计量经济学之模型估计方法的比较

合集下载

四计量经济学联立方程模型的单方程估计方法

四计量经济学联立方程模型的单方程估计方法
• 联立方程计量经济学模型的估计方法分为两大类: 单方程估计方法与系统估计方法。
• 所谓单方程估计方法,指每次只估计模型系统中 的一个方程,依次逐个估计。 • 所谓系统估计方法,指同时对全部方程进行估计, 同时得到所有方程的参数估计量。
• 联立方程模型的单方程估计方法不同于单方程模 型的估计方法 。
⒊间接最小二乘法也是一种工具变量方法
• ILS等价于一种工具变量方法:依次选择X作为 (Y0,X0)的工具变量。
• 数学证明见《计量经济学—方法与应用》(李子 奈编著,清华大学出版社,1992年3月)第126— 128页。 • 估计结果为:
0 X 0 ILS
Y1 0 Y0 1 X0

00
Y00 00 1 X0
Y00 00 X 00 00 X 00 X 0 0
X0 00 00 * 00 X 0 0 X0
四、三种方法的等价性证明
⒈三种单方程估计方法得到的参数估计量
* 0 X0 X0 0 IV
1
Y
0
X 0
X
* 0
0
X 0
1
X
* 0
X 0 Y1

⒋讨论
• 该估计量与OLS估计量的区别是什么?
• 该估计量具有什么统计特性? • (k- k1)工具变量与(g1-1)个内生解释变量的 对应关系是否影响参数估计结果?为什么? • IV是否利用了模型系统中方程之间相关性信息?
• 对于过度识别的方程,可否应用IV ?为什么?
⒊ IV参数估计量
• 方程的矩阵表示为
0 Y1 (Y0 , X 0 ) 1 0

计量经济学简答题整理

计量经济学简答题整理

简答题一、计量经济学的步骤答:选择变量和数学关系式 —— 模型设定 确定变量间的数量关系 —— 估计参数 检验所得结论的可靠性 —— 模型检验 作经济分析和经济预测 —— 模型应用 二、模型检验答:所谓模型检验,就是要对模型和所估计的参数加以评判,判定在理论上是否有意义,在统计上是否有足够的可靠性。

对计量经济模型的检验主要应从以下四方面进行:1、经济意义的检验。

2、统计推断检验。

3、计量经济学检验。

4、模型预测检验。

三、模型应用 答:(1)经济结构分析,是指用已经估计出参数的模型,对所研究的经济关系进行定量的考查,以说明经济变量之间的数量比例关系。

(2)经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值。

(3)政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案作出评价。

(4)检验与发展经济理论,是利用计量经济模型去验证既有经济理论或者提出新的理论。

四、普通方法的思想和它的计算方法答:计量经济学研究的直接目的是确定总体回归函数12,然而能够得到的知识来自总体的若干样本的观测值,要用样本信息建立的样本回归函数尽可能“接近”地去估计总体回归函数。

为此,可以以从不同的角度去确定建立样本回归函数的准则,也就有了估计回归模型参数的多种方法。

例如,用生产该样本概率最大的原则去确定样本回归函数,成为极大似然发展;用估计的剩余平方和的最小的原则确定样本回归函数。

称为最小二乘法则。

为了使样本回归函数尽可能接近总体回归函数,要使样本回归函数估计的与实际的的误差尽量小,即要使剩余项越小越好。

可是作为误差有正有负,其简单代数和∑最小的准则,这就是最小乘准则,即∑∑∑五、简单线性回归模型基本假定 答:(1)对模型和变量的假定,如12i i iY X u ββ=++①假定解释变量x 是确定性变量,是非随机的,这是因为在重复抽样中是取一组固定的值.或者虽然是随机的,但与随机扰动项也是不相关;②假定模型中的变量没有测量误差。

计量经济学的模型方法

计量经济学的模型方法

计量经济学的模型方法本文就计量经济学模型方法的几个哲学基础问题进行讨论。

(一)计量经济学模型的检验与发现一般认为的“只能检验,不能发现”,对于狭义的计量经济学模型方法,即模型检验而言是成立的,但广义的或者说完整的计量经济学模型方法,包括模型设定和模型检验两个阶段,是一个能够作出科学发现的研究过程。

狭义的计量经济学,它以模型估计和模型检为核心内容,说到底,就是回归分析。

那么它显然处于对假说进行检验的位置。

回归分析是一种统计分析方法,它针对已经设定的总体回归模型,按照随机抽样理论抽取样本观测值,采用适当的模型估计方法估计模型参数,并进行严格的检验,得到样本回归函数,从而完成统计分析的全过程。

统计分析给出的只是必要条件而非充分条件。

经济行为中客观存在的经济关系,一定能够通过表征经济行为的数据的统计分析而得到检验。

如果不能通过必要性检验,在表征经济行为的数据是准确的和采用的统计分析方法是正确的前提下,只能质疑所设定的经济关系的合理性和客观性。

但是反过来,如果在统计分析中发现了新的数据之间的统计关系,并不能就此说发现了新的经济行为关系,因为统计关系不是经济关系的充分条件。

毫无疑问,从这个意义上讲,计量经济学模型只能检验理论而不能发现理论。

尽管狭义的计量经济学模型方法的功能是有局限的,只能检验,不能发现,但它仍然是任何科学的经济学研究所不可或缺的。

经济研究以至于整个社会科学研究的一个显著特点是没有实验室,不可能通过实验室的实验来检验理论假设,那么回归分析就成为不可替代的检验方法。

广义的计量经济学,是经济理论、统计学和数学的结合。

计量经济学模型研究的完整框架是:关于经济活动的观察即行为分析关于经济理论的抽象即理论假说建立总体回归模型获取样本观测数据估计模型检验模型应用模型。

我们不妨称之为“广义的计量经济学模型理论与方法”。

大量有价值的应用计量经济学模型的实证经济研究成果,并不是“没有理论的检验”,都是首先提出理论假说,然后进行检验。

计量经济学分析模型

计量经济学分析模型

计量经济学分析模型摘要改革开放以来,我国经济呈迅速而稳定的增长趋势,由于分配机制和收入水平的变化,城镇居民生活水平在达到稳定小康之后,消费结构和消费水平都出现了一些新的特点。

本文旨在对近几年,我国城镇年人均收入变动对年人均各种消费变动的影响进行实证分析。

首先,我们综合了几种关于收入和消费的主要理论观点;本文根据相关的数据统计数据,运用一定的计量经济学的研究方法,进而我们建立了理论模型。

然后,收集了相关的数据,利用EVIEWS软件对计量模型进行了参数估计和检验,并加以修正。

最后,我们对所得的分析结果和影响消费的一些因素作了经济意义的分析,并相应提出一些政策建议。

并找到影响居民消费的主要因素。

关键词:居民消费;城镇居民;回归;Eviews目录摘要 (II)前言 (1)1 问题的提出 (2)2 经济理论陈述 (3)2.1西方经济学中有关理论假说 (3)2.2有关消费结构对居民消费影响的理论 (4)3 相关数据收集 (6)4 计量经济模型的建立 (9)5 模型的求解和检验 (10)5.1计量经济的检验 (10)5.1.1模型的回归分析 (10)5.1.2拟合优度检验: (11)5.1.3 F检验 (11)5.1.4 T检验 (12)5.2 计量修正模型检验: (12)5.2.1 Y与的一元回归 (13)5.2.2拟合优度的检验 (13)5.2.3 F检验 (14)5.2.4 T检验: (15)5.3经济意义的分析: (15)6 政策建议 (16)结论 (17)参考文献 (19)城镇居民消费模型分析前言近年来,改革开放的影响不断加大,人民的物质文化生活水平日益提高,消费水平和消费结构都有了一定的调整,随着城镇化程度的提高,城镇居民消费在整个国民经济中的地位日益重要,因此,对其进行计量经济分析的十分有必要的。

本文旨在对近15年我国城镇年人均收入变动对年人均各种消费变动的影响进行实证分析。

人均收入和消费支出的有关数据进行了计量经济的检验,通过两者之间的动态关系研究发现,居民人均收入与消费支出有长期的均衡关系,据此建立了居民人均收入和消费支出之间的长期均衡模型。

计量经济学知识分享

计量经济学知识分享

计量经济学知识分享
计量经济学是以一定的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系的一门经济学学科。

以下是一些计量经济学的基本知识分享:
1. 变量:计量经济学中常用的变量包括因变量和自变量。

因变量是我们想要解释或预测的变量,而自变量是用来解释因变量的因素。

2. 数据类型:计量经济学中使用的数据类型包括横截面数据、时间序列数据和面板数据。

横截面数据是在同一时间点上收集的不同个体的数据,时间序列数据是在不同时间点上收集的同一个体的数据,面板数据则是在不同时间点上收集的不同个体的数据。

3. 模型建立:计量经济学中常用的模型包括简单线性回归模型、多元线性回归模型、非线性回归模型等。

模型建立的过程包括选择变量、选择模型形式、估计模型参数等。

4. 模型估计:计量经济学中常用的模型估计方法包括最小二乘法、最大似然估计法等。

这些方法用于估计模型中的参数,以使模型能够最好地拟合数据。

5. 模型检验:计量经济学中常用的模型检验方法包括拟合优度检验、假设检验、平稳性检验等。

这些方法用于检验模型的合理性和可靠性。

6. 预测和推断:计量经济学可以用于预测和推断经济变量的未来值。

通过建立合适的模型并使用历史数据进行估计,可以预测未来的经济趋势和变化。

关于计量经济学模型方法的思考

关于计量经济学模型方法的思考

关于计量经济学模型方法的思考关于计量经济学模型方法的思考计量经济学是一门专门研究社会经济变动的学科,它的目的是通过数学分析的手段来研究定量的经济问题。

计量经济学模型以定量的数据作为研究的基础,用数学技术和模型来研究和分析经济现象、经济活动和经济政策。

计量经济学模型方法是一种对经济现象进行分析和预测的工具,它可以把复杂的经济现象转化为简单的数学模型,用定量的数据和数学技术来研究和分析经济现象、经济活动和经济政策。

它是一种高度结构化的研究方法,它要求在建立经济模型时尽可能准确地描述经济现象,并将其转化为可以用数学方法表达的简单形式。

计量经济学模型有三种主要类型:回归模型、静态模型和动态模型。

回归模型是指利用实证数据分析来研究经济现象的一种方法,它的基本原理是根据实证数据来挖掘经济现象之间的关系,并从而推断出经济现象的发展趋势。

静态模型是指用数学工具来分析一个经济体在给定时期内的总体经济情况,以及各种经济政策对经济体总体经济形势的影响,其模型中变量不随时间变化而变化。

动态模型是指用数学工具来分析一个经济体随时间变化的总体经济情况,以及各种经济政策对经济体总体经济形势的影响,其模型中变量随时间变化而变化。

计量经济学模型的建立需要精心的准备,它要求研究者尽可能精确地描述经济现象,并将其转化为可以用数学方法表达的简单形式。

当计量经济学模型建立完成后,研究者可以使用它来分析经济现象,比如对比不同的经济政策对经济形势的影响,预测未来经济发展等。

此外,计量经济学模型也可以用于宏观经济研究,比如运用计量经济学模型来研究经济的循环周期、通货膨胀和失业率等宏观经济指标。

总的来说,计量经济学模型是一种非常有用的经济研究方法,它可以把复杂的经济现象转化为简单的数学模型,用定量的数据和数学技术来研究和分析经济现象、经济活动和经济政策。

计量经济学模型不仅可以用于宏观经济研究,而且也可以用于微观经济研究,例如研究企业经营策略、消费者行为等。

经济学研究中的计量经济学模型评估

经济学研究中的计量经济学模型评估

经济学研究中的计量经济学模型评估在经济学研究中,计量经济学是一种重要的方法论,通过建立和评估经济模型来研究经济现象和政策效果。

计量经济学模型评估是对经济模型有效性和可靠性的评估,它在经济研究中扮演着至关重要的角色。

首先,计量经济学模型评估需要建立适当的经济模型。

构建经济模型时,需要明确关注的经济问题、变量的选择和理论依据。

经济模型应该能够准确地描述经济现象,并具有可估计的参数,为后续的模型评估奠定基础。

接下来,模型评估的一项重要任务是进行模型的参数估计。

参数估计是通过收集和分析可用数据来确定模型中的未知参数。

常见的参数估计方法包括最小二乘估计、极大似然估计等。

参数估计的质量对模型评估的准确性和可靠性至关重要。

在进行模型参数估计之后,评估模型的拟合优度也是计量经济学模型评估的重要任务之一。

拟合优度反映了经济模型对现实世界数据的拟合程度。

常用的拟合优度指标包括R平方、调整R平方等。

较高的拟合优度表明模型能够较好地解释和预测数据,增强了模型评估的可信度。

此外,计量经济学模型评估还需要进行模型的假设检验。

模型假设检验的目的是验证模型的合理性和有效性。

常见的假设检验方法包括t检验、F检验等。

假设检验能够帮助我们判断模型中的变量是否具有统计显著性,从而评估模型的可用性。

除了对模型的参数估计、拟合优度和假设检验进行评估外,计量经济学模型评估还需要考虑模型的稳健性。

稳健性评估是通过对模型进行敏感性分析,检验模型在参数值或某些条件变化时的稳定性和鲁棒性。

稳健性评估可以增加模型评估的可靠性和泛化能力。

此外,计量经济学模型评估还需要进行模型的预测和验证。

模型的预测性能是评估模型性能的重要指标之一。

通过对模型进行预测,可以验证模型的有效性和可靠性。

在模型预测中,可以运用回归分析、时间序列分析等方法进行验证。

最后,计量经济学模型评估还需要进行模型结果的解释和政策分析。

对模型结果的解释是为了从理论角度深入理解模型产生结果的原因和机制。

空间计量模型选择、估计、权重、检验(Spatialeffect)

空间计量模型选择、估计、权重、检验(Spatialeffect)

空间计量模型选择、估计、权重、检验(Spatialeffect)应读者的要求,推送⼀篇关于空间计量⽅⾯的⽂章。

空间计量模型,主要⽤来解决空间被解释变量⾃相关和测量误差⽅⾯的问题;⽽且两个空间事物存在交互效应和异质性,因此,存在常系数回归和变异系数的回归区分。

空间计量经济学是计量经济学的⼀个分⽀,研究的是如何在横截⾯数据和⾯板数据的回归模型中处理空间相互作⽤(空间⾃相关)和空间结构(空间不均匀性)结构分析。

它与地学统计和空间统计学相似。

从某种程度上⽽⾔,空间计量经济学与空间统计学之间的不同和计量经济学与统计学之间的不同⼀样。

由于对其理论上的关⼼以及将计量经济模型应⽤到新兴⼤型编码数据库中的要求,近年来这个领域获得了快速发展。

空间数据分析和建模技巧与GIS的结合,现已⼴泛应⽤于经济政策分析中,尤其是实产和房地产经济[Anselin (1998a), Can(1998)], 环境和资源经济[Bockstael (1996), Geoghegan, Waingerand Bockstael (1997)], 发展经济[Nelson and Gray (1997)].当⾯临空间⾃相关时,标准的计量分析技巧通常会失效,⽽这种情形经常在地理或横截⾯数据集中出现,这也是空间计量得以迅速发展的原因之⼀。

传统的统计理论是⼀种建⽴在独⽴观测值假定基础上的理论。

然⽽,在现实世界中,特别是遇到空间数据问题时,独⽴观测值在现实⽣活中并不是普遍存在的(Getis, 1997)。

对于具有地理空间属性的数据,⼀般认为离的近的变量之间⽐在空间上离的远的变量之间具有更加密切的关系(Anselin & Getis,1992)。

正如著名的Tobler地理学第⼀定律所说:“任何事物之间均相关,⽽离的较近事物总⽐离的较远的事物相关性要⾼。

”(Tobler,1979)地区之间的经济地理⾏为之间⼀般都存在⼀定程度的Spatial Interaction,Spatial Effects):Spatial Dependenceand Spatial Autocorrelation)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 按渐近无偏性比较优劣 除了OLS方法外,所有方法的参数估计量都具有 大样本下渐近无偏性。因而,除了OLS方法最差 外,其它方法无法比较优劣。

• 按渐近有效性比较优劣 OLS 非一致性估计,未利用任何单方程外的信 息; IV 利用了模型系统部分先决变量的数据信息; 2SLS、LIML 利用了模型系统全部先决变量的数 据信息; 3SLS、FIML 利用了模型系统全部先决变量的数 据信息和结构方程相关性信息。

• 小样本估计特性实验结果比较 ⑴无偏性
OLS 2SLS 3SLS(LIML,FIML)
•⑵最小方差性 • LIML 2SLS FIML OLS
•⑶最小均方差性 • OLS LIML 2SLS 3SLS(FIML)

为什么OLS具有最好的最小方差性? 方差的计算公式:
•均方差的计算公式:
•前者反映估计量偏离实验均值的程度;后者反映 估计量偏离真实值的程度。所以尽管OLS具有最小 方差性,但是由于它是有偏的,偏离真实值最为严 重,所以它的最小均方差性仍然是最差的。

二、为什么普通最小二乘法被普遍 采用

⒈ 小样本特性 ⒉ 充分利用样本数据信息 ⒊ 确定性误差传递 ⒋ 样本容量不支持 ⒌ 实际模型的递推(Recurred)结构

三、模型的检验

• 包括单方程检验和方程系统的检验。 • 凡是在单方程模型中必须进行的各项检验,对于
联立方程模型中的结构方程,以及应用2SLS或 3SLS方法过程中的简化式方程,都是适用的和需 要的。 • 模型系统的检验主要包括:

⒉小样本估计特性的Monte Carlo试验
• 参数估计量的大样本特性只是理论上的,实际上 并没有“大样本”,所以,对小样本估计特性进行 比较更有实际意义。
• 而在小样本的情况下,各种参数估计方法的统计 特性无法从数学上进行严格的证明,因而提出了 一种Monte Carlo试验方法。
• Monte Carlo试验方法在经济实验中被广泛采用 。
•Leabharlann • 给定t=1时的所有先决变量的观测值,包括滞后内 生变量,求解方程组,得到内生变量Y1的预测值;
• 对于t=2,只外生给定外生变量的观测值,滞后内 生变量则以前一时期的预测值代替,求解方程组, 得到内生变量Y2的预测值;
• 逐年滚动预测,直至得到t=n时的内生变量Yn的预 测值;
• 求出该滚动预测值与实际观测值的相对误差。

⒈拟合效果检验
• 将样本期的先决变量观测值代入估计后的模型, 求解该模型系统,得到内生变量的估计值。将估 计值与实际观测值进行比较,据此判断模型系统 的拟合效果。
• 模型的求解方法:迭代法。为什么不直接求解? • 常用的判断模型系统拟合效果的检验统计量是“均
方百分比误差”,用RMS表示。

• 当RMSi=0,表示第i个内生变量估计值与观测值 完全拟合。

• 例如,计算:
• 称为冯诺曼比,如果误差在方程之间没有传递,该 比值为0。

⒋样本点间误差传递检验
• 在联立方程模型系统中,由于经济系统的动态性 ,决定了有一定数量的滞后内生变量。
• 由于滞后内生变量的存在,使得模型预测误差不 仅在方程之间传递,而且在不同的时间截面之间 ,即样本点之间传递。
• 必须对模型进行滚动预测检验。
计量经济学之模型估计 方法的比较
2020/3/22
§4.6联立方程计量经济学模型的估计 方法选择和模型检验
一、模型估计方法的比较 二、为什么普通最小二乘法被普遍采用 三、模型的检验

一、模型估计方法的比较

⒈大样本估计特性的比较
• 在大样本的情况下,各种参数估计方法的统计特 性可以从数学上进行严格的证明,因而也可以将 各种方法按照各个性质比较优劣。

• 小样本估计特性的Monte Carlo试验过程 第一步:利用随机数发生器产生随机项分布的一组 样本; 第二步:代入已经知道结构参数和先决变量观测值 的结构模型中; 第三步:计算内生变量的样本观测值; 第四步:选用各种估计方法估计模型的结构参数。 上述步骤反复进行数百次,得到每一种估计方法的 参数估计值的序列。 第五步:对每种估计方法的参数估计值序列进行统 计分析; 第六步:与真实参数(即试验前已经知道的结构参 数)进行比较,以判断各种估计方法的优劣。
• 一般认为,RE<5%的变量数目占70%以上,并且 每个变量的相对误差不大于10%,则认为模型系统总 体预测性能较好。

⒊方程间误差传递检验
• 寻找模型中描述主要经济行为主体的经济活动过程 的、方程之间存在明显的递推关系的关键路径。
• 在关键路径上进行误差传递分析,可以检验总体模 型的模拟优度和预测精度。
• 一般地,在g个内生变量中,RMS<5%的变量数 目占70%以上,并且每个变量的RMS不大于10% ,则认为模型系统总体拟合效果较好。

⒉预测性能检验
• 如果样本期之外的某个时间截面上的内生变量实际 观测值已经知道,这就有条件对模型系统进行预测 检验。
• 将该时间截面上的先决变量实际观测值代入模型, 计算所有内生变量预测值,并计算其相对误差。
相关文档
最新文档