第六章 黑油模型(半隐式、全隐式和IMPIMS方法)

合集下载

第六章 黑油模型(半隐式、全隐式和IMPIMS方法)

第六章 黑油模型(半隐式、全隐式和IMPIMS方法)
第六章 黑油模型(半隐式、全隐式和 IMPIMS方法)
• 半隐式方法 • 全隐式方法 • 隐式压力隐式饱和度方法
第一节 半隐式方法
一、数学模型 1. 假设条件 1) 符合达西渗流定律 2) 等温渗流 3) 油气水三相和油气水三组分,油气相之间有质量 交换,即气组分不仅存在于气相中,而且存在于油相; 但油相和水相之间没有质量交换 4) 油相和气相随压力变化而发生相态变化 5) 岩石和流体均可压缩 6) 油藏非均质和各向异性 7) 考虑毛管力和重力
2. 组分质量守恒方程 • 油组分
kk ro (∇ p o − ρ g ∇ D ) + q o = ∂ (φ ρ o S o ) ∇ ⋅ ρo ∂t µo
o
(1)
• 气组分 kkrg kkro ρ ρ g∇D)+∇⋅ ρ ρ g∇D) (∇Pg − (∇po − ∇⋅ µg µo
g g gd o
(2)
∂ ∂ +qg = φ ρg Sg + φ ρgd Sg ∂t ∂t g cm3 ; 式中ρgd—溶解气密度 ,
(
)
(
)
• 水组分
w w w
Rso ρ gsc ρ gd = Bo
(3)
kk rw ∇ ⋅ ρ (∇ P w − ρ g ∇ D ) + q w = ∂ (φ ρ S w ) ∂t µw
∆Τw
n +1
∂Τw ∂Ρcow ∂Τw n n n +∆ δΡ∆Φ w − ∆Τw ∆ δS w + ∆ δS w ∆Φ w ∂Ρ ∂S w ∂S w
[∆(Ρ
n +1
− Ρcow
n+1
)− ρ

黑油模型解剖

黑油模型解剖

1 黑油模型理论基础1.1 基本假设(1)油藏中渗流是等温渗流;(2)油藏中有油、气、水三相,各相流体的渗流均符合达西定律; (3)模型考虑油组分、气组分、水组分三组分; (4)气组分在油气相、水气相之间发生质量交换; (5)相平衡瞬间完成;(6)水组分只存在于水相中,与油气相之间没有质量交换; (7)油藏岩石微可压缩,各向异性;(8)油藏流体可压缩,且考虑渗流过程中重力、毛管力的影响。

1.2 数学模型()()()()()rw w w w vw w w w ro o o o vo o o o rg so ro g g o o g g o o g sw rw so o sw w w w vg w w go w kk s p gD q B t B kk s p gD q B t B kk R kk p gD p gD B B s R kk R s R s p gD q B t B B B φρμφρμρρμμρφμ⎡⎤⎛⎫∂∇∇-+= ⎪⎢⎥∂⎣⎦⎝⎭⎡⎤⎛⎫∂∇∇-+= ⎪⎢⎥∂⎣⎦⎝⎭⎡⎤⎡⎤∇∇-+∇∇-+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎛⎡⎤∂∇∇-+=++ ⎢⎥∂⎣⎦⎝⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎛⎫⎫⎪ ⎪⎪ ⎪ ⎪⎪⎭⎝⎭⎩(1)辅助方程:1o w g cow o w cgo g o s s s p p p p p p ++=⎫⎪=-⎬⎪=-⎭(2)初始条件:()()()()()()000000,,,,,,,,,,,,,,,t w t w o t o p x y z t p x y z s x y z t s x y z s x y z t s x y z ===⎧=⎪⎪=⎨⎪=⎪⎩(3)边界条件:()()()()0,,,()(,,),,,,,L v v wf wf pn Q x y z t Q t x y z p x y z t p t x y z δδ∂⎧=⎪∂⎪=⎨⎪=⎪⎩(4)2 黑油模型程序整体结构图3 组员及分工4 主程序4.1 主程序主要功能(1)定义运算所需数组;(2)需要调用和生成的文件的打开和关闭;(3)通过调用子程序给模型赋基础数据和初始数据;(4)通过调用子程序给模型的运行确定各种控制;(5)在运行过程中反复读入井点数据(包括产量和注入量、井底流压、流动指数等)以及打印输出控制码;(6)分层计算油气水地质储量;(7)进行井点产量项处理和形成压力矩阵;(8)通过调用子程序求解压力方程;(9)显式计算饱和度;(10)进行过泡点处理;(11)根据压力和饱和度增量控制,自动调节计算时间步长;(12)未饱和网格块饱和度计算;(13)变泡点处理;(14)在每一运算时间步末进行物质平衡检验;(15)打印油井、水井、气井的分层报告和分井报告;(16)通过调用子程序进行计算结果打印输出和形成文件;(17)重启动运行方式的选择和重启动文件的生成和调用;(18)运算终止的控制及错误信息的提示。

CMG油气藏数值模拟软件简介

CMG油气藏数值模拟软件简介

CMG 油气藏数值模拟软件简介该软件能完成油藏开发方案设计即开发方案概念设计、详细开发方案设计和开发方案调整等工作。

主要包括:储量计算、油气井产能评价、开发层系划分、井网形式、井距、生产史拟合及地质模型修正、开发指标预测、开发方案指标的优选。

软件包括以下功能模块:(1)地质建模:主要通过测井解释成果、地震解释成果、储层地质及实验分析构造气藏三维地质模型,建立油藏网格属性。

(2)组分模型(用于凝析气藏和稠油热采)(3)黑油模型(用于油藏和一般气藏模拟计算)(4)相态计算模块(5)后处理模块。

是一个考虑重力及毛细管力的三相黑油模拟软件,网络系统可采用直角坐标,径向坐标,变深度/变厚度坐标,在任何网络系统中.都可建立两维或三维模型.在处理气相的出现及消失情况时,程序采用了变量替换方法。

一些主要特征和功能为:(1)、自适应隐式方法& nbspIMEX可以在显示,全隐式以及自适应隐式三种方式下运行。

在大多数情况下,只有很少一部分网格需要采用全隐式求解,而大部分网格都可采用显式方法求解.自适应隐式方法正是适合于这种情况的解法,并且在井附近以及层状油藏的薄层中,开采时会产生高速流动的锥进问题,采用自适应隐式处理这类问题是很有效的。

采用自适应隐式选项可节省三分之一到一半的运行时间。

计算时可采用和全隐式方法同样大的时间步长.用户可以指定采用全隐式方法计算的网格,可根据用户确定的界限或矩阵转换临界值,动态地选择采用全隐式计算的网络网格。

(2)、双孔/双渗双孔隙度选项允许采用两种方法对基岩模型进行离散化处理,其中一种为嵌套格式,成为“多重内部作用连续域”(MINC)方法,另一种为层状格式,称作“子区域”方法。

双孔隙模型对裂缝油藏进行了理想化的近似处理,认为裂隙油藏由两部分组成:主要孔隙度和次要孔隙度,主要孔隙度(基岩)代表岩块中的微小粒间孔隙,次要孔隙度(裂缝)由裂缝,通道和溶洞组成。

双孔隙模型将油藏分为两个连续域,裂隙是流体流动的主要通道,只具有很小的储集性能;而基岩具有较低的流体传导能力,但具有较大的储存能力。

油藏数值模拟

油藏数值模拟

名词解释:1油藏模拟:是用油藏模型来研究油藏的各种物理性质和流体在其中的流动规律,以便更好地认识油层,作出正确的评价,确定合理的开发方案和提高采收率的措施。

2 数值模型:用离散化方法将偏微分方程组转化为有限查分方程组,将其非线性系数线性化,得到线性方程组,然后求解。

3 油藏数值模拟:用数值方法求解油藏数学方程组,就是油藏数值模拟。

4 动态预测:在历史拟合的基础上对未来的开发指标进行计算。

5 黑油模型:黑油模型是简化的组份模型。

烃类系统只考虑两个组份:“油”组份是地层油经微分蒸发后在大气压的残存液(即黑油),而“气”组份是剩余的流体。

水相与其他两相不发生质量转移;气可以从油中出入,但油不能汽化为气相。

6 适定问题:一个问题的解存在,唯一且稳定时就称问题为适定问题。

7 三相流模型:描述有三相流体同时流动的数学模型。

8 三维模型:描述油藏流体沿三个方向上同时发生流动的数学模型。

9 气藏模型:描述天然气气藏的数学模型,有的气藏只有天然气的存在,而有的气藏不仅有天然气存在还有水存在。

10 离散化:离散化就是把整体分割为若干单元来处理。

11 有限差分法:有限差分法是对网格范围内的各点求解。

即原先表示连续的、足够光滑函数的偏微分方程,被一套对每个离散点的、与该点近似解有关的代数方程组所取代。

12 块中心网格:用网格分割成小块的中心来表示小块坐标。

13 一阶向前查商:对于函数p(x,t) ,x p p x p ii ∆-=∂∂+1 为一阶向前查商。

14 截断误差:当微商用查商表示时,把泰勒级数的余项截断,由于截断了泰勒级数的余项所产生的误差称为截断误差。

15 网格节点:网格的交点称为节点。

16 显式处理:在n+1时刻求解方程组时,若其系数直接用n 时刻的值,为显式处理。

17不均匀网格:为了模拟油藏的实际情况,划分网格时,在靠近井的附近网格取密一些,而沿径相外逐渐稀疏,这种网格称为不均匀网格。

18 IMPES 方法:是指隐式求解压力方程,显式求解饱和度方法。

油藏数值模拟 第六章 黑油模型及其应用

油藏数值模拟  第六章 黑油模型及其应用

1第六章黑油模型及其应用2第一节黑油模型及求解思路一、假设条件1、考虑油、气、水三相2、考虑油组分、气组分、水组分三个组分3、气组分在油、气相中要发生质量交换压力增加时,气组分可溶解在油相中(溶解气)压力降低时,气组分可从油相中分离出来(自由气)4、水相与气、油两相间无质量交换5、考虑毛管力、重力;油、气、水、岩石均可压缩6、油藏温度不变3二、数学模型1. 组分质量守恒方程()()⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛+∂∂=⎥⎦⎤⎢⎣⎡∇∇⋅∇⎥⎦⎤⎢⎣⎡∇−∇⋅∇−B S R B S t q D g p B kk R D g p B kk o o ggo so so gv o oo rog g g g rg φρμρμ++()⎟⎟⎠⎞⎜⎜⎝⎛∂∂=+⎥⎦⎤⎢⎣⎡∇−∇⋅∇ooov o o o o ro B S t D g p B kk q φρμ式中R so —气油比(1)(2)(3)油组分水组分气组分()⎟⎟⎠⎞⎜⎜⎝⎛∂∂=+⎥⎦⎤⎢⎣⎡∇−∇⋅∇wwwv w w w w rw B S t D g p B kk q φρμ4辅助方程:1=++s s s w o g pp pp p p ogcgow o cow −=−=(4)(5)(6)未知量:g w o g w o s s s p p p 、、、、、2.未知量和辅助方程分析53. 初始条件和边界条件假设边界不规则的油藏中有若干口井生产或注入,求油藏中的压力和饱和度分布。

I.C 0xxL yL y()()(),,0,,00,,0O Oi w wi o oi P x y P S x y S t S x y S =⎫⎪=>⎬⎪=⎭B.C 1) 外边界封闭2)内边界>=∂∂Γt xP •定产•定流压P iwf P wft>0()ηζδ−−⋅=y x Q Q v v ,0>t61.隐式求压力1利用毛管压力消去则未知量减少为2利用饱和度归一化方程将油、气、水方程进行适当的组合和化简,最后得到一个只含有油相压力Po 的方程,称为压力方程。

油藏数值模拟

油藏数值模拟

������������ ������������
= φl t
二阶微分方程三种基本类型为: (抛物型) 、 (椭圆型)和(双曲 型) 。 二维 问题离散化后为一组差分 方程, 其矩阵 A 的形式取决于 (网 格排列)格式。 G 根据每一组份的质量守恒建立的 渗流数学模型称为 (组份) 模型。 H 黑油模型是简化的(组份模型), 烃类系统只考虑(两个)组份。 黑油模型中(水相)与其它两相 不发生(质量转移) ; (气)可以 从(油)中出入,但(油)不能 汽化为(气)相。 混合外边界条件的表达式为
∂2p ∂ x2
∆x i
=
p i+1 −2p i +p i −1 ∆x 2
为二阶
H
I J
中心差商。 二维模型:描述油藏流体沿二个 方向上同时发生流动,而其第三 个方向上没有任何变化的数学 模型。 黑油模型: 黑油模型是简化的组 份模型。烃类系统只考虑两个组 份: “油”组份是地层油经微分 蒸发后在大气压下的残存液(即 黑油) ,而“气”组份是剩余的 流体。水相与其它两相不发生质 量转移;气可以从油中出入,但 油不能汽化为气相。 IMPES 方法: 是指隐式求解压力 方程,显式求解饱和度方法。 计算机模型:将各种数学模型的 计算方法编制成计算机程序,以 便用计算机进行计算得到需要 的各种结果。 交替对角排列格式:这种排列格 式实际上为交替排列和对角排 列格式的组合。
p i+1 −2p i +p i −1 ∆x 2
为(二阶中心)
差商。 对于一个线性代数方程组得稀 疏,系统未知数(编号和排列方 法) , 会明显地影响到直接求解法 的计算量与储存量。 定解条件一般包括(边界条件) 和(初始条件)前者包括(内边 界条件)和(外边界条件) 。 定压外边界条件的表达式为 p ab = f1 x,y,z,t 定井 底压力内边界条件的表达 式为p rw ,t = 常数 定流量外边界条件的表达式为

黑油模型

黑油模型

黑油模型
黑油模型(Black Oil Model)是描述含有非挥发组分的黑油和挥发性组分
的原油溶解气两个系统在油藏中运动规律的数学模型。

也称低挥发油双组分模型。

黑油只是为了阐述油、气、水三相流体在油藏中的渗流规律而假设的一系列情况下的油藏模型。

这种模型不是指“石油”本身在物理性质和化学性质上有什么不同,而是指“油”在渗流规律和与油藏其它性质上的不同。

它只是通过物理、数学的手段人造的一个模型,便于进行油藏的模拟开发。

模型中烃类系统可用两组分描述:⑴非挥发组分(黑油);⑵挥发组分,即溶于油中的气。

黑油模型也称低挥发油双组分模型。

油藏数值模拟黑油模型差分方程四种解法

油藏数值模拟黑油模型差分方程四种解法

IMPES方法原理方法:处理过程:方程左边系数(毛管力和传导系数)以显示形式取值;求解过程:压力和饱和度求解交替进行(先求压力再求饱和度)。

求解过程(差分方程线性化过程):对于油气水三相的方程组:两两(3)压力和饱和度联立求解。

求解步骤:(1)方程的系数以隐式的形式展开,对方程的求解过程中,进行若干次迭代:第L+1次迭代的系数是以L次为基础进行泰勒展开,取一阶小项,忽略掉二阶小项,获得线性方程组,联立起来求压力和饱和度(相当于一个半隐式的步骤)。

(2)重复这个迭代过程,满足精度的要求,进入下一时间步。

(3)重复上述步骤,直到模拟时间结束。

IMPIMS方法基本原理:(1)毛管压力和传导系数的取值确定:以显式确定压力,以隐式确定饱和度,显式和隐式的取值过程交替进行;(2)求解压力和饱和度均以隐式迭代求得;(3)压力和饱和度的求解交替进行。

求解步骤:一、求解压力,与IMPES求压力的过程一样:对于油气水三相的方程组:(1)方程左边系数(毛管压力和传导系数等)以显式的形式取值(全都写成n方),将P n+1在P n处做泰勒展开,取一阶小项,即P n+1=P n+δp。

(2)方程右边以两相或三相的形式对求解变量进行分步微分展开(求解变量:三相:δp、δSw、δSg ||两相:δp、δSw、δPb(饱和压力))。

(3)将左右两边的表达式合并在一起,把与求解变量有关的内容移到等号左边,把常数项移动到等号右边,形成一个与三个求解变量有关的线性方程组。

(4)求解这个线性方程组。

考虑到δSw和δX只和本节点有关,消去这两项,得到一个与压力有关的方程,对压力用隐式求解。

得到δp。

二、求解饱和度,执行一遍半隐式方法,得到油气水三相方程。

对于油气水三相的方程组:(1)对方程左边中的相毛管压力和传导系数以隐式形势取值,以两相或三相的形式(三相以δp、δSw、δSg ||两相以δp、δSw、δPb)对毛管压力和传导系数进行处理:以n时刻为基准对n+1时刻的变量进行泰勒级数展开,取一阶小项,忽略掉两个微小项的乘积项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∂Τo δΡ∆Φ n ∂Ρ
(11)
式中 ∆Φ n = ∆Ρ n − ρ on g∆D
2.考虑毛管压力项Pc和流动系数项T的半隐式气组分和 水组分方程的左端项 • 气组分方程(8)的左端项 ∂Ρcgo n+1 n Ρcgo = Ρcgo + δS g ∂S g 代入方程(8)的左端项后,略去二阶小量后得: • 自由气
n n n
Τ 上式中, 0 , Ρ , ρ 0 为已知,变量为 δΡ, δS w , δS g 忽略二阶小量得
∆Τo
n+1
(∆Ρ
n +1
− ρ on g∆D ) = ∆Τo ∆Φ n + ∆Τo ∆δΡ + ∆
n n
∂Τ ∂Τ + ∆ o δS w ∆Φ n + ∆ o δS g ∆Φ(2)
∂ ∂ +qg = φ ρg Sg + φ ρgd Sg ∂t ∂t g cm3 ; 式中ρgd—溶解气密度 ,
(
)
(
)
• 水组分
w w w
Rso ρ gsc ρ gd = Bo
(3)
kk rw ∇ ⋅ ρ (∇ P w − ρ g ∇ D ) + q w = ∂ (φ ρ S w ) ∂t µw
∂Τo ∂Τ ∂Τ δΡ + o δS w + o δS g ∂Ρ ∂S w ∂S g
(10)
∂Τo kρ o ∂k ro = µ o ∂S w ∂S w ∂Τo kρ o ∂k ro = ∂S g µ o ∂S g
将(10)式代入(7)式的左端项
n ∂Τo ∂Τo ∂Τo Τo + ∆ δΡ + δS w + δS g [∆(Ρ n + δΡ ) − ρ o g∆D ] ∂Ρ ∂S w ∂S g ∂Τ ∂Τ n n n = ∆Τo ∆Ρ n + ∆Τo ∆δΡ − ∆Τo ρ on g∆D + ∆ o δΡ∆Ρ n + ∆ o δΡ∆δΡ ∂Ρ ∂Ρ ∂Τ ∂Τ ∂Τ ∂Τ n n − ∆ o δΡρ o g∆D + ∆ o δS w ∆Ρ n + ∆ o δS w ∆δΡ − ∆ o δS w ρ o g∆D ∂Ρ ∂S w ∂S w ∂S w +∆ ∂Τo ∂Τ ∂Τ n δS g ∆Ρ n + ∆ o δS g ∆δΡ − ∆ o δS g ρ o g∆D ∂S g ∂S g ∂S g
µ on+1 = f (Ρ n )
n +1
k ro = f S w , S g
令 而 所以 式中
δΤo =
T
n +1 o
Τo
∂Τo ∂Τ ∂Τ δ Ρ + o δ S w + o δS g ∂Ρ ∂S w ∂S g
= Τo + δΤo
n
(
n +1
n+1
)
弱非线性 强非线性
n = To +
∂Τo kk ro ∂ρ o = ∂Ρ µ o ∂Ρ
[
]
[
]
• 水组分方程(9)
VB δ (φρ w S w ) ∆t V n n n ∂ρ w δP = B ρ w S wδφ + φ n ρ w δS w + ρ n S w ∆t ∂Ρ VB n n 0 n n ∂ρ w δΡ ρ w S w cφ φ δP + φ n ρ w δS w + φ n S w ∆t ∂Ρ = C w1δΡ + C w 2δS w =
第六章 黑油模型(半隐式、全隐式和 IMPIMS方法)
• 半隐式方法 • 全隐式方法 • 隐式压力隐式饱和度方法
第一节 半隐式方法
一、数学模型 1. 假设条件 1) 符合达西渗流定律 2) 等温渗流 3) 油气水三相和油气水三组分,油气相之间有质量 交换,即气组分不仅存在于气相中,而且存在于油相; 但油相和水相之间没有质量交换 4) 油相和气相随压力变化而发生相态变化 5) 岩石和流体均可压缩 6) 油藏非均质和各向异性 7) 考虑毛管力和重力
{[
] [
]}
]
(8)
• 水组分
∆Τw ∆Ρ0
n +1 n +1
− ∆Τw ∆Ρcow
n +1
n +1
− ∆Τw
n +1
VB ρ g∆D = (φρ w S w )n+1 − (φρ w S w )n (9) ∆t
n w
[
(7)、(8)、(9)的未知数为Po、Sw、Sg
1.考虑流动系数T的半隐式油组分差分方程(7)的左端项 kk ro n+1 n+1 Τo = ( ρ o ) µo n +1 中非线性 ρ o = f (Ρ n+1 ) 其中
n +1 n +1
∆t
+ ∆Τg ∆Ρ0
n +1
n +1
+ ∆Τg ∆Ρcgo
n +1
n +1
n − ∆Τgd ρ on g∆D − ∆Τg ρ g g∆D n +1 n +1
VB (φρ gd S o )n+1 − (φρ gd S o )n + (φρ g S g )n+1 − (φρ g S g )n = ∆t
∆Τg +∆
n+1
[∆(Ρ
n+1
+ Ρcgo
n
n+1
)− ρ
n
n g
g∆D = ∆Τg ∆Φg + ∆Τg ∆δΡ
n n n
]
∂Τg ∂Ρ
δΡ∆Φg + ∆Τg ∆
∂Ρcgo ∂S g
δS g + ∆
∂Τg ∂S g
δS g ∆Φg
(12)
n
式中 ∆Φ g n = ∆(Ρ n + Ρcgo n ) − ρ g n g∆D • 溶解气 ∆Τgd n+1 (∆Ρ n+1 − ρ o n g∆D ) = ∆Τgd n ∆Φ n + ∆Τgd n ∆δΡ
(23)
Rw = − ∆ T w ∆ Φ w
n n
5. 一维情况下,(21)~(23)式的展开式 • 油组分 Toin+ 1 (δPi+1 − δPi ) + Toin− 1 (δPi−1 − δPi )
2 2
∂To ∂To n n + (Φ i+1 − Φ i )δPi+ 1 + (Φ in−1 − Φ in )δPi− 1 2 2 ∂P i+ 12 ∂P i− 12 ∂To + ∂S w ∂To + ∂S g = Roi ∂To n n (Φ i+1 − Φ i )δS wi+ 1 + ∂S 2 i+ 1 2 w ∂To n n (Φ i+1 − Φ i )δS 1 + gi + ∂S 2 i+ 12 g (Φ in−1 − Φ in )δS wi− 1 2 i− 12 (Φ in−1 − Φ in )δS 1 gi − 2 i− 1 2
∆Τw
n +1
∂Τw ∂Ρcow ∂Τw n n n +∆ δΡ∆Φ w − ∆Τw ∆ δS w + ∆ δS w ∆Φ w ∂Ρ ∂S w ∂S w
[∆(Ρ
n +1
− Ρcow
n+1
)− ρ
n w
g∆D = ∆Τw ∆Φ w + ∆Τw ∆δΡ
n n n
]
(14)
式中
∆Φ w = ∆ Ρ n − Ρcow − ρ w g∆D
0 ≤ x ≤ Lx 0 ≤ y ≤ Ly 0 ≤ z ≤ Lz
5. 边界条件 • 外边界 1) 定压外边界
P Γ = Pe t>0
2)封闭外边界
∂P ∂n = 0
Γ
t > 0
•内边界 •定产 Qv = Qv ⋅ δ (x − ζ , y − η , z − θ ) 式中δ点源函数 δ=0 网格中无井 δ=1 网格中有井 •定井底流压 Pwf Piwf
n n n
(
)
VB (φρ 0 S 0 )n+1 − (φρ 0 S 0 )n = VB δ (φρ 0 S 0 ) = VB ρ 0 n S 0 nδφ + φ n ρ 0 nδS 0 + φ n S 0 n ∂ρ 0 δP ∆t ∆t ∆t ∂P = VB ∆t n n n n ∂ρ 0 ρ 0 S 0 Cφ φδΡ + φ n ρ 0 δS 0 + φ n S 0 δΡ ∂P
• 气组分方程(8) VB [δ (φρ gd S o ) + δ (φρ g S g )] = C g1δp + C g 2δS w + C g 3δS g ∆t 式中
C g1 = Cg 2 VB ∆t
∆t
∂Ρ
∆t
∆t
(16)
∂ρ gd n n 0 n n n n ∂ρ g S o ρ gd φ cφ + S o φ n + S g ρ g φ 0 cφ + φ n S g ∂Ρ ∂p V V n n n n C g 3 = − B φ n ρ gd − φ n ρ g = − B φ n ρ gd + φ n ρ g ∆t ∆t
相关文档
最新文档