八年级上册数学第十一章检测卷(含答案)
人教版八年级数学上原创新课堂第十一章检测题(含答案)

第十一章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为( C )A.3 B.4 C.5 D.6错误!,第3题图),第6题图) 2.(2015·泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30°B.40°C.50°D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能5.(2015·广元)一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110°B.105°C.100°D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF =2,则S△ABC等于( A )A.16 B.14 C.12 D.10,第7题图),第9题图),第10题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形B.八边形C.九边形D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115°B.105°C.95°D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.(2015·南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图),第12题图),第13题图),第18题图) 12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.(2015·烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°__.16.一个等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC 中,∠A =90°,∠ACB 的平分线交AB 于D ,已知∠DCB =2∠B ,求∠ACD 的度数.解:设∠B =x °,可得∠DCB =∠ACD =2x °,则x +2x +2x =90,∴x =18,∴∠ACD =2x °=36°20.(8分)如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =18°,求∠C 的度数.解:∵∠BAD =90°-∠B =20°,∴∠BAE =∠BAD +∠DAE =38°.∵AE 是角平分线,∴∠CAE =∠BAE =38°,∴∠DAC =∠DAE +∠CAE =56°,∴∠C =90°-∠DAC =34°21.(9分)已知等腰三角形的周长为18 cm ,其中两边之差为3 cm ,求三角形的各边长.解:设腰长为x cm ,底边长为y cm ,则⎩⎪⎨⎪⎧2x +y =18,x -y =3,或⎩⎪⎨⎪⎧2x +y =18,y -x =3,解得⎩⎪⎨⎪⎧x =7,y =4,或⎩⎪⎨⎪⎧x =5,y =8,经检验均能构成三角形,即三角形的三边长是7 cm ,7 cm ,4 cm 或5 cm ,5 cm ,8 cm22.(9分)如图,小明从点O 出发,前进5 m 后向右转15°,再前进5 m 后又向右转15°……这样一直走下去,直到他第一次回到出发点O 为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m ),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =10 cm ,BC =8 cm ,AC =6 cm .(1)求△ABC 的面积;(2)求CD 的长;(3)作出△ABC 的中线BE ,并求△ABE 的面积.解:(1)24 cm 2(2)S △ABC =12×10×CD =24,∴CD =4.8 cm (3)作图略,S △ABE =12 cm 224.(10分)(1)如图,一个直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C+∠D+∠E=180°。
八年级数学上册第11章数的开方达标检测卷新版华东师大版(含答案)

八年级数学上学期新版华东师大版:第11章达标检测卷一、选择题(每题3分,共30分) 1.下列实数中,是无理数的是( )A .3B .πC.17D.92.4的算术平方根是( )A .4B .-4C .2D .±23.下列说法中,正确的是( )A .27的立方根是±3B.16的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是1 4.已知a -9+|b -4|=0,则a b的平方根是( )A.32B .±32C .±34D.345.若平行四边形的一边长为2,面积为45,则此边上的高介于( )A .3与4之间B .4与5之间C .5与6之间D .6与7之间 6.下列说法中正确的是( )A .若|a |=|b |,则a =bB .若a <b ,则a 2<b 2C .若a 2=b 2,则a =b D .若3a =3b ,则a =b7.实数a ,b 在数轴上对应点的位置如图所示,则化简(a -2)2-(b -a )2-b 的结果是( )A .-2B .2a -2b -2C .2-2bD .2-2a8.有一个数值转换器,原理如图所示,当输入x 为64时,输出y 的值是( )A .4B.34C. 3D.329.一个正方体木块的体积是343 cm 3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是( ) A.72cm 2B.494cm 2C.498 cm 2D.1472cm 2 10.如图,数轴上A ,B 两点对应的实数分别为1和5,若点B 关于点A 的对称点为点C ,则点C 所对应的实数为( )A .1- 5 B.5-2 C .- 5 D .2- 5二、填空题(每题3分,共30分)11.7的相反数是________;绝对值等于3的数是________.12.若一个正数的平方根是2m -1和-m +2,则m =________,这个正数是________. 13.比较大小:(1)-10________-3.2;(2)3130________5.14.一个圆的面积变为原来的n 倍,则它的半径是原来半径的________倍. 15.若a 2=9,3b =-2,则a +b =________.16.已知x ,y 都是实数,且y =x -3+3-x +4,则yx =________.17.点A 在数轴上和表示3的点相距5个单位长度,则点A 表示的数为________________. 18.若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是________. 19.若x ,y 为实数,且满足|x -3|+y +3=0,则⎝ ⎛⎭⎪⎫x y2 023的值是________.20.设[x )表示大于x 的最小整数,如[3)=4,[-1.2)=-1,那么⎣⎢⎡⎭⎪⎫193=________;[-26)=________.三、解答题(21题12分,22题9分,23,24题每题6分,25题7分,26,27题每题10分,共60分) 21.计算:(1)16+|-3|+(-8)×⎝ ⎛⎭⎪⎫-34; (2)3 2+5 2-4 2;(3)3(3+2)-2(3-2); (4)(-1)2 023+38-3+2×22.22.求下列各式中未知数的值:(1)|a -2|=5; (2)4x 2=25; (3)(x -0.7)3=0.027. 23.已知某正数的两个平方根分别是a -3和2a +15,b 的立方根是-3,求a -b 的值. 24.已知a ,b ,c 在数轴上对应点的位置如图所示,化简:||a -||a +b +(c -a )2+||b -c .25.已知a ,b ,c ,d ,e ,f 为实数,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值是2,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值.26.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而1<2<2,于是可用2-1来表示2的小数部分.请解答下列问题: (1)35的整数部分是________,小数部分是____________;(2)如果11的小数部分为a ,27的整数部分为b ,求a +b -11的值;(3)已知90+117=x +y ,其中x 是整数,且0<y <1,求x +117+59-y 的平方根. 27.木工李师傅现有一块面积为 4 m 2的正方形胶合板,准备做装饰材料用,他设计了如下两种方案:方案一:沿着边的方向裁出一块面积为3 m 2的长方形装饰材料.方案二:沿着边的方向裁出一块面积为3 m 2的长方形装饰材料,且其长与宽之比为3:2. 李师傅设计的两种方案是否可行?若可行,请帮助解决如何裁剪;若不可行,请说明理由.答案一、1.B 2.C 3.C 4.B 5.B 6.D 7.D8.B 【点拨】64的立方根是4,4的立方根是34. 9.D 【点拨】由题意可知,小正方体木块的体积为3438cm 3,则每个小正方体木块的棱长为72 cm ,故每个小正方体木块的表面积为⎝ ⎛⎭⎪⎫722×6=1472(cm 2).10.D二、11.-7;± 3 12.-1;9 13.(1)> (2)> 14.n15.-5或-11 【点拨】∵a 2=9,3b =-2,∴a 为3或-3,b 为-8, 则a +b 为-5或-11.易错警示:本题容易将平方根与算术平方根相混淆,从而导致漏解. 16.6417.3+5或3- 5 【点拨】数轴上到某个点距离为a (a >0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.7 【点拨】∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4. ∴x +y =3+4=7.19.-1 【点拨】∵|x -3|+y +3=0, ∴x =3,y =-3,∴⎝ ⎛⎭⎪⎫x y2 023=(-1)2 023=-1.20.2;-5三、21.解:(1)原式=4+3+6=13. (2)原式=(3+5-4)2=4 2. (3)原式=3 3+3 2-2 3+2 2 =3+5 2.(4)原式=-1+2-3+1=-1.技巧点拨:实数的运算顺序为先算乘方、开方,再算乘、除,最后算加、减,如果没有括号,在同一级运算中要从左到右依次运算,有括号的先算括号里的.无论何种运算,都要注意先定符号后运算.22.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.(2)∵4x 2=25,∴x 2=254.∴x =±52.(3)∵(x -0.7)3=0.027, ∴x -0.7=0.3.∴x =1.23.解:∵正数的两个平方根分别是a -3和2a +15, ∴(a -3)+(2a +15)=0, 解得a =-4.∵b 的立方根是-3,∴b =-27, ∴a -b =-4-(-27)=23.24.解:由数轴可知b <a <0<c ,∴a +b <0,c -a >0,b -c <0.∴原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .25.解:∵a ,b 互为倒数,∴ab =1. ∵c ,d 互为相反数,∴c +d =0. ∵|e |=2,∴e 2=2. ∵f =8,∴f =64.∴原式=12×1+05+2+364=132.26.解:(1)5;35-5(2)因为3<11<4,5<27<6, 所以a =11-3,b =5, 所以原式=11-3+5-11=2. (3)因为10<117<11, 所以100<90+117<101, 所以x =100,y =117-10,所以原式=100+117+59-(117-10)=169.因为169的平方根为±13,所以x +117+59-y 的平方根为±13. 27.解:方案一可行. ∵正方形胶合板的面积为4 m 2, ∴正方形胶合板的边长为4=2(m).如图所示,沿着EF裁剪.∵BC=EF=2 m,∴只要使BE=CF=3÷2=1.5(m)就满足条件.方案二不可行.理由如下:设所裁长方形装饰材料的长为3x m、宽为2x m. 则3x·2x=3,即2x2=1.解得x=12(负值已舍去).∴所裁长方形的长为312m.∵312>2,∴方案二不可行.【点拨】方案一裁剪方法不唯一.。
人教版数学八年级上册《第11章三角形》单元测试题(含答案)

三角形章节同步测试题基础卷(满分:100分,时间:45分钟)一、精心选一选(每小题3分,共24分)1.请根据凸多边形的定义,判断下列选项中不是凸多边形的是( )2.小华在计算四个多边形的内角和时,得到下列四个答案,则他计算不对的是( ) A .0720 B .01080 C .01440 D .01900 3.随着一个多边形的边数增加,它的外角和( )A .随着增加B .随着减少C .保持不变D .无法确定4.过多边形的一个顶点的所有对角线把这个多边形分成6个三角形,则这个多边形的内角和等于( )A .0720 B .0900 C .01080 D .012605.若四边形ABCD 中,∠A :∠B :∠C :∠D=1:2:4:5,则∠A+∠D 等于( ) A .030 B .075 C .0180 D .0210 6.能进行镶嵌的正多边形组合是( )A .正三角形和正八边形B .正五边形和正十边形C .正方形和正八边形D .正六边形和正八边形7.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=070,则∠AED 的度数是( )A .0110 B .0108 C .0105 D .0100 8.能构成如图所示的图案的基本图形是( )ABCDA B CDC DE4二、细心填一填(每小题4分,共32分)9.正十边形的内角和等于 度,每个内角等于 度. 10.如果正多边形的一个外角为072,那么它的边数是 . 11.如图是三个完全相同正多边形拼成的无缝隙,不重叠图形的一部分,这种正多边形是正 边形.12.“三江”黄金广场用三种不同的正多边形地砖铺设(每种只选一块),其中已知选好了用正方形和正六边形这两种,还需再选用 ,使这三种组合在一起的广场铺满.13.多边形每一个内角都等于0140,则从此多边形一个顶点出发的对角线有 条. 14.若一个多边形的各边长相等,其周长为63厘米,且内角和为0900,那么它的边长为 厘米.15.过a 边形的一个顶点有7条对角线,正b 边形的内角和与外角和相等,c 边形没有对角线,d 边形有d 条对角线,则代数式ab dc )( = .16.小华骑自行车在一个正多边形广场上训练,在训练中小华发现,每5分钟就要转弯一次,当他汽车一圈回到出发点发现正好用了30分钟,则此多边形的内角和为 .三、专心解一解(共44分)17.(5分)小华想:2012年奥运会在伦敦举办,设计一个内角和为02012的多边形图案多有意义,他的想法能实现吗?请说明理由.18.(7分) 小华画了一个八边形,请问: (1)从八边形的一个顶点出发,可以引几条对角线?它们将八边形分成几个三角形?(2)请你求出八边形的内角和是外角和的几倍? 19.(7分)如图,已知五边形ABCDE 中,AE ∥CD ,∠A=0130,∠C=0135,求∠B 的度数.20.(8分)小华从点A 出发向前走10m ,向右转036然后继续向前走10m ,再向右转036,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回点A 时共走多少米?若不A BCDE第19题图第11题图ADEFGQ P能,写出理由.21.(8分)如图,求∠A+∠B+∠C+∠D+∠E+∠F +∠G 的度数.22.(9分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪.(1)图1中草坪的周长为 ; (2)图2中草坪的周长为 ; (3)图3中草坪的周长为 ;(4)如果多边形边数为n ,其余条件不变,那么,你认为草坪的周长为 .加强卷(满分:50分,时间:30分钟)一、精心选一选(每小题3分,共15分)1.若一个多边形的每个外角都是锐角,那么这个多边形的边数至少是( ) A .3 B .4 C .5 D .62.鹿鸣社区里有一个五边形的小公园(如图所示),王老师每天晚饭后都要到公园里去散步,已知图中的∠1=095,王老师沿公园边由A 点经B →C →D →E 一直到F 时,他在行程中共转过了( )A .0265 B .0275 C .0360 D .04453.一个多边形的每一个内角都是0144,则它的内角和等于( ) A .01260 B .01440 C .01620 D .018004.四边形ABCD 中,∠A+∠C=∠B+∠D ,∠A 的一个外角为0105,则∠C 的度数为( ) A .075 B .090 C .0105 D .0120 5.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地第22题图图1图2 图31 ABCDE F第2题图砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共10层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形,若中央正六边形地砖的边长是1米,则第10层的外边界围成的多边形的周长是( )A .54B .54C .60D .66 二、细心填一填(每小题3分,共15分)6.若一个多边形的每个外角都等于030,则这个多边形的对角线总条数为 . 0140,7.一个多边形的每一个外角都相等,且比它的内角小则这个多边形的边数是 .8.一个四边形的四个内角中做多有 个钝角,最多有个锐角.9.一个正方形的截取一个角后,得到的图形的内角和可能是 .10.用一条宽相等的足够长的纸条,打一个结,然后轻轻拉紧、压平就可以得到如图所示的正五边形ABCDE ,其中∠BAC= .(提示:由AB=AC ,可得∠BAC=∠BCA )三、专心解一解(共20分)11.(8分)多边形除一个内角外,其余各内角和为01200. (1)求多边形的边数;(2)此多边形必有一外角为多少度?12.(12分)如图,把△ABC 沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 、∠1及∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出的规律的正确性.参考答案基础卷一、1~4 ADCA ;5~8 CCDD .二、9.1440,45; 10.5; 11.六; 12.正十二边形; 13.6; 14.9; 15.3; 16.0540.三、17.解:不能,理由如下.设存在n 边形的内角和为02012,有02012180)2(=-n ,解得n ≈13.18.ABCDE第10题图∵多边形的边数不能为小数,∴不存在内角和为02012的多边形.18.解:(1)从八边形的一个顶点出发,可以引5条对角线?它们将八边形分成6个三角形.(2)2360180)28(0=-.故八边形的内角和是外角和的2倍. 19.解:∵AE ∥CD ,∴∠D+∠E=0180.∵ABCDE 是五边形,∴∠A+∠B+∠C+∠D+∠E=0180)25(-. 即0130+∠B 0135++0180=0540,解得∠B=095. 20.解:小华能回到A 点,当他回到A 点时共走了100m . 21.解:∵∠QPE=∠D+∠G ,又∠QPE+∠E+∠F+∠FQP=0360,即∠D+∠G+∠E+∠F+∠FQP=0360. ∴∠D+∠G+∠E+∠F=0360—∠FQP .∵∠A+∠B+∠C+∠AQC=0360,∴∵∠A+∠B+∠C=0360—∠AQC .故∠A+∠B+∠C+∠D+∠G+∠E+∠F=(0360—∠AQC)+(0360—∠FQP )=0720—(∠AQC+∠FQP )=0720—0180=0540.22.解:(1)R π;(2)R π2;(3)R π3;(4)R n π)2(-.加强卷一、1.C ; 2.B ; 3.B ; 4.C ; 5.D .二、6.54; 7.18; 8.3,3; 9.0180,0360或0540; 10.036. 三、11.解:(1)设该多边形的一个内角为0x ,边数为n , 依题意,有01200180)2(x n +=-.∵00012061801200⋅⋅⋅⋅⋅⋅=÷,∴01201806180)2(x n ++⨯=-. 又∵1800<<x ,∴180120=+x ,解60=x .把60=x 代入原方程,得0601200180)2(+=-n ,解得9=x . ∴该多边形的边数为9.(2)∵该多边形有一角为060,∴此多边形必有一外角为0120. 12.解:规律为∠1+∠2=2∠A .∵∠B+∠C=A ∠-0180,∠ADE+∠AED=A ∠-0180,又∠B+∠C+∠CDE+∠DEB=0360,即∠B+∠C+∠2+∠ADE+∠1+∠AED=0360. ∴A ∠-0180+∠1+∠2+A ∠-0180=0360, 整理,得∠1+∠2=2∠A .。
人教版八年级数学上册 第11章 三角形单元测试卷(含答案) (4)

单元检测试卷第十一单元三角形考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.如图,在△ABC中,∠ACB=90°,∠ADC=90°,则△ABC斜边AB上的高为()A.CD B.AC C.BC D.BD第1题第2题第4题第5题2.如图AD⊥BC于点D,那么图中以AD为高的三角形有()个A.3B.4C.5D.63.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.44.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°5.如图在△ABC中,D是AB上一点,E是AC上一点,BE,CD相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE的度数为()A.68°B.58°C.52°D.48°6.如图,顺次连结同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC =120°,若∠ABC的平分线BE经过点D,则∠ABE的度数()A.20°B.30°C.40°D.60°第6题第9题第10题7.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°8.一个多边形截去一角后,变成一个八边形则这个多边形原来的边数是()A.8或9B.2或8C.7或8或9D.8或9或10 9.如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°10.把一副直角三角板按如图所示的方式摆放在一起,其中∠C=90°,∠F=90°,∠D =30°,∠A=45°,则∠1+∠2等于()A.270°B.210°C.180°D.150°二、填空题(本大题共4小题,每小题5分,共20分)11.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD 与BE交于H,则∠CHD=.12.如图,在△ABC中,∠B=60°,AD平分∠BAC,点E在AD延长线上,且EC⊥AC.若∠E=50°,则∠ADC的度数是.13.如图,把三角形纸片ABC折叠,使得点B,点C都与点A重合,折痕分别为DE,MN,若∠BAC=110°,则∠DAM=度.14.一个正多边形的每个内角都是150°,则它是正边形.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.若a,b,c是△ABC的三边,化简:|a﹣b+c|+|c﹣a﹣b|﹣|a+b+c|.16.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.17.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.18.如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表:(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.19.如图,点P是△ABC内任意一点,求证:PA+PB+PC>AB+BC+AC.20.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E,点F为AC延长线上的一点,连接DF.(1)求∠CBE的度数;(2)若∠F=25°,求证:BE∥DF.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE的度数;(2)∠DAE的度数;(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B﹣∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.22.我们定义:在一个三角形中,如果一个角的度数是另一个角度数的3倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为105°,40°,35°的三角形是“和谐三角形”概念理解:如图1,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合)(1)∠ABO的度数为,△AOB(填“是”或“不是”)“和谐三角形”;(2)若∠ACB=80°,求证:△AOC是“和谐三角形”.应用拓展:如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC 上取点F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和谐三角形”,求∠B的度数.23.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度数为【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P)(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D 的关系,直接写出结论.参考答案与试题解析一.选择题(共10小题)1.解:∵∠ADC=90°,∴CD⊥AB,∴CD是△ABC斜边上的高,故选:A.2.解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故选:D.3.解:∵10﹣2=8,10+2=12,∴8<x<12,∵若x为正整数,∴x的可能取值是9,10,11,故这样的三角形共有3个.故选:C.4.解:∵∠BDC=110°,∴∠DBC+∠DCB=70°,∵点D是∠ABC和∠ACB角平分线的交点,∴∠ABC+∠ACB=2(∠DBC+∠DCB)=140°,∴∠A=180°﹣140°=40°,故选:A.5.解:∵∠A=70°,∠ACD=20°,∴∠BDF=∠A+∠ACD=70°+20°=90°,在△BDF中,∠BFD=180°﹣∠BDF﹣∠ABE=180°﹣90°﹣32°=58°,∴∠CFE=∠BFD=58°.故选:B.6.解:∵∠ADE=∠ABD+∠A,∠EDC﹣∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120°=40°+20°+∠ABC,∴∠ABC=60°,∵BE平分∠ABC,∴∠ABE=∠ABC=30°,故选:B.7.解:设∠B=x°,则∠A=3x°,由直角三角形的性质可得∠A+∠B=90°,∴x+3x=90,解得x=22.5,∴∠B=22.5°,故选:A.8.解:∵截去一个角后边数可以增加1,不变,减少1,∴原多边形的边数是7或8或9.故选:C.9.解:根据∠A+∠B=220°,可知∠A的一个邻补角与∠B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∠1+∠2+∠3=360°﹣140°=220°.故选:C.10.解:如图:∵∠1=∠D+∠DOA,∠2=∠F+∠FPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠F+∠COP+∠CPO=∠D+∠F+180°﹣∠C=30°+90°+180°﹣90°=210°.故选:B.二.填空题(共4小题)11.解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.12.解:∵EC⊥AC.∠E=50°,∴∠DAC=40°,∵AD平分∠BAC,∴∠BAD=40°,∵∠B=60°,∴∠ADC=40°+60°=100°,故答案为:100°.13.解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=70°,∵把三角形纸片ABC折叠,使得点B,点C都与点A重合,∴∠BAD=∠B,∠CAM=∠C,∴∠BAD+∠CAM=∠B+∠C=70°,∴∠DAM=∠BAC﹣∠BAD﹣∠CAM=110°﹣70°=40°,故答案为:40.14.解:∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为:十二.三.解答题(共9小题)15.解:∵a、b、c是△ABC的三边,∴a﹣b+c>0,c﹣a﹣b<0,a+b+c>0,∴原式=a﹣b+c++a+b﹣c﹣a﹣b﹣c=a﹣b﹣c.16.证明:∵五边形ABCDE的内角都相等,∴∠BAE=∠B=∠BCD=∠CDE=∠E=(5﹣2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°﹣108°)÷2=36°,∴∠ACD=∠BCD﹣∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD=180°﹣∠ACD﹣∠ADC=36°.17.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.18.解:(1)(2)8个点;(3)1+2+3+…+(n+1)=[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=(n+1)(n+2).故答案为(n+1)(n+2).19.证明:∵PA+PB>AB,PB+PC>BC,PC+PA>AC.∴把它们相加,再除以2,得PA+PB+PC>AB+BC+AC.20.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.又∵∠F=25°,∴∠F=∠CEB=25°,∵DF∥BE.21.解:(1)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°;(2)∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B=90°﹣70°=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(3)能.∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=90°﹣(∠B+∠C)﹣(90°﹣∠B)=(∠B﹣∠C),∵∠B﹣∠C=40°,∴∠DAE=×40°=20°.22.解:(1)∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∵∠OAB=3∠ABO,∴△AOB为“和谐三角形”,故答案为:30;是;(2)证明:∵∠MON=60°,∠ACB=80°,∵∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∵∠AOB=60°=3×20°=3∠OAC,∴△AOC是“和谐三角形”;应用拓展:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“和谐三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.23.(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的结论得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°﹣∠2,∠PCD=180°﹣∠3,∵∠P+(180°﹣∠1)=∠D+(180°﹣∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案为:26°;【拓展延伸】(4)同法可得:∠P=x+y;故答案为:∠P=x+y,(5)同法可得:∠P=.故答案为:∠P=.。
庆阳一中八年级数学上册第十一章【三角形】测试卷(含答案解析)

一、选择题1.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒2.小李同学将10,12,16,22cm cm cm cm 的四根木棒首尾相接,组成一个凸四边形,若凸四边形对角线长为整数,则对角线最长为( )A .25cmB .27cmC .28cmD .31cm3.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25°4.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒5.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .56.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少A .60°B .75°C .85°D .90°7.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°8.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cm B .10cm C .4cm D .6cm9.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 10.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒ 11.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒12.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________ 13.如图,将一副直角三角尺按图③放置,使三角尺①的长直角边与三角尺②的某直角边在同一条直线上,则图③中的∠1=______°.14.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线15.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.16.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.17.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.18.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.19.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.20.如图,ABC 的角平分线OB 、OC 相交于点O ,40A ∠︒=,则BOC ∠=______.21.如图,线段AD ,BE ,CF 两两相交于点H ,I ,G ,分别连接AB ,CD ,EF .则A B C D E F ∠+∠+∠+∠+∠+∠=____.三、解答题22.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)在图中画出△ABC 的高CD ,中线BE ;(3)在图中能使S △ABC =S △PBC 的格点P 的个数有 个(点P 异于点A ).23.如图,已知点D ,E 分别在ABC 的边AB ,AC 上,//DE BC .(1若80ABC ∠=︒,40AED ∠=︒,求A ∠的度数:(2)若180BFD CEF ∠+∠=︒,求证:EDF C ∠=∠.24.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 25.如图,AB ∥CD ,点E 是CD 上一点,连结AE .EB 平分∠AED ,且DB ⊥BE ,AF ⊥AC ,AF 与BE 交于点M .(1)若∠AEC =100°,求∠1的度数;(2)若∠2=∠D ,则∠CAE =∠C 吗?请说明理由.一、选择题1.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 2.下列长度的三条线段能构成三角形的是( )A .1,2,3B .5,12,13C .4,5,10D .3,3,63.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD ∠的度数为( )A .25︒B .85︒C .60︒D .95︒4.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .65.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40°6.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( )A .2.4B .3C .5D .8.57.内角和为720°的多边形是( ).A .三角形B .四边形C .五边形D .六边形8.如果一个三角形的三边长分别为5,8,a .那么a 的值可能是( )A .2B .9C .13D .159.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .710.内角和与外角和相等的多边形是( )A .六边形B .五边形C .四边形D .三角形 11.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒二、填空题12.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数为___________.13.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.14.如图,点P 是三角形三条角平分线的交点,若∠BPC=100︒,则∠BAC=_________.15.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______. 16.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.17.若线段AM ,AN 分别是ABC ∆的高线和中线,则线段AM ,AN 的大小关系是AM _______AN (用“≤”,“≥”或“=”填空). 18.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.19.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.20.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________. 21.如图,ABC 的角平分线OB 、OC 相交于点O ,40A ∠︒=,则BOC ∠=______.三、解答题22.已知一个多边形的内角和比它的外角和的3倍还多180度.(1)求这个多边形的边数;(2)求这个多边形的对角线的总条数.23.如图ABC 中,45B ∠=︒,70ACB ∠=︒,AD 是ABC 的角平分线,F 是AD 上一点EF AD ⊥,交AC 于E ,交BC 的延长线于G .求G ∠的度数.24.如图,//AE DF ,BE DF ⊥于点G ,190B ∠+∠=︒.(1)判断CD 与AB 的位置关系,并说明理由.(2)若50A ∠=︒,求出DEG ∠的度数.25.如图,AB ∥CD ,点E 是CD 上一点,连结AE .EB 平分∠AED ,且DB ⊥BE ,AF ⊥AC ,AF 与BE 交于点M .(1)若∠AEC =100°,求∠1的度数;(2)若∠2=∠D ,则∠CAE =∠C 吗?请说明理由.一、选择题1.已知实数x 、y 满足|x -4|+ 8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 2.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 3.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25°4.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒5.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( )A .2.4B .3C .5D .8.56.内角和为720°的多边形是( ).A .三角形B .四边形C .五边形D .六边形7.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .4cm, 5cm,9cmB .4cm, 5cm, 6cmC .5cm,12cm,6cmD .4cm,2cm,2cm8.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°9.如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是( )A .两点之间线段最短B .长方形的对称性C .长方形四个角都是直角D .三角形的稳定性10.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°11.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题12.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数为___________.13.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.14.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.15.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.16.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.17.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.18.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB ⊥AE ,则∠BFC=75°;②图 2 中 BD 过点C ,则有∠DAE+∠DCE=45°;③图 3中∠DAE+∠DFC 等于 135°;④保持重合的顶点不变,改变三角板BAD 的摆放位置,使得D 在边AC 上,则∠BAE=105°. 19.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.20.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.21.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .三、解答题22.如图,在五边形ABCDE 中,∠A+∠B+∠E=310°,CF 平分∠DCB ,FC 的延长线与五边形ABCDE 外角平分线相交于点P ,求∠P 的度数23.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 24.(1)一个多边形的内角和等于1800度,求这个多边形的边数.(2)一个多边形的每一个内角都是108°,求这个多边形的边数.25.(1)已知△ABC中,∠B=5∠A,∠C-∠B=15°,求∠A,∠B,∠C的度数.(2)在△ABC中,∠A=50°,BD,CE为高,直线BD,CE交于点H,求∠BHC的度数.。
2022年人教版数学八年级上册第十一章检测卷2(附答案)

第十一章三角形一、选择题:〔此题总分值36分,每题3分〕1、以下三条线段,能组成三角形的是〔〕A、3,3,3B、3,3,6C、3,2,5D、3,2,62.五边形的内角和是〔〕A.180° B.360° C.540°D.600°3. 从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是〔〕A. n个B. 〔n-1〕个C. (n-2)个D. (n-3)个4、△ABC中,∠A、∠B、∠C三个角的比例如下,其中能说明△ABC是直角三角形的是〔〕A、2:3:4B、1:2:3C、4:3:5D、1:2:25. 以下列图形中有稳定性的是〔〕A. 正方形B. 直角三角形C. 长方形D. 平行四边形6.△ABC中,∠ABC和∠ACB的平分线交于点O,那么∠BOC一定〔〕A.小于直角B.等于直角C.大于直角7、以下正多边形材料中,不能单独用来铺满地面的是〔〕〔A〕正三角形〔B〕正四边形〔C〕正五边形〔D〕正六边形8、正多边形的每个内角都等于135º,那么该多边形是正〔〕边形。
〔A〕8 〔B〕9 〔C〕10 〔D〕119、三角形一个外角小于与它相邻的内角,这个三角形〔〕〔A〕是钝角三角形〔B〕是锐角三角形〔C〕是直角三角形〔D〕属于哪一类不能确定。
10.六边形的对角线的条数是〔〕〔A〕7 〔B〕8 〔C〕9 〔D〕1011.如图,将一副三角板叠放在一起,使直角的顶点重合于O,那么∠AOC+∠DOB=〔〕A、90 ºB、120 ºC、160 ºD、180 º12.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB 于E, ∠A=60º,∠BDC=95º,那么∠BED的度数是〔〕A、35 ºB、70ºC、110 ºD、130 º第12题图二、填空题〔此题总分值16分,每题4分〕13. 假设将边形边数增加1条,那么它的内角和增加__________。
人教新版 八年级(上)数学 第11章 三角形 单元测试卷 (含解析)

第11章三角形单元测试卷一、选择题(共10小题).1.(3分)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③2.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个3.(3分)(n+1)边形的内角和比n边形的内角和大()A.180°B.360°C.n×180°D.n×360°4.(3分)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.5.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°6.(3分)如图,小军任意剪了一张钝角三角形纸片(∠A是钝角),他打算用折叠的方法折出∠C的角平分线、AB边上的中线和高线,他能成功折出的是()A.∠C的角平分线和AB边上的中线B.∠C的角平分线和AB边上的高线C.AB边上的中线和高线D.∠C的角平分线、AB边上的中线和高线7.(3分)下列说法正确的是()A.四边形的内角和大于它的外角和B.三角形中至少有一个内角不小于90°C.一个多边形中,锐角最多有三个D.每一个外角都等于15°的多边形是二十六边形8.(3分)如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.40°B.80°C.90°D.140°9.(3分)如图,△ABC的高BD、CE相交于点H,现给出四个判断:(1)∠ABD=∠ACE;(2)∠BHC与∠A互补;(3)∠BHC=∠ABD+∠ACE+∠A;(4)∠ABD+∠ACE+∠BHC+∠CHD=180°.其中错误的个数有()A.0个B.1个C.2个D.3个10.(3分)如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是()A.(m﹣60)°B.(180﹣2m)°C.(2m﹣90)°D.(120﹣m)°二、填空题(每小题3分,共30分)11.(3分)内角和为5040°的多边形共有条对角线.12.(3分)在△ABC中,若∠A﹣∠C=25°,∠B﹣∠A=10°,则∠B=.13.(3分)在△ABC中,如果AB=7cm,AC=9cm,则边BC的取值范围是.14.(3分)如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A=52°,则∠1+∠2的度数为.15.(3分)如图,在△ABC中,AB=AC,P为线段BC延长线上一点,过P点分别作AB,AC的垂线段PD,PE,过B点作AC的垂线段BF,若PE=3,PD=9,则BF=.16.(3分)△ABC中,∠B=40°,过点A的直线将这个三角形分成两个等腰三角形,则∠C的度数为.17.(3分)如图,连接正十边形的对角线AC与BD交于点E,则∠AED=°.18.(3分)如图,对面积为a的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2AC,顺次连接A1,B1,C1,得△A1B1C1,则其面积S=(用含a的式子表示).19.(3分)在△ABC,BC边不动,点A竖直向上运动,∠A越来越小,∠B、∠C越来越大.若∠A减小α度,∠B增加β度,∠C增加γ度,则α、β、γ三者之间的等量关系是.20.(3分)如图,将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,再将△DCE沿CD对折得到△DCF,若DF刚好垂直于BC,则∠A的大小为°.三、解答题(共40分21.(6分)如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.22.(6分)若把一个多边形剪去一个角,剩余的部分内角和为1440°,那么原多边形有几条边?23.(6分)如图,已知四边形ABCD中,∠BAF,∠DAE是与∠BAD相邻的外角,且∠BAD:∠BAF=2:3,且∠B+∠D=190°,求∠C的度数.24.(6分)如图,在△ABC中,M是BC中点,求证:AM+BM>(AB+AC).25.(6分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?26.(10分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB的大小关系,并证明你的结论.四、附加题(共10分)27.观察下列各图:(1)第1个图中有1个三角形,第2个图中有3个三角形,第3个图中有6个三角形,第4个图中有个三角形,…,根据这个规律可知第n个图中有个三角形(用含正整数n的式子表示);(2)问在上述图形中是否存在这样的一个图形,该图形中共有25个三角形?若存在,请画出图形;若不存在请通过具体计算说明理由;(3)在下图中,点B是线段AC的中点,D为AC延长线上的一个动点,记△PDA的面积为S1,△PDB的面积为S2,△PDC的面积为S3.试探索S1、S2、S3之间的数量关系,并说明理由.参考答案一、选择题(每小题3分,共30分)1.(3分)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③解:①、②正确;而对于三角形三条高:锐角三角形的三条高在三角形的内部;直角三角形有两条高在边上;钝角三角形有两条高在外部,故③错误.故选:B.2.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴△ABC是直角三角形,∴②正确;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴③正确;④∵∠A=∠B=∠C,∴∠C=2∠A=2∠B,∵∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,∴△ABC是直角三角形,∴④正确;故选:D.3.(3分)(n+1)边形的内角和比n边形的内角和大()A.180°B.360°C.n×180°D.n×360°解:(n+1)边形的内角和:180°×(n+1﹣2)=180°(n﹣1),n边形的内角和180°×(n﹣2),(n+1)边形的内角和比n边形的内角和大180°(n﹣1)﹣180°×(n﹣2)=180°,故选:A.4.(3分)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.解:A、B、C均不是高线.故选:D.5.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.6.(3分)如图,小军任意剪了一张钝角三角形纸片(∠A是钝角),他打算用折叠的方法折出∠C的角平分线、AB边上的中线和高线,他能成功折出的是()A.∠C的角平分线和AB边上的中线B.∠C的角平分线和AB边上的高线C.AB边上的中线和高线D.∠C的角平分线、AB边上的中线和高线解:当AC与BC重合时,折痕是∠C的角平分线;当点A与点B重合时,折叠是AB的中垂线,故选:A.7.(3分)下列说法正确的是()A.四边形的内角和大于它的外角和B.三角形中至少有一个内角不小于90°C.一个多边形中,锐角最多有三个D.每一个外角都等于15°的多边形是二十六边形解:A、∵四边形的内角和等于它的外角和,∴选项A不符合题意;B∵三角形中,锐角最多有三个,∴选项B不符合题意;C、∵一个多边形中,锐角最多有三个,∴选项C符合题意;D、∵每一个外角都等于15°的多边形是二十四边形,∴选项D不符合题意;故选:C.8.(3分)如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.40°B.80°C.90°D.140°解:由折叠的性质得:∠D=∠C=40°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+80°,则∠1﹣∠2=80°.故选:B.9.(3分)如图,△ABC的高BD、CE相交于点H,现给出四个判断:(1)∠ABD=∠ACE;(2)∠BHC与∠A互补;(3)∠BHC=∠ABD+∠ACE+∠A;(4)∠ABD+∠ACE+∠BHC+∠CHD=180°.其中错误的个数有()A.0个B.1个C.2个D.3个解:△ABC的高BD、CE相交于点H,(1)∠ABD+∠A=90°,∠ACE+∠A=90°,∴∠ABD=∠ACE,故(1)正确;(2)四边形的一组对角互补,另一组对角互补,故(2)正确;(3)∠HDC=∠A+∠ABD,∠BHC=∠HDC+∠ACE,∴∠BCH=∠A+∠ABD+∠ACE,故(3)正确;(4)∵∠BHC+∠CHD=180°,∠ABD+∠ACE+∠BHC+∠CHD>180°,故(4)错误;故选:B.10.(3分)如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是()A.(m﹣60)°B.(180﹣2m)°C.(2m﹣90)°D.(120﹣m)°解:如图,连接AE.∵△ABC是等边三角形,∴∠C=∠ABC=60°,∵∠ADB=m°,∠BDE=(180﹣2m)°,∴∠ADC=180°﹣m°,∠ADE=180°﹣m°,∴∠ADC=∠ADE,∵AD=AD,DC=DE,∴△ADC≌△ADE(SAS),∴∠C=∠AED=60°,∠DAC=∠DAE,∴∠DEA=∠DBA,∴A,D,E,B四点共圆,∴∠DBE=∠DAE=∠DAC=(m﹣60)°,故选:A.二、填空题(每小题3分,共30分)11.(3分)内角和为5040°的多边形共有405条对角线.解:设内角和为5040°的多边形的边数为n,由多边形内角和定理得:(n﹣2)•180°=5040°,解得:n=30,∴这个多边形所有对角线的条数为:n(n﹣3)=×30×(30﹣3)=405.故答案为:405.12.(3分)在△ABC中,若∠A﹣∠C=25°,∠B﹣∠A=10°,则∠B=75°.解:∵∠A﹣∠C=25°,∠B﹣∠A=10°,∴∠B﹣∠C=35°①,∠A=25°+∠C,∵∠A+∠B+∠C=180°,∴25°+∠C+∠B+∠C=180°,即2∠C+∠B=155°②,②﹣①得,3∠C=120°,解得∠C=40°③,把③代入①得,∠B=75°.故答案为:75°.13.(3分)在△ABC中,如果AB=7cm,AC=9cm,则边BC的取值范围是5<BC<16.解:∵在△ABC中,AB=7cm,AC=9cm,∴9﹣7<BC<9+7,即:5<BC<16,故答案为:5<BC<16.14.(3分)如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A=52°,则∠1+∠2的度数为64°.解:∵∠A=52°,∴∠ABC+∠ACB=128°,∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°,故答案为:64°;15.(3分)如图,在△ABC中,AB=AC,P为线段BC延长线上一点,过P点分别作AB,AC的垂线段PD,PE,过B点作AC的垂线段BF,若PE=3,PD=9,则BF=6.解:连接AP.∵AB=AC,∴S△APB=S△ABC+S△ACP=AC×BF+AC×PE=×AC×(BF+PE),∵S△APB=AB×PD=AC×PD,∴BF+PE=PD.∵PE=3,PD=9,∴BF=9﹣3=6.故答案为:6.16.(3分)△ABC中,∠B=40°,过点A的直线将这个三角形分成两个等腰三角形,则∠C的度数为80°或20°或50°或35°.解:有四种情况:①AD=AC,∵AD=BD,∴∠B=∠BAD=40°,∵AD=AC,∴∠C=∠ADC=∠B+∠BAD=80°,②AC=DC,∵AC=DC,∴∠DAC=∠ADC=∠B+∠BAD=80°,∴∠C=180°﹣∠ADC﹣∠DAC=20°,③AD=DC,∵AD=DC,∴∠C=∠DAC,∵∠ADC=80°,∴∠C=(180°﹣∠ADC)=50°,④AB=BD,AD=DC,∵∠B=40°,AB=BD,∴∠ADB=∠BAD=(180°﹣∠B)=70°,∵AD=DC,∴∠C=∠CAD,∵∠C+∠CAD=∠ADB,∴∠C=∠CAD=70°=35°,故答案为:80°或20°或50°或35°.17.(3分)如图,连接正十边形的对角线AC与BD交于点E,则∠AED=126°.解:正十边形的一个内角为(10﹣2)×180°÷10=144°,∠BAE=[(5﹣2)×180°﹣144°×3]÷2=54°,∠ABE=[(6﹣2)×180°﹣144°×4]÷2=72°,则∠AED=54°+72°=126°.故答案为:126.18.(3分)如图,对面积为a的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2AC,顺次连接A1,B1,C1,得△A1B1C1,则其面积S=19a(用含a的式子表示).解:连接BC1,∵C1A=2CA,∴S△ABC1=2S△ABC,同理:S△A1BC1=2S△ABC1=4S△ABC,∴S△A1AC1=6S△ABC,同理:S△A1BB1=S△CB1C1=6S△ABC,∴S△A1B1C1=19S△ABC=19a,故答案为19a.19.(3分)在△ABC,BC边不动,点A竖直向上运动,∠A越来越小,∠B、∠C越来越大.若∠A减小α度,∠B增加β度,∠C增加γ度,则α、β、γ三者之间的等量关系是α=β+γ.解:∵三角内角和是个定值为180度,∴∠A+∠B+∠C=180°∴∠A越来越小,∠B、∠C越来越大时,∴∠A﹣α+∠B+β+∠C+γ=180°,∴α=β+γ.故答案为:α=β+γ.20.(3分)如图,将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,再将△DCE沿CD对折得到△DCF,若DF刚好垂直于BC,则∠A的大小为45°.解:∵AB=AC,∴∠ABC=∠ACB,∵将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,∴∠A=∠E,∵将△DCE沿CD对折得到△DCF,∴∠E=∠F,∠DCE=∠DCF,∵∠DCE=∠ABC+∠A,∠DCF=∠ACB+∠BCF,∴∠BCF=∠A,∴∠BCF=∠A=∠E=∠F,∵DF⊥BC,∴∠BCF=∠F=45°,∴∠A=45°,故答案为:45°.三、解答题(共40分21.(6分)如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.解:(1)∵BD,CE分别是△ABC的高,∴∠ADB=∠CDB=∠AEC=∠BEC=90°,∴图中有6个直角三角形,分别为△ABD、△CBD、△ACE、△BCE、△OBE、△OCD;(2)图中有与∠2相等的角为∠1,理由如下:∵∠2+∠A=90°,∠1+∠A=90°,∴∠1=∠2;(3)∵∠CDB=90°,∠ACB=65°,∴∠3=90°﹣∠ACB=90°﹣65°=25°,∵∠A=55°,∠ACB=65°,∴∠ABC=180°﹣∠A﹣∠ACB=180°﹣55°﹣65°=60°,∵∠BEC=90°,∴∠4=90°﹣∠ABC=30°,∴∠5=∠BOC=180°﹣∠3﹣∠4=180°﹣25°﹣30°=125°.22.(6分)若把一个多边形剪去一个角,剩余的部分内角和为1440°,那么原多边形有几条边?解:设新多边形是n边形,由多边形内角和公式得(n﹣2)×180°=1440°,解得n=10,原多边形是10﹣1=9,10+1=11,故答案为:9、10或11.23.(6分)如图,已知四边形ABCD中,∠BAF,∠DAE是与∠BAD相邻的外角,且∠BAD:∠BAF=2:3,且∠B+∠D=190°,求∠C的度数.解:∵∠BAD+∠BAF=180,∠BAD:∠BAF=2:3,∴∠BAD=,∵∠C+(∠B+∠D)+∠BAD=360°,∴∠C=360°﹣(∠B+∠D)﹣∠BAD=360°﹣190°﹣72°=98°.24.(6分)如图,在△ABC中,M是BC中点,求证:AM+BM>(AB+AC).【解答】证明:∵M是BC中点,∴CM=BM,∵AM+BM>AB,AM+CM>AC,∴2(AM+BM)>AB+AC,∴AM+BM>(AB+AC).25.(6分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF即是△BED中BD边上的高.(3)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△BED=S△ABC=×60=15;∵BD=5,∴EF=2S△BED÷BD=2×15÷5=6,即点E到BC边的距离为6.26.(10分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB的大小关系,并证明你的结论.【解答】证明:(1)探索实践①在等边△ABC与等边△CDE中AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACD+∠DCM=∠DCM+∠BCE,∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE(2)②如图,作∠BAC的平分线交CP于D,连结BD,∵P是边等边△ABC中AB边的中点∴CP是AB边上的中线,由“等腰三角形的三线合一”性质知,CP是AB的垂直平分线,CP平分∠ACB,∴DB=DA,∠PCB=30°要使DB+DM最小,只要DA+DM最小,即当A,D,M共线时,且AM⊥BC时,AM 最小,此时DB+DM最小③∵∠ACD=∠CAD=∠DCM=∠ECM=30°,CM⊥AM∴DC=DA=DE,DM=EM=DE,∴AM=3ME又∵Rt△CME的边ME上的高与Rt△ACM的边AM上的高均是CM∴S△CME:S△ACM=1:3(2)思维拓展∠AGC=∠AGB理由如下:∵点B关于直线CP的对称点为B',∴BC=CB',∠CB'G=∠CBG,∴AC=BC=B'C∴∠CAB'=∠CB'A,∴∠CAB'=∠CBG,∴点A,点B,点G,点C四点共圆,∴∠AGC=∠ABC=60°,∠AGB=∠ACB=60°,∴∠AGC=∠AGB四、附加题(共10分)27.观察下列各图:(1)第1个图中有1个三角形,第2个图中有3个三角形,第3个图中有6个三角形,第4个图中有10个三角形,…,根据这个规律可知第n个图中有个三角形(用含正整数n的式子表示);(2)问在上述图形中是否存在这样的一个图形,该图形中共有25个三角形?若存在,请画出图形;若不存在请通过具体计算说明理由;(3)在下图中,点B是线段AC的中点,D为AC延长线上的一个动点,记△PDA的面积为S1,△PDB的面积为S2,△PDC的面积为S3.试探索S1、S2、S3之间的数量关系,并说明理由.解:(1)10;;(2)不存在(法一)当n=6时,三角形的个数为;当n=7时,三角形的个数为;所以不存在n使三角形的个数为25.(法二)由=25,得n(n+1)=50,而不存在两个连续整数的乘积为50,所以不存在n使三角形的个数为25.(3)S1+S3=2S2.∵点B是线段AC的中点,∴AB=BC,∴S△PAB=S△PBC,∴S1+S3=2S2.。
人教版八年级数学上册第十一章达标检测卷及参考答案

人教版八年级数学上册第十一章达标检测卷及参考答案一、选择题(每题3分,共30分)1.下面各项都是由三条线段组成的图形,其中是三角形的是()2.下列长度的三条线段,能组成三角形的是()A.3,7,2 B.4,9,6 C.21,13,6 D.9,15,5 3.【教材P5练习T1变式】下面的图中能表示△ABC的BC边上的高的是()4.如图,在△ABC中,若∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°5.【2021·连云港】正五边形的内角和是()A.360°B.540°C.720°D.900°6.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高7.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是() A.10 B.11C.12 D.138.【2021·黔东南州】将一副直角三角尺按如图所示的方式放置,使含30°角的三角尺的直角边和含45°角的三角尺的直角边垂直,则∠1的度数为()A.45°B.60°C.70°D.75°9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,这个规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)10.如图,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.360°C.540°D.720°二、填空题(每题3分,共24分)11.人站在晃动的公共汽车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了______________________________.12.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画________个三角形.13.【2021·大庆】三个数3,1-a,1-2a在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a的取值范围为________.14.如图是一台起重机的工作简图,前后两次吊杆位置OP1,OP2与线绳的夹角分别是30°和70°,则吊杆前后两次的夹角∠P1OP2=________.15.如图,在Rt△ABC中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD是AC边上的高,则BD的长为________cm.16.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,且∠ABC与∠ACB的度数之比为3:4,则∠ADC=________,∠CBE=________.17.【教材P28复习题T4改编】如果一个多边形从一个顶点出发可以画7条对角线,那么这个多边形的内角和为________.18.如图,D,E,F分别是△ABC的边AB,BC,AC的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,求∠ECD的度数.20.如图,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABD的面积为6,且BD边上的高为3,求BC的长.21.已知a,b,c是△ABC的三边长.(1)若a,b,c满足|a-b|+(b-c)2=0,试判断△ABC的形状;(2)若a,b,c满足(a-b)(b-c)=0,试判断△ABC的形状;(3)化简:|a-b-c|+|b-c-a|+|c-a-b|.22.如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)若CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.23.【教材P25习题T10变式】如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.24.如图①,线段AB与CD相交于点O,连接AD,CB.如图②,在图①的条件下,∠DAB的平分线AP和∠BCD的平分线CP相交于点P,并且AP交CD于点M,CP交AB于点N,试解答下列问题:(1)在图①中,∠A,∠B,∠C,∠D之间的数量关系为______________________;(2)在图②中,若∠D=42°,∠B=38°,试求∠P的度数.25.已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图①,若AB∥ON,则①∠ABO的度数是________.②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图②,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.答案一、1.C 2.B 3.D 4.D 5.B 6.C7.C 8.D 9.B10.B 点拨:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.二、11.三角形具有稳定性12.1013.-3<a <-2 14.40°15.6013 点拨:由等面积法可知AB ·BC =BD ·AC ,所以BD =AB ·BC AC =12×513=6013(cm).16.80°;10° 17.1 440°18.2 点拨:∵E 为BC 的中点,∴S △ABE =S △ACE =12S △ABC =3.∵AG :GE =2:1,△BGA 与△BEG 为同高三角形, ∴S △BGA :S △BEG =21,∴S △BGA =2.又∵D 为AB 的中点,∴S 1=12S △BGA =1.同理得S 2=1, ∴S 1+S 2=2.三、19.解:∵∠A =60°,∠B =40°,∴∠ACD =∠A +∠B =100°. ∵CE 平分∠ACD , ∴∠ECD =12∠ACD =50°.20.解:(1)如图,AM为△ABD的边BD上的高.(2)∵△ABD的面积为6,BD边上的高为3,∴BD=6×2÷3=4.又∵AD是△ABC的边BC上的中线,∴BC=2BD=8.21.解:(1)∵|a-b|+(b-c)2=0,∴a-b=0且b-c=0.∴a=b=c.∴△ABC为等边三角形.(2)∵(a-b)(b-c)=0,∴a-b=0或b-c=0.∴a=b或b=c.∴△ABC为等腰三角形.(3)∵a,b,c是△ABC的三边长,∴a-b-c<0,b-c-a<0,c-a-b<0.∴原式=-a+b+c-b+c+a-c+a+b=a+b+c.22.解:(1)在△ABC中,∵BD是AC边上的高,∴∠ADB=∠BDC=90°.又∵∠A=70°,∴∠ABD=180°-∠ADB-∠A=180°-90°-70°=20°.(2)∵∠BEC=∠BDC+∠DCE,∠BEC=118°,∠BDC=90°,∴∠DCE=28°.又∵CE平分∠ACB,∴∠DCB=2∠DCE=2×28°=56°.∴∠DBC=180°-∠BDC-∠DCB=180°-90°-56°=34°.∴∠ABC=∠ABD+∠DBC=20°+34°=54°.23.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°.∴∠BCF=60°.∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF∥AB,∴∠A+∠AFC=180°.∴∠AFC=180°-120°=60°.∴∠AFC=∠FCD.∴AF∥CD.24.解:(1)∠A+∠D=∠B+∠C(2)根据(1)可知,∠1+∠2+∠D=∠3+∠4+∠B.同理,∠1+∠D=∠3+∠P.∵AP,CP分别是∠DAB和∠BCD的平分线,∴∠1=∠2,∠3=∠4.∴2∠1+∠D=2∠3+∠B.而2∠1+2∠D=2∠3+2∠P,∴2∠P=∠B+∠D.∴∠P=12(∠B+∠D)=12(38°+42°)=40°.25.解:(1)①20°②120;60(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20.若∠BAD=∠BDA,则x=35.若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,由题易知∠ABE=110°,因为三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学第十一章检测卷
一、选择题(每小题3分,共36分)
1.如果三角形的两边长分别为2和7,其周长为偶数,则第三边长为()
A.3
B.6
C.7
D.8
2.下列说法:①△ABC的顶点A就是∠A,②三角形一边的对角也是另外两边的夹角;
③三角形的中线就是一顶点与它对边中点连接的线段; ④三角形的角平分线就是三角形内角的平分线,其中正确的说法是()
A.①②③④
B.②③④
C.②③
D.②④
3.一个三角形的三边分别为3,5,x,则x的取值范围是()
A.x>2
B.x<5
C.3<x<5
D.2<x<8
4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.都有可能
5.如图所示,∠B+∠C=90°,则△ABC的形状是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形
6.如图所示,AD是∠CAE的平分线,∠B=35°,∠DAC=65°,则∠ACD的度数为()
A.25°
B.85°
C.60°
D.95°第5题图第6题图第7题图第8题图
7.如图所示,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C的度数为()
A.35°
B.40°
C.70°
D.80°
8.如图所示,在△ABC中,∠B=50°,∠C=60°,点D是BC边上的任意一点,DE⊥AB 于E,DF⊥AC于F,则∠EDF的度数为()
A.80°
B.110°
C.130°
D.140°
9.若一个多边形的内角和是1080°,则这个多边形的边数为()
A.6
B.7
C.8
D.10
10.一幅美丽的图案,在菜个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为()
A.正三角形
B.正四边形
C.正五边形
D.正六边形
11.已知一个三角形的三条边长均为正整数若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形个数为()
A.4
B.6
C.8
D.10
12.如图,过正五边形BCDE的顶点B作直线1∥AC,则∠1的度数为()
A.36°
B.45°
C.55°
D.60°
二、填空题(每空2分,共16分)
1.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC 的度数为.
2.如图,AD,AE分别是△ABC的中线和高,BD=3cm,AE=4cm,则△ABC的面积为
.
第1题图第2题图第3题图第4题图
3.如图所示,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=.
4.如图所示,在四边形ABCD中,若∠A=∠C=90°,∠B=62°,则∠D的度数为.
5.一个多边形的每个外角都相等,且比它的内角小140°,则这个多边形是边形.
6.如图所示,BE,CD为两条角平分线,∠ABC=∠ACB,图中与∠1相等的角有
个.
7.如图所示,直角△ABC中,∠ABC=90°,AB=5cm,BC=12cm,AC=3cm,若BD 是AC边上的高,则BD的长为cm.
第6题图第7题图8.如果一个正多边形的一个外角是36°那么该正多边形的边数为.
三、作图题(共12分)
画出图中的每个多边形的所有对角线.
四、解答题(共56分)
1.(6分)小颖要制作一个三角形木架,现有两根长度为8cm和5cm的木棒,如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?
2.(6分)如图所示,AF,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,求∠DAF的度数.
3.(6分)如图所示,AD是△ABC的边BC的中线,已知AB=5cm,AC=3cm,求△ABD
C
B
E D
C
B
A
C D
A
F
E
B
D
A
和△ACD的周长之差.
4.(6分)如图所示,AD是△ABC的角平分线,E是BC延长线上一点,∠EAC=∠B.
∠ADE与∠DAE相等吗?为什么?
5.(6分)如图所示,已知在△ABC中,∠ABC和∠ACB的平分线BD和CE相交于点I, 且∠A=70°,求∠BIC的度数。
6.(6分)如图所示O在五边形ABCDE的边AB上,连接OC,OD,OE,可以得到几个三角形?它与边数有何关系?
7.(6分)如果一个多边形的每个内角都相等,它的一个外角等于一个内角的,求这个多边形的边数。
8.(6分)如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB 的度数。
9.(8分)如图所示,AD是△ABC的中线,DE是△ADC的中线、EF是△DEC的中线,FG 是△EFC的中线。
(1)△ABD与△ADC的面积有何关系?请说明理由。
(2)若△GFC的面积S=1cm,求△ABC的面积.
参考答案一.1.C 2.C 3.D 4.C 5.C 6.B
7.C 8.B 9.C 10.B 11.D 12.A
二、1.25° 2.12cm2 3.120° 4.118° 5.正十八 6.3 7.
13
60
8.10
三、略
四、1.小颖有9种选法,第三根木棒的长度可以是4cm,5cm, 6cm, 7cm, 8cm, 9cm, 10cm, 11cm, 12cm
2.因为AF⊥BC,所以∠AFC=90°,则∠CAF=90°-∠C=90°-76°=14°,又因为AD为∠BAC的角平分线,所以∠DAC=
2
1∠BAC=
2
1×(180°-36°-76°)=34°.所以∠DAF=∠DAC -∠CAF=34°-14°=20°
3.因为AD为△ABC的中线,所以BD=CD,所以△ABD与△ACD的周长之差为:
(AB+BD+AD)-(AC+CD+AD)=AB-AC=5-3=2(cm)
4.相等.因为AD是△ABC的角平分线,所以∠BAD=∠CAD,∠ADE=180°-∠ADB=∠B+∠BAD.又因为∠EAC=∠B,所以∠DAE=∠CAE+∠CAD=∠B+∠BAD=∠ADE
5.由题意知∠BIC是△CDI的外角,所以∠BIC=∠IDC+∠ICD.又因为∠IDC是△ADB的外角,所以∠IDC=∠A+∠ABD,所以∠BIC=∠A+∠ICD+∠ABD
又因为∠ABC和∠ACB的平分线BD和CE相交于点I,所以∠BIC=∠A+∠ICD+∠ABD
=70°+
2
1(∠ABC+∠ACB)=70°+
2
1×(180°-70°)=125°.
6.可以得到4个三角形,三角形的个数等于边数减1.
7、由题意知:内角十外角=180度,即
3
5倍的内角等于180°,解得内角为108°,外角为72°.由多边形外角和为360°得边数为5.
8.∵∠D+∠C+∠DAB+∠ABC =360°,∠D+∠C=220° ∴∠DAB+∠ABC =360°-220°=140° ∵∠1=∠2,∠3=∠4,∴∠2+∠3=70° ∴∠AOB =180°-70°=110°
9.(1)相等△ABD 和△ADC 的底边分别为BD ,DC ,且相等,而且它们的高相同,两个三角形等底等高,因此面积相等.
(2)由(1)可知三角形的中线等分三角形的面积,S △GFC=16
1S △ABC =1,所以△ABC 的面积
为16cm 2.。