初中八年级数学上册第十一章《全等三角形

合集下载

人教版八年级数学上册《十一章 全等三角形. 11.2 三角形全等的判定. 全等与全等三角形.》公开课课件_0

人教版八年级数学上册《十一章 全等三角形.  11.2 三角形全等的判定. 全等与全等三角形.》公开课课件_0

②只给一个角:
60°
60°
可以发现按这 些条件画的三 角形都不能保 证一定全等。
60°
2.给出两个条件:
①一边一内角:
30° ②两内角:
30°50° ③两边:
2cm 4cm
30°
30°
可以发现按这 些条件画的三 30° 50° 角形都不能保 证一定全等。
2cm 4cm
探究2
想想该如何画?
已知三角形三条边分别是 4cm,5cm,7cm, 画出这个三角形,把所画的三角形分别剪下来, 并与同伴比一比,发现什么?
3、证明是由题设(已知)出发,经过一步步 的推理,最后推出结论正确的过程。
独立 作业
A 教材P15 -1.2.9 B 教材P15 -1.2
径画弧,交O′A′于点C′;
3、以点C′为圆心,CD长为半径画弧,与第2步中
所画的弧交于点D′;
4、过点D′画射线O′B′,则∠A′O′B′=∠AOB
解惑
全等三角形证明的基本步骤:
①分析已有条件,准备所缺条件: 证全等时要用的间接条件要先证好; ②三角形全等书写三步骤:
• 写出在哪两个三角形中
• 摆出三个条件用大括号括起来
证明:∵点E,F分别是AB,CD的中点
1
1
∴AE= AB, CF = CD
2
2
∵AB=CD ∴AE=CF
DF C A EB
在△ADE与△CBF中 AE=CF AD=CB
∴△ADE≌△CBF ∴∠A=∠C
DE=BF
小结归纳
1. 三边对应相等的两个三角形全等 (边边边或SSS);
2.证明全等三角形书写格式:①准备条件; ②三角形全等书写的三步骤。
• 写出全等结论

八年级数学上册期末复习资料

八年级数学上册期末复习资料

初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。

知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF=。

知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

八年级数学 第十一章 第1节 全等三角形 人教新课标版

八年级数学 第十一章 第1节 全等三角形 人教新课标版

初二数学第十一章第1节全等三角形人教新课标版一、学习目标:1. 通过实例理解全等图形的概念和特征,并能找出全等图形。

2. 能叙述全等三角形的定义及相关概念,并能找出两个全等三角形的对应边和对应角。

3. 掌握全等三角形的性质,会利用全等三角形的性质进行简单的推理和计算,解决一些实际问题。

二、重点、难点:重点是全等三角形的概念,难点是全等三角形的对应顶点要对应写,对应关系要明确。

三、考点分析:本讲所涉及的考点是全等三角形的概念与全等三角形的性质。

在这里,全等三角形的概念属于了解范畴,而全等三角形的性质属于掌握范畴,对其性质还要求会运用。

这两个知识点不会单独出大题,只会以小题的形式出现,或在大题中用到。

所以,大家只要在掌握各概念性质的基础上弄清对应关系即可。

1. 全等三角形的基本概念:(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。

(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

重合的顶点叫做对应顶点。

重合的边叫做对应边。

重合的角叫做对应角。

(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)A’B C ’图12. 全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等。

知识点一:全等三角形的基本概念例1. 下列说法正确的有()①用一张底片冲洗出来的10张一寸照片是全等图形②我国国旗上的4颗小五角星是全等图形③所有的正方形是全等图形④全等图形的面积一定相等A. 1个B. 2个C. 3个D. 4个思路分析:1)题意分析:本题主要考查全等图形定义中对“能够完全重合”的理解。

2)解题思路:根据全等图形的定义:“能够完全重合的两个图形叫做全等图形。

”来判断题目中每一句话中所谈到的图形是否能完全重合。

解答过程:用一张底片冲洗出来的10张一寸照片的形状和大小完全相同,它们是全等图形,所以①正确;我国国旗上的四颗小五角星的形状和大小也完全相同,它们也是全等图形;所以②正确;所有的正方形只是形状相同,但大小不一定相同,所以它们不是全等图形,故③不正确;全等图形的形状和大小完全相同,所以面积一定相等,所以④正确。

八年级上第十一章至第十五章知识点梳理

八年级上第十一章至第十五章知识点梳理
(1)概念:实数是有理数和无理数的统称; (2)分类:
7
a 按定义分


正整数

正有理数

实数有理数负零有理数负 负正分 整分数 数数有限小数或无限循环小数
无理数负正无无理理数数无限不循环小数
b 按大小分:
正实数 实数 零
4、如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有 n 盆花, 每个图案的花盆总数是 S,求 S 与 n 之间的关系式.
9
2、函数的概念
一般的,在一个变化过程中,如果有两个变量 x 和 y,并且对于 x 的每一个确定的值,
y 都有惟一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数。如果当 x=a 时,
6
第十三章
(一)本章知识结构框图
实数知识点汇总
1.本章知识的内在结构如下图所示:
2.本章知识的展开顺序如下图所示:
(二)知识点梳理: 本章主要内容包括算术平方根、平方根、立方根以及实数的有关概念和运算。本章的
重点是算术平方根和平方根的概念和求法,本章难点是平方根和实数的概念
1.有理数,无理数概念: 有理数:任何有限小数和无限循环小数都是有理数。 无理数:无限不循环小数叫做无理数。
负实数
在数轴上表示的两个实数,右边的数总比左边的数大. 5.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数 范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。 每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表 示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数 填满。
例 1、写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪 些量是常量?

八年级上册数学第11章全等三角形教案(人教课标版)

八年级上册数学第11章全等三角形教案(人教课标版)

八年级上册数学第11章全等三角形教案(人教课标版)第11章《全等三角形》复习课一.教学目标:(1)了解全等三角形的相关概念、性质,能够准确地辨认全等三角形中的对应元素,提高学生的识图能力。

(2)掌握三角形全等的判定方法,会证明两个三角形全等。

(3)理解角平分线的性质定理。

二.教学重点与难点重点:全等三角形的性质及三角形全等的判定方法。

难点:三角形全等的判定。

教学过程:1、全等三角形的概念及其性质1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

2)全等三角形性质:(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等例 1.已知如图(1),≌,其中的对应边:____与____,____与____,____与____,对应角:______与_______,______与_______,______与_______.例2.如图(2),若≌.指出这两个全等三角形的对应边;若≌,指出这两个三角形的对应角。

(图1)(图2)(图3)例3.如图(3),≌,BC的延长线交DA于F,交DE于G,,,求、的度数.2.全等三角形的判定方法1)、两个三角形全等(SSS)2)的两个三角形全等(SAS)3)、的两个三角形全等(ASA)4)、的两个三角形全等(AAS)5)、的两个直角三角形全等(HL)例1.如图,在中,,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC.求证:DE⊥AB。

例2.如图,AB=AC,BE和CD相交于P,PB=PC,求证:PD=PE.例3.如图,在中,M在BC上,D在AM上,AB=AC,DB=DC。

求证:MB=MC例4.如图,AD与BC相交于O,OC=OD,OA=OB,求证:例5.如图,梯形ABCD中,AB//CD,E是BC的中点,直线AE交DC的延长线于F求证:≌3.角平分线1)。

角平分线性质定理:角平分线上的点到这个角两边的距离相等。

逆定理:到一个叫两边的距离相等的点在这个角的平分线上。

八年级数学上册知识梳理(11—12章)

八年级数学上册知识梳理(11—12章)

).(, ,, SAS DEF ABC DEF ABC ∆≅∆∴⎪⎩⎪⎨⎧===∆∆ 中,与).(, , ,ASA DEF ABC DEF ABC ∆≅∆∴⎪⎩⎪⎨⎧===∆∆ 中,与 AC BFED图2八年级数学上册知识梳理第十一章 全等三角形11.1 全等三角形1.能够 的两个图形叫做全等形。

两个图形是否全等只与这两个图形的形状和大小有关,与图形所在位置无关。

2.能够 的两个三角形叫做全等三角形。

两个全等三角形中互相重合的顶点叫做对应 ,重合的角叫做对应 ,重合的边叫做对应 。

3.全等三角形的表示:全等用符号 表示,读作 。

4.全等三角形的性质有:(1)全等三角形的 相等;(2)全等三角形的 相等。

5.一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小 ,平移、翻折、旋转前后的两个图形 。

11.2 三角形全等的判定 三角形全等的识别方法 1.如图1,用文字表述“SSS ”: 。

2.如图1,用文字表述“SAS ”: 。

3.如图1,).(, , , SSS DEF ABC DEF ABC ∆≅∆∴⎪⎩⎪⎨⎧===∆∆ 中,与 A F E D C B 图1).(, , ,AAS DEF ABC DEF ABC ∆≅∆∴⎪⎩⎪⎨⎧===∆∆ 中,与用文字表述“ASA ”: 。

4.如图1,用文字表述“AAS ”: 。

5.如2,用文字表述“HL ”: 。

判断两个三角形全等的常见思路如下表:11.3角平分线的性质1.定义:角平分线是把一个角分成两个相等的角的射线。

2.角平分线的尺规作图作法。

(见课本P19)3.角平分线的性质(1)性质:角的平分线上的点到两边的 相等。

(2)符号语言:如图3,).(, , HL DEF ABC DEF Rt ABC Rt ∆≅∆∴⎩⎨⎧==∆∆ 中,与ODCPBA图3).( D,OB PD C OP AOB 角平分线的性质于,于上,在射线,点平分∴⊥⊥∠OA PC P OP(3)应用角平分线性质解题的格式的两边的距离相等)。

新人教版八年级数学上册第11章全等三角形精品课件-5.ppt

新人教版八年级数学上册第11章全等三角形精品课件-5.ppt
A B
A
12 C ∟D F E C
B
D
需要更完整的资源请到 新世纪教 育网 -
活动六.知识梳理,课堂小结 引导学生对三角形全等的判定方法做小结. 1.如果两个三角形的两个角和它们的夹边对应相等,那么 这两个三角形全等(可以简写为“角边角”或“ASA”). 2.如果两个三角形的两个角和其中一个角的对边对应相等, 那么这识反馈,作业布置. 课本第15至16页第5,6,7题.
需要更完整的资源请到 新世纪教 育网 -
B
E
2.归纳得出角角边定理: 如果两个三角形的两个角和其中一个角的对边对应 相等,那么这两个三角形全等(可以简写成“角角边” 或“AAS”).
需要更完整的资源请到 新世纪教 育网 -
活动四.知识应用,例题解析. 1.例3.如左图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证 AD=AE. 分析:如果能证明△ACD≌△ABE,就可以得出AD=AE. 证明:在△ACD与△ABE中,
A
需要更完整的资源请到 新世纪教 育网 -
B A′
B′
4.归纳得出角边角定理:如果两个三角形的两个角和它们的 夹边对应相等,那么这两个三角形全等(可以简写为“角边角” 或“ASA”).
A D F
C
活动三.继续探索,总结结论. 1.探究6.在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF (如图),△ABC与△DEF全等吗?能利用角边角条件证明你 的结论吗? 提示:如果两个三角形的两个角对应相等,那么它们的第三 个角是什么关系?
A A(公共角) AC=AB C=B
A
D B E C
∴△ACD≌△ABE(ASA) ∴AD=AE.
2.继续探索,找出结论. 三角对应相等的两个三角形全等吗?

人教版八年级上册数学知识点

人教版八年级上册数学知识点

第十一章全等三角形1.全等三角形的性质:全等三角形对应边相等、对应角相等。

2.全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).第十二章轴对称1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)点(x,y)关于y轴对称的点的坐标为(-x,y)点(x,y)关于原点轴对称的点的坐标为(-x,-y)9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60°,12.等边三角形的判定:三条边都相等的三角形是等边三角形三个角都相等的三角形是等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B D C
E A B
C D E
A B C D E 12A B C D
E F
O 班级 姓名 考号
一. 相信你的选择
1. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )
A. 两角和一边
B. 两边及夹角
C. 三个角
D. 三条边
2.下列各图中,不一定全等的是( ) A .有一个角是45°腰长相等的两个等腰三角形
B. 周长相等的两个等边三角形
C. 有一个角是100°,腰长相等的两个等腰三角形
D. 斜边和和一条直角边分别相等的两个直角三角形。

3.如图,AB ∥CD ,AD ∥BC ,
4.在△ABC 和△A /B /C /中,AB=A /B /,∠A=∠A /,若证△ABC≌△A /B /C /还要从下列条件中补选一
个,错误的选法是( )
A. ∠B=∠B /
B. ∠C=∠C /
C. BC=B /C /,
D. AC=A /C /,
5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
(A )带①去 (B )带②去
是( )
A .mn
B .12mn
C .2mn
D .14
mn 10.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建造一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A .一处
B .两处
C .三处
D .四处
l 1
C
l2
l3

二、试试你的身手
11.由同一张底片冲洗出来的两张五寸照片的图案全等图形,而由同一张底片冲
洗出来的五寸照片和七寸照片全等图形(填“是”或“不是”).
12.如图1,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B=20°,
则∠C= .
13.在△ABC中,∠C=90°,AD为△ABC角平分线,BC=40,AB=50,若BD∶DC=5∶ 3,则△ADB
的面积为.
14.如图2,∠ACB=∠DBC,要想说明△ABC≌△DCB,只需增加的一个条件是.(只需
填一个你认为合适的条件)
15
.如图3,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE= cm.
三、挑战你的技能
16、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.
求证: ΔCAB≌ΔDEF
17、如图,AD⊥BC于D,AD=BD,AC=BE。

(1) 请说明∠1=∠C
(2) 猜想并说明DE和DC有何特殊关系?
18、如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC, 能否找出与AB+AD相等的线
图19
1
B C
D
E
段,并说明理由.
四、拓广探索
19如图(1),E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E 点,BF ⊥AC 于F 点,若AB =CD ,AF =CE ,BD 交AC 于M 点.
(1)求证:MB =MD ,ME =MF ;
(2)当E 、F 两点移动至如图(2)所示的位置时,其余条件不变,上述结论是否成立?若成立,请加以证明.
图一 图二/
F C B D A E M A B F
M D C E
参考答案
1-----10 CADCC BCABD
11.是,不是 12.20 13.375 14.A D =∠∠或ABC DCB =∠∠或AC DB =(答案不惟一) 15.2.4
证明略
(注:素材和资料部分来自网络,供参考。

请预览后才下载,期待你的好评与关注!)。

相关文档
最新文档