第十一章 三角形(8份) (8份打包)
2024年人教版八年级上册第十一章 三角形第十一章 三角形

一、单元学习主题本单元是“图形与几何”领域“图形的性质”主题中的“三角形”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段图形与几何领域包括“图形的性质”“图形的变化”和“图形与坐标”三个主题,学生将进一步学习点、线、面、角、三角形、多边形和圆等几何图形,从演绎证明、运动变化、量化分析三个方面研究这些图形的基本性质和相互关系.“图形的性质”强调通过实验探究、直观发现、推理论证来研究图形,在用几何直观理解几何基本事实的基础上,从基本事实出发推导图形的几何性质和定理,理解和掌握尺规作图的基本原理和方法.三角形是图形与几何领域的主要内容,它在义务教育阶段的数学课程中占有重要地位.三角形是最简单的封闭图形,既顺承前面学过的线段、角、平行线及相交线,又为后续四边形等图形的学习提供思路、方法的支持.显而易见,三角形处于前衔后联的核心地位.三角形是仅次于线段和直线的基本几何图形,而空间的大部分基本性质都已经在三角形的几何性质中充分体现.三角形的知识是研究其他几何图形不可或缺的基础,三角形的应用几乎遍及初中几何的所有章节.2.本单元教学内容分析人教版教材八年级上册第十一章“三角形”,本章包括三个小节:11.1与三角形有关的线段;11.2与三角形有关的角;11.3多边形及其内角和.“图形的性质”主题中的“三角形”包括:与三角形有关的线段(边、高、中线、角平分线)——三角形的稳定性——三角形的内角和定理、外角的性质——多边形的内角和与外角和.本章从内容来看,包括很多重要的概念和性质定理:三角形的概念及三边关系、推理证明三角形内角和等于180°、认识多边形的对角线、推理证明多边形内角和公式、外角和等于360°等.本章是前面所学知识的延伸,又是学习全等三角形、四边形、相似三角形、三角函数等章节的基础,起到承上启下的作用.通过学习,培养学生几何图形意识和初步的动手操作技能,拓展学生归纳、总结、切割、分析复杂图形的能力.通过三角形知识的研究进一步了解几何中研究问题的基本思路和方法,也为将来进一步研究全等三角形、等腰三角形、相似三角形和平行四边形等内容奠定了知识基础,提供了研究思路.这不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且是深入贯彻实施《标准2022》的素养理念的渠道,有利于促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量.三、单元学情分析本单元内容是人教版教材数学八年级上册第十一章的三角形,学生在小学已经学过三角形的一些知识,对三角形的许多重要性质有所了解,在七年级又学过线段、角以及相交线、平行线等知识,初步了解了一些简单几何体和平面图形及其基本特征,会进行简单的推理,已具备一定的逻辑思维能力,掌握了一定的探究方法.三角形和多边形也是学生生活中最常见的图形,有了相应的表象知识,学生更乐于深入学习,积极探索.本章从学生熟悉的生活与社会情境入手,以三角形结构化数学知识主题为载体,在符合学生认知发展规律的数学与科学情境中,让学生经历“用数学的眼光发现和提出问题,用数学的思维与数学的语言分析和解决问题”的过程,并从中获得数学学习的活动经验和积累,初步养成独立思考、探究质疑、合作交流等学习习惯,初步形成自我反思的意识,同时在形成与发展“四基”的过程中形成抽象能力、推理能力、运算能力、几何直观和空间观念等.四、单元学习目标1.理解三角形及其内角、外角、中线、高、角平分线等概念,了解三角形重心的概念,了解三角形的稳定性.2.探索并证明三角形两边的和大于第三边,并会运用这一性质解决问题.3.探索并证明三角形的内角和定理,掌握它的推论:三角形的外角等于与它不相邻的两个内角的和.4.探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形.5.理解并掌握三角形外角的概念,掌握三角形外角的性质和三角形外角和,解决与三角形外角有关的简单计算和证明问题,发展学生的抽象思维,培养模型观念和应用意识.6.了解多边形的概念及多边形的边、内角、外角、凸多边形、正多边形等有关特征,探索并证明多边形的内角和与外角和公式并能应用解决简单问题,体会化归思想和从具体到抽象的研究问题的方法,培养学生的模型观念、应用意识和创新意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版八年级上册数学课件第十一章三角形复习(共15张PPT)

一点(重心),如图. 角平分线:三条角平分线相交于一点,如图.
图
图
图
练习:
4.在△ABC中,AB=AC,DB为△ABC的中线,且BD将
△ABC周长分为12cm与15cm两部分,求三角形各边长.
5.下列四个图形中,线段BE是△ABC的高的是( )
常用方程思想设未知数列方程求解.
练习:
6.在△ABC中,三个内角∠A,∠B,∠C满足∠B-∠A=∠C-∠B, 则∠B= .
7.如图,在△ABC中,CE,BF是两条高,若∠A=70°, ∠BCE=30°,则∠EBF的度数是 ,∠FBC的度数是 .
A
Eቤተ መጻሕፍቲ ባይዱ
F
B
C
考点四 多边形的内角和与外角和
(2)∠A:∠例B:∠C7=2:3:4.已知一个多边形的每个外角都是其相邻内角度数的 1 ,
范围是
.
例2 等腰三角形的周长为16,其一边长为6,求另两边长.
解:由于题中没有指明边长为6的边是底还是腰,所以分两种情况讨论: 当6为底边长时,腰长为(16-6)÷2=5,这时另两边长分别为5,5; 当6为腰长时,底边长为16-6-6=4,这时另两边长分别为6,4. 综上所述,另两边长为5,5或6,4.
在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形. ∴边数n=360°÷36°=10.
4
求这个多边形的边数. 20或16
C.
三角形的高、中线与角平分线
内角和:(n-2) ×180 °
解:设此多边形的外角的度数为x,则内角的度数为4x,则 三角形的内角和与外角 当6为腰长时,底边长为16-6-6=4,这时另两边长分别为6,4.
人教版八年级上册第十一章三角形知识点总结归纳

三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.AB CED7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A .8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加; ② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.A BCD 12(2)已知角平分线.(若BD是角平分线)BC的中线)(3)已知三角形中线(若AD是(5)其它。
初二数学八上第十一章三角形知识点总结复习和常考题型练习

第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点:①三条线段;②不在同一直线上;③首尾顺次相接2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.注意:已知两边可得第三边的取值范围是:两边之差<第三边<两边之和3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.注意:①三角形的三条高是线段;②画三角形的高时,只需要三角形一个顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点,交点叫重心.②画三角形中线时只需连结顶点及对边的中点即可.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和定理:三角形的内角和为180°直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形.⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角. 三角形的一个外角和与之相邻的内角互补.过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.⑶多边形内角和公式:n 边形的内角和等于(2)n -·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线.例题精选 1.(2015·郴州中考)以下列各组线段为边,能组成三角形的是( )A.1 cm ,2 cm ,4 cmB.4 cm ,6 cm ,8 cmC.5 cm ,6 cm ,12 cmD.2 cm ,3 cm ,5 cm2.(2015·恩施中考)如图,AB ∥CD ,直线EF 交AB于点E ,交CD 于点F ,EG 平分∠BEF ,交CD 于点G ,∠1=50°,则∠2等于 ( )A.50°B.60°C.65°D.90°3.(2015·来宾中考)如图,在△ABC 中,已知∠A=80°,∠B=60°,DE ∥BC ,那么∠CED 的大小是 ( )A.40°B.60°C.120°D.140°4.(2015·南平中考)正多边形的一个外角等于30°,则这个多边形的内角和为( )A.720B.1260C.1800D.23405.(2015·来宾中考)如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.(2015·遂宁中考)若一个多边形内角和等于1260°,则该多边形有条对角线.2.下列说法错误的是().A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是().A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是().A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A =90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为().A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是().A.相等B.互补C.相等或互补D.互余10.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有_____________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE=__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是__________边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.19.一个正多边形的一个外角等于它的一个内角的13,这个正多边形是几边形?20.如图所示,直线AD和BC相交于点O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.21.如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.22.如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________;(2)图②中草坪的面积为__________;(3)图③中草坪的面积为__________;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF =2,则S△ABC等于()A.16 B.14 C.12 D.109.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为()A.115°B.105°C.95°D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠314.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为________.24.(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__________,∠XBC+∠XCB=__________;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.25.平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.。
初二数学第十一章三角形详细知识点及题型总结

第十一章三角形第一讲与三角形有关的线段1.定义:不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC用符号表示为△ABC.三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.2.三角形三边的不等关系三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边。
3.三角形的高:从三角形的向它的作垂线,顶点和垂足之间的线段叫做三角形的高,(注意八字形)注意:高与垂线不同,高是线段,垂线是直线。
三角形的三条高相交于一点。
.............4.三角形的中线:三角的三条中线相交于一点。
(三角形中线分三角形面积相等的两个三角形)5.三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,与之间的线段,叫做三角形的角平分线.三角形三个角的平分线相交于一点...............三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高......................................的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交........................................点在三角形的外部。
.........6.三角形的稳定性:例1.一个等腰三角形的周长为32 cm,腰长的3倍比底边长的2倍多6 cm.求各边长.例2.已知:△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:△ABC 的各边的长。
例3.已知△ABC的周长是24cm,三边a、b、c满足c+a=2b,c-a=4cm,求a、b、c的长.例4.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.例5.已知等腰三角形的周长是25,一腰上的中线把三角形分成两个,两个三角形的周长的差是4,求等腰三角形各边的长。
八年级第十一章三角形知识点复习

21D CB AD CB AD CB A十一章 三角形知识点复习⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
三角形有三条边,三个内角,三个顶点,组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义. ⒉ 三角形的分类: (1)按边分类:(2)按角分类: ⒊ 三角形的主要线段的定义:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段.表示法:是△ABC 的BC 上的中线. 2. 如果AD 是?ABC 的中线,那么BD=DC=12BC.是?ABC 中BC 边上的中线,AD 是?ABC 的中线。
注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形. (2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:是△ABC 的∠BAC 的平分线.2. AD 平分?BAC ,交BC 于D ;3. 如果AD 是?ABC的角平分线,那么∠1=∠2=12∠BAC(或者可以表示成?BAD=?DAC=21?BAC.)。
注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线. (3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:是△ABC 的BC 上的高线.⊥BC 于D.3.∠ADB=∠ADC=90°.4. AD 是?ABC 的高;如果AD 是?ABC 中BC 边上高,那么AD ?BC ,垂足是E ;如果AD 是?ABC 中BC 边上的高,那么?AMB=?AMC=90?。
数学八年级上册第11章三角形全章完整ppt课件

完整版PPT课件
A
c
b
B
C
15
a
阶段小结
11.1.1 三角形的边
II. 三角形的分类
ቤተ መጻሕፍቲ ባይዱ
锐角三角形 三角形 直角三角形
钝角三角形
三 边 都 不 相 等 的 三 角 形 三 角 形 等 腰 三 角 形 底 等 边 边 和 三 腰 角 不 形 相 等 的 等 腰 三 角 形
完整版PPT课件
III. 三角形三边之间的大小关系
课堂练习 2. 下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,10.
14
阶段小结
11.1.1 三角形的边
I. 三角形及相关概念
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 组成三角形的线段叫做三角形的边。 相邻两边所组成的角叫做三角形的内角,简称角。 相邻两边的公共端点是三角形的顶点。 顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”。
11
例题 用一条长为18 ㎝的细绳围成一个等腰三角形。
(1)如果腰长是底边长的2 倍,那么各边的长是多少? (2)能围成有一边的长为4 ㎝的等腰三角形吗?为什么?
完整版PPT课件
(2)①如果长为4 ㎝的边为底边,设腰长为x ㎝,则
4+2x=18 解得x=7 ②如果长为4 ㎝的边为腰,设底边长为x ㎝,则
AD 叫做△ ABC的角平分线。
2、三角形的三条高、三条中线、三条角平分线及交点的位 置规律。
三角形的三条中线的交点、三条角平分线的交点在三角形 的内部。
锐三角形的三条高的交点在三角形的内部,直角三角形三
条高的交点在直角顶点,钝角三角形的三条高的交点在三
人教版八年级上册第十一章 三角形知识点复习及习题练习

第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
要点:①三条线段;②不在同一条直线上;③首尾顺次相连。
2、基本概念:三角形有三条边,三个内角,三个顶点。
边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。
夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。
练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。
(2)写出△ABD的三个内角。
(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1-2 (1));有两条边相等的三角形叫做等腰三角形(图11.
1-2 (2) ). 图11. 1-2 (3)中的三角形是三边都不相等的三角形.
知2-讲
我们还知道:在等腰三角形中,相等的两边都 叫做腰,另一边叫做底边, 两腰的夹角叫做顶角,
腰和底边的夹角叫做底角.
等边三角形是特殊的等腰三角形,即底边和腰 相等的等腰三角形. 以“是否有边相等”,可以将三角形分为两类: 三边都不相等的三角形和 等腰三角形.
知2-讲
三角形的分类
按 角 分 按 边 分
锐角三角形
直角三角形 钝角三角形 三边都不相等的三角形 底边和腰不相等 的等腰三角形 等腰三角形 等边三角形 等腰三 三边都 角形 不相等 的三角 等边三 角形 形 三角形
知2-练
1 下列说法:①等边三角形是等腰三角形;②等腰
三角形也可能是直角三角形;③三角形按边分类
知1-导
下面哪个是三角形?
结合你画的三角形,说明三角形是由什么组成的. 什么是三角形?
知1-讲
A
1.三角形的定义: C 由不在同一条直线上的三条线段首尾顺次相接所组成的 图形叫做三角形. B
注意:1.不在同一条直线上. 2.首尾顺次相接.
2.三角形的表示:
三角形用符号“△”表示,如上图的三角形,记作 “△ABC”,读作“三角形ABC”. 注意:表示三角形时,字母没有先后顺序.即:可以记作 △ABC,也可记作△ACB.
知3-导
如图三角形中,假设有一只小虫要从点B出发沿
着三角形的边爬到点C,它有几条路线可以选择?各 条路线的长一样吗? A
B
C
知3-讲
对于任意一个△ ABC,如果把其中任意两个顶点 (例如B,C)看成定 点,由“两点之间,线段最短”可 得 AB+AC>BC. ① 同理有 AC+BC>AB, ② AB+BC>AC. ③ 一般地,我们有 三角形两边的和大于第三边. 由不等式②③移项可得BC>AB-AC,BC>AC-AB.这就是 (来自《教材》) 说,三角形两边的差小于第三边.
第十一章
三角形
11.1
与三角形有关的线段
第1课时
三角形的边
1
课堂讲解
三角形及有关概念
三角形的分类
三角形的三边关系
2
课时流程
逐点 导讲练 课堂 小结 作业 提升
生活中有许多使用三角形的实例你能列举出来
并从图中找出三角形吗?
下面请同学们仔细观察一组图片,找出你熟悉 的几 何图形.
知识点
1
三角形及有关概念
能围成腰长 是4 cm的等腰三角形.
由以上讨论可知,可以围成底边长是4 cm的等腰三角形.
(来自《教材》)
知3-导
注意:
1.一个三角形的三边关系可以归纳成如下一句话:三
角形的任何两边之和大于第三边,任何两边之差小 于第三边. 2.在做题时,不仅要考虑到两边之和大于第三边,还 必须考虑到两边之差小于第三边.
可分为等腰三角形、等边三角形和三边都不相等 的三角形;④三角形按角分类应分为锐角三角形、 直角三角形和钝角三角形.其中正确的有( A.1个 B.2个 C.3个 D.4个 )
(来自《典中点》)
知2-练
2 如图所示的三角形被木板遮住了一部分,这个三角
形是(
)
B.直角三角形 D.以上都有可能
A.锐角三角形 C.钝角三角形
(2)因为长为4 cm的边可能是腰,也可能是底边,所
以需要分情况讨论.
(来自《教材》)
知3-导
如果4 cm长的边为底边,设腰长为x cm,则 4+2x = 18.
解得x = 7.
如果4 cm长的边为腰,设底边长为 x cm,则 2 × 4+x = 18. 解得x = 10. 因为4+4<10,不符合三角形两边的和大于第三边,所以不
知3-导
【例1】用一条长为18 cm的细绳围成一个等腰三角形. (1) 如果腰长是底边长的2倍,那么各边的长是多少? (2) 能围成有一边的长是4 cm的等腰三角形吗?为什么? 解:(1)设底边长为x cm,则腰长为2x cm.
x+2x+2x = 18. 解得x=3. 6. 所以,三边长分别为3. 6 cm,7.2 cm,7.2 cm.
A
知1-讲
知1-练
1
一位同学用三根木棒拼成的图形如下,则
其中符合三角形定义的是( )
(来自《典中点》)
知1-练
2 如图:
(1)△ADC的三个顶点分别是________,三个内角分
别是________________. (2)在△ABC中,∠C的对边是________;在△AEC 中,∠C的对边பைடு நூலகம்________.
(来自《典中点》)
知2-练
3 已知一个三角形是等腰三角形,则这个三角形( A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形、直角三角形或钝角三角形
)
(来自《点拨》)
知3-导
知识点
3
三角形的三边关系
任意画一个△ABC,从点B出发,沿三角形
的边到点C,有几条线 路可以选择?各条线路的 长有什么关系?能证明你的结论吗?
(来自《点拨》)
知1-练
3
图中有几个三角形?用符号表示这些三角形.
(来自《教材》)
知2-导
知识点
2
三角形的分类
我们知道,按照三个内角的大小,可以将三角形 分为锐角三角形、直 角三角形和钝角三角形.如何按
照边的关系对三角形进行分类呢?说说你 的想法,
并与同学交流.
知2-讲
我们知道:三边都相等的三角形叫做等边三角形(图
知1-讲
3.三角形的顶点 如图,△ABC的三个顶点分别 是:A,B,C. 4.三角形的边、内角 B
A
C
如图,△ABC的三条边分别是:AB,BC,CA. 它的三个内角(简称三角形的角)分别是: A,B, C.
b 注意: c 1.三角形的三边用字母表示时,字 a 母没有顺序限制. B C 2.三角形的三边,有时也用一个小写字母来表示. 如:△ABC的三边中,顶点A所对的边BC也可表示为a, 顶点B所对的边AC也可表示为b,顶点C所对的边AB也可 表示为c. 3.一般情况下,我们把边BC叫做A的对边,AC,AB叫 A的邻边;边AC叫B的对边,AB,BC叫B的邻边; 你能说出C的对边及邻边吗? 对边是AB,邻边是BC,AC.
知3-练
1 ( 口答)下列长度的三条线段能否组成三角形? 为 什么? (1) 3, 4, 8; (2) 5, 6, 11; (3) 5, 6, 10.