, in the most value problem trigonometric function often involves elementary function,, inequality equation, a few problems; how And in solving some problems such as sequence, inequality will also be by trigonometric function of most value to solve. Consequently, the most value problem trigonometric function has certain comprehensive and flexibility.This paper will start from the concrete examples, is introduced and analyzed the most value problem solving trigonometric functions of several basic method and several comparatively typical problem solving method, and find out the general problem solving methods and skills; In the introduction of the most value in the sequence of trigonometric function and inequality in regearching into simple application.Key words:trigonometric function, optimum value, method, technique, adhibition第一章绪论1.1 三角函数的起源与发展三角学的概念起源甚早,在古文献「莱因德纸草书」出土后证据显示古埃及人己有实用三角学的粗略概念,来保持金字塔每边都有相同的斜度,只是当时并没有使用余切这个名词而已。

至公元前150年至100年间,希腊人热衷天文学,开始研究三角学,于是三角学渐渐有了雏形。

后来印度人吸收了希腊人在三角学方面的知识,再加以改进,也把它当成研究天文学的利器。

长久以来,三角学就这样依附着天文学发展,直到十三世纪,才从天文学中脱离成一门独立的学科。

十六世纪的欧洲,由于航海,历法计算的需要,更增加三角学的重要性。

如今它不但应用于天文、地理、航海、航空、建筑、工程、体育等的一门基础学问,甚至在我们日常生活中,也成为不可欠缺的知识。

三角函数在数学中属于初等函数里的超越函数的一类函数。

它们本质上是任意角的集合与一个比值的集合的变数之间的映射。

由于三角函数具有周期性,所以并不具有单射函数意义上的反函数。

三角函数在复数中有重要的应用,在物理学中也是常用的工具。

在数学中,三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。

三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。

三角函数最一开始是用来表示角度和直角三角形三边边长关系的式子,直角三角形中的sin x和cos x可由毕氏定理给出它的定义:若一个直角三角形,它的一个锐角角度为x,因此得到正弦函数sin x和余弦函数cos x的定义。

1.2 三角函数的最值问题三角函数的最值问题是三角函数基础知识的综合应用,在近几年的高考试题中经常出现,成为高考中的一个命题热点。

其出现的形式,或者是在小题中单纯的考察三角函数的值域问题,或者隐含在解答题中,作为解决解答题所用的知识点之一,或者在解决某问题时,应用三角函数的有界性会使问题更易于解决。

在三角函数最值问题中,不仅仅会考查到三角函数的定义、基本性质、函数图像,它可能会牵涉到数列、几何、方程等高中其他章节的知识。

因此,三角函数的最值问题也成为高中必修课中几大内容之一。

由于,三角函数的最值问题变化性强、综合性高,学生在解有关三角函数最值问题的题目时,常常出现思路模糊,难以抓住问题的中心导致不能找到适合题目问题的解题方法。

本文将针对历年高考中出现的关于三角函数最值的各类问题进行探讨,寻找解决该类题型的基本思路、技巧和方法。

查阅三角函数最值问题的相关书籍与1995年到2010年的高考试题,不难发现:三角函数最值问题的出现形式变化多,有时以小题单独考查,有时结合三角函数的其他基本知识综合考查,甚至出现在数列、几何、不等式等大题之中。

虽然,三角函数最值问题的题型多而杂,但是我们可以根据解决不同最值问题的方法将其进行归纳汇总。

本文中归纳和总结了多种方法技巧,如用三角函数的基本性质解决最值问题、用转化思想与换元思想如何将复杂的三角函数化为较简单的函数来解决最值问题、以及如何利用数形结合或不等式解决三角函数最值问题的。

我们在解题的基础上加以分析与点评,使方法技巧更加易懂与迁移。

在归纳总结的基础上,本文将简要的介绍三角函数最值在数列、几何、不等式、复数等中的应用。

第二章 解决三角函数最值问题的方法技巧2.1 利用三角函数的定义、性质与函数图像解决最值问题对于一些比较简单的纯粹求三角函数最值的问题,我们可以直接利用三角函数的定义、基本性质和一般三角函数的图像求解最值。

(1)、应用三角函数的定义及三角函数值的符号规律求解问题。

三角函数值在四个象限中的符号规律如下:当角α在第一象限时:sin α 正,cos α 正,tan α 正,cot α 正;当角α在第二象限时:sin α 正,cos α 负,tan α 负,cot α 负;当角α在第三象限时:sin α 负,cos α 负,tan α 正,cot α 正;当角α在第四象限时:sin α 负,cos α 正,tan α 负,cot α 负.例1 函数cos cot sin tan sin cos tan cot x x x x y x x x x=+++的值域是( )。

相关文档
最新文档