青岛版七年级下册数学第12章_知识检测B卷
青岛版七年级下册数学-完全平方公式素养提升练习(含解析)

第12章 乘法公式与因式分解12.2 完全平方公式基础过关全练知识点 完全平方公式1.运用完全平方公式计算89.82的最佳选择是( )A.(89+0.8)2B.(80+9.8)2C.(90-0.2)2D.(100-10.2)22.下列各式中计算正确的是( )A.(5a+3b)2=25a2+9b2B.(7x-2y)2=49x2-14xy+4y2C.(4y-3)2=16y2-24y+9m+12n2=19m2+16mn+14n23.(2023江西中考)化简:(a+1)2-a2= .4.【新独家原创】若4a2+(m+2)ab+16b2是一个完全平方式,那么m= .5.计算:(1)(4x+3n)2.(2)(-3x+y)2. (3).6.【教材变式·P116T2】(2023湖南邵阳中考)先化简,再求值:(a-.3b)(a+3b)+(a-3b)2.其中a=-3,b=13能力提升全练7.(2023内蒙古赤峰中考,7,★☆☆)已知2a2-a-3=0,则(2a+3)(2a-3)+(2a-1)2的值是( )A.6B.-5C.-3D.48.【新考法】(2022河北邢台信都期中,9,★★☆)将四个如图1所示的小正方形按图2所示的方式放置在一个边长为a的大正方形中,大正方形的中间恰好空出两条互相垂直,且宽都为b的长方形,根据图2中阴影部分的面积可以验证的公式为( )A.(a+b)(a-b)=a2-b2 B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.(a-b)2=(a+b)2-4ab9.(2023广东汕头潮南一模,7,★★☆)若a+2b=7,ab=6,则(a-2b)2的值是( )A.3B.2C.1D.010.(2023四川凉山州中考,14,★☆☆)已知y2-my+1是完全平方式,则m的值是 .11.(2023山东济南期中,15,★★☆)如图所示,正方形ABCD和正方形CEFG的边长分别为a、b,如果a+b=17,ab=60,那么图中阴影部分的面积是 .12.(2023陕西师大附中期中,18,)有两个正方形A,B,现将B放在A的内部得到图①,将A,B并列放置后构造新的正方形得到图②.若图①和图②中阴影部分的面积分别为1和12,则正方形A,B的面积之和为 .13.【跨学科·美术】(2022浙江温州瓯海期中改编,17,)某中学开展“筑梦冰雪,相约冬奥”的学科活动,设计几何图形作品表达对冬奥会的祝福.小冬以长方形ABCD的四条边为边向外作四个正方形,设计出“中”字图案,如图所示.若四个正方形的周长之和为48,面积之和为52,则长方形ABCD的面积为 .14.(2023内蒙古包头中考,17,★☆☆)先化简,再求值:(a+2b)2+(a+2b)(a-.2b).其中a=-1,b=1415.(2022山东济南十二中月考,20,★★☆)已知x+y=7,xy=-8,求:(1)x2+y2的值;(2)(x-y)2的值.素养探究全练16.【推理能力】发现:两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.如(2+1)2+(2-1)2=10,10为偶数.请把10的一半表示为两个正整数的平方和,并验证发现中的结论.17.【推理能力】(2023山东淄博张店期中)几何图形是一种重要的数学语言,它直观形象,能帮助我们理解代数中的数量关系,而运用代数思想也能巧妙解决几何图形问题.(1)【观察】图①是一个长为4a,宽为b的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后用四个小长方形拼成一个“回形”正方形(如图②).请你写出(a+b)2,(a-b)2,ab之间的等量关系: .(2)【应用】若m+n=7,m-n=5,求mn的值.(3)【拓展】如图③,四边形ABCD、四边形NGDH和四边形MEDQ 都是正方形,四边形EFGD和四边形PQDH都是长方形,若AE=5,CG=10,长方形EFGD的面积是150,设DE=m,DG=n.(i)填空:mn= ,m-n= .(ii)求图③中阴影部分的面积.答案全解全析基础过关全练1.C 89.82=(90-0.2)2=902-2×90×0.2+0.22,对90与0.2进行平方运算、乘法运算与加减运算比其他选项更简便.2.C (5a+3b)2=25a 2+30ab+9b 2,(7x-2y)2=49x 2-28xy+4y 2,(4y-3)2=16y 2-24y+9,m +12n 2=19m2+13mn +14n 2.故选C.3.2a+1解析 原式=a 2+2a+1-a 2=2a+1,故答案为2a+1.4.14或-18解析 4a 2+(m+2)ab+16b 2=(2a)2+(m+2)ab+(4b)2,因为4a 2+(m+2)ab+16b 2是一个完全平方式,所以m+2=±2×2×4=±16,所以m=14或-18.5.解析 (1)(4x+3n)2=(4x)2+2×4x·3n+(3n)2=16x 2+24nx+9n 2.(2)(-3x+y)2=(-3x)2+2×(-3x)·y+y 2=9x 2-6xy+y 2.(3)=(3y)2+2×3y×-+-=9y2−2y +19.6.解析 (a-3b)(a+3b)+(a-3b)2=a 2-(3b)2+(a 2-6ab+9b 2)=a 2-9b 2+a 2-6ab+9b 2=2a 2-6ab,当a=-3,b=13时,原式=2×(-3)2-6×(-3)×13=2×9−6×(−3)×13=18+6=24.能力提升全练7.D 原式=(2a)2-32+(2a)2-4a+1=2×(2a)2-4a-32+1=8a 2-4a-9+1=8a 2-4a-8=4(2a 2-a)-8.∵2a 2-a-3=0,∴2a 2-a=3,∴原式=4×3-8=4.故选D.8.C 根据题图2可得(a-b)2=a 2-2ab+b 2,故选C.9.C (a-2b)2=a 2+4b 2-4ab=a 2+4b 2+4ab-8ab=(a+2b)2-8ab,∵a+2b=7,ab=6,∴原式=72-8×6=49-48=1.故选C.10.±2解析 ∵y 2-my+1是完全平方式,y 2-2y+1=(y-1)2,y 2-(-2)y+1=(y+1)2,∴-m=-2或-m=2,∴m=±2.11.54.5解析 根据题意得S 阴影=a 2+b 2-12a2−12b(a+b)=a 2+b 2-12a2−12ab−12b 2=12(a 2+b 2-ab)=12[(a+b)2-3ab],当a+b=17,ab=60时,S 阴影=12×(289-180)=54.5.12.13解析 设正方形A 的边长为a,正方形B 的边长为b,由题图①得a 2-b 2-2b(a-b)=1,即a 2+b 2-2ab=1,由题图②得(a+b)2-a 2-b 2=12,即2ab=12,所以a 2+b 2=13.故正方形A,B 的面积之和为13.13.5解析 设AB=a,BC=b,由四个正方形的周长之和为48,面积之和为52,可得4a×2+4b×2=48,2a 2+2b 2=52,故a+b=6,a 2+b 2=26,所以(a+b)2=a 2+2ab+b 2=36,所以2ab=36-26=10,所以ab=5.故长方形ABCD 的面积为5.14.解析 原式=a 2+4b 2+4ab+a 2-4b 2=2a 2+4ab,当a=-1,b=14时,原式=2×(-1)2+4×(-1)×14=2-1=1.15.解析 (1)x 2+y 2=(x+y)2-2xy =72-2×(-8)=65.(2)(x-y)2=(x+y)2-4xy=72-4×(-8)=81.素养探究全练16.解析 10的一半为5,5=1+4=12+22.验证结论如下:设两个已知正整数分别为m,n.因为(m+n)2+(m-n)2=m2+2mn+n2+m2-2mn+n2=2m2+2n2=2(m2+n2),所以(m+n)2+(m-n)2为偶数,且该偶数的一半可以表示为m2+n2,故两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.17.解析 (1)由题图②知,大正方形的面积为(a+b)2,中间小正方形的面积为(b-a)2,大正方形的面积减去小正方形的面积等于4个长、宽分别为b,a的长方形的面积和,∴(a+b)2-(a-b)2=4ab.故答案为(a+b)2-(a-b)2=4ab.(2)已知(a+b)2-(a-b)2=4ab,故由m+n=7,m-n=5可得72-52=4mn,∴mn=6.(3)(i)设正方形ABCD的边长为x,∴DE=x-5,DG=x-10,∴(x-5)(x-10)=150,由题意知m=x-5,n=x-10,∴m-n=5,mn=150,故答案为150;5.(ii)S阴影=(m+n)2=(m-n)2+4mn=52+4×150=625,∴题图③中阴影部分的面积为625.。
青岛版2020七年级数学下册第12章乘法公式与因式分解自主学习能力达标测试题(附答案)

试题分析:∵
= -6x+9,则 k=9.
考点:完全平方公式.
11.① ③⑤
【解析】
试题分析:根据平方差公式的特点:有两个平方项,并且符号相反,对各选项分析判断后求
解.
根据完全平方公式结构特征:两数的平方和加上或减去它们乘积的 2 倍,对各选项验证即可.
解:①﹣m2+9 可直接应用平方差公式分解;
②﹣m2﹣9 是两数的平方和的相反数,不能因式分解;
28.先化简,再求值: 3x 23x 2 3x 12 ,其中 x 1 .
2
1.B
参考答案
【解析】
试题解析:把 a2+4b2=4ab,变形得:( a )2-4• a +4=0,即( a -2)2=0,
b
b
b
解得: a =2, b
故选 B
2.D
【解析】
试题分析:根据合并同类项,幂的乘方,单项式乘单项式运算法则和完全平方公式逐一计算
7.下列从左到右的变形,其中是因式分解的是( )
A.(x+1)2=x2+2x+1
B.x2 一 10x+25=(x 一 5)2
C.(x+7)(x-7)=x2-49
D.x2 一 2x+2=(x 一 1)2+1
8.因式分解 x2 9 y2 的结果是(
)
A. (x 9y)(x 9y)
B. (x 3y)(x 3y)
③2ab﹣a2﹣b2 符合完全平方公式的特点,能用完全平方公式进行因式分解;
④a2﹣b2+2ab 不符合完全平方公式的特点,不能用完全平方公式进行因式分解;
⑤将(a+b)看作一个整体,(a+b)2﹣10(a+b)+25 符合完全平方公式的特点,能用完全
2022年最新青岛版七年级数学下册第12章乘法公式与因式分解章节测评试卷(精选含答案)

七年级数学下册第12章乘法公式与因式分解章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解结果正确的是( )A .x 2+3x +2=x (x +3)+2B .4x 2﹣9=(4x +3)(4x ﹣3)C .x 2﹣5x +6=(x ﹣2)(x ﹣3)D .a 2﹣2a +1=(a +1)22、下列各式中从左到右的变形,是因式分解的是( )A .2(2)(2)4x x x +-=-B .()2231535a b ab ab a b -=-C .322()x x x x x x ++=+D .()()2523a a a a +-=-+3、若代数式24x x k ++是一个完全平方式,那么k 的值是( )A .1B .2C .3D .44、下列多项式不能..因式分解的是( ) A .22x y + B .22x y - C .222x xy y ++ D .222x xy y -+5、如果多项式 x 2 + mx + 4 恰好是某个整式的平方,那么 m 的值为( )A .2B .-2C .±2D .±46、下列计算正确的是( )A .(a -2)2=a 2-4B .(a -2)(2+a )=a 2-4C .(a +b )(a -2b )=a 2-2b 2D .-2(a -1)=-2a -27、()()()()()24816231313131311⨯++++++的计算结果是( )A .3231+B .3231-C .313D .3238、下列运算正确的是( )A .(﹣ab 2)3=﹣a 3b 6B .2a +3a =5a 2C .(a +b )2 = a 2+b 2D .a 2•a 3=a 69、在幼发拉底河岸的古代庙宇图书馆遗址里,曾经发掘出大量的黏土板,美索不达米亚人在这些黏土板上刻出来乘法表、加法表和平方表.用这些简单的平方表,美索不达米亚人这样计算:第一步:(103+95)÷2=99,第二步(103﹣95)÷2=4;第三步:查平方表;知99的平方是9801,第四步:查平方表,知4的平方是16,第五步:980116978595103. 设两因数分别为a 和b ,写出蕴含其中道理的整式运算( )A .22()()2a b a b ab +--= B .222()()2a b a b ab +-+= C .22()()22a b a b ab +-+= D .22()()22a b a b ab +--= 10、已知3m n -=,则226m n n --的值是( )A .7B .8C .9D .10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:()32a =_________,2b -=_________,2217x y xy ÷=_________.分解因式:221a a ++=_________,22x x -=_________,21m -=________.2、分解因式:321024a a a +-=____.3、已知y 2+my +9是一个完全平方式,则m 的值是_____________.4、已知2217a b +=,4ab =,则()2a b +的值是___________.5、分解因式:263x y y -=__________.三、解答题(5小题,每小题10分,共计50分)1、如图1,从边长为a 的大正方形中剪去一个边长为b 的小正方形,把剩下的阴影部分拼成如图2所示的长方形.(1)上述操作能验证的公式是________;(2)请应用这个公式完成下列各题:①已知22424a b -=,26a b +=,则2a b -=________; ②计算:2222111111112342022⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 2、(1)计算:2201()2(2)2π--+--; (2)分解因式:22363x xy y -+.3、如图,两个正方形的边长分别为a 、b ,如果a +b =18,ab =70,求图中阴影部分面积.4、先化简,再求值:2(3)()()42x y x y x y xy y ⎡⎤---++÷⎣⎦,其中2x =-,1y =.5、分解因式:22()(3)(3)()m n m n m n n m -+++--参考答案-一、单选题1、C【解析】【分析】根据十字相乘法、公式法逐个求解即可.【详解】解:选项A :x 2+3x +2=(x +1)(x +2),故选项A 错误;选项B :4x 2﹣9=(2x +3)(2x -3),故选项B 错误;选项C :x 2﹣5x +6=(x -3)(x -2),故选项C 正确;选项D :a 2﹣2a +1=(a -1)²,故选项D 错误;故选:C .【点睛】此题考查了因式分解的方法:十字相乘法以及运用公式法,熟练掌握因式分解的方法是解本题的关键.2、B【解析】【分析】因式分解的结果是几个整式的积的形式.【详解】解:A.从左到右的变形是整式乘法,不是因式分解,故本选项不符合题意;B.从左到右的变形是因式分解,故本选项符合题意;C. 322(1)x x x x x x ++=++,故本选项不符合题意;D.()()2523a a a a +-≠-+,故本选项不符合题意;故选:B .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3、D【解析】【分析】根据完全平方公式即可求出答案.【详解】 解:代数式24x x k ++是一个完全平方式,则2224222x x k x x ++=+⨯⨯+∴4k =故选D本题考查完全平方公式,解题的关键是熟练运用完全平方公式.4、A【解析】【分析】根据平方差公式、完全平方公式分解因式即可.【详解】解:A 、22x y +不能因式分解,符合题意; B 、22x y -=()()x y x y +-,能因式分解,不符合题意;C 、222x xy y ++=2()x y +,能因式分解,不符合题意;D 、222x xy y -+ =2()x y -,能因式分解,不符合题意,故选:A .【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,掌握因式分解的结构特征是解答的关键.5、D【解析】【分析】根据平方项确定是完全平方公式,把公式展开,利用一次项系数相等确定m 的值即可.【详解】解:∵x 2 + mx + 4=(x ±2)2=x 2±4x +4,故选D .【点睛】本题考查完全平方公式,掌握公式的特征是解题关键.6、B【解析】【分析】根据整式乘法法则,乘法公式,去括号法则分别求出每个式子的值,再逐个判断即可.【详解】解:A .(a -2)2=a 2-4 a +4,故选项错误,不符合题意;B .(a -2)(2+a )=a 2-4,故选项正确,符合题意;C .(a +b )(a -2b )=a 2-2ab + ab -2b 2= a 2-ab -2b 2,故选项错误,不符合题意;D .-2(a -1)=-2a +2,故选项错误,不符合题意;故选:B【点睛】本题考查了整式乘法法则,乘法公式,去括号法则,能正确根据整式的运算法则进行化简是解此题的关键.7、D【解析】【分析】原式化为()()()()()()248163131313131311-⨯++++++,根据平方差公式进行求解即可.【详解】解:()()()()()24816231313131311⨯++++++()()()()()()248163131313131311=-⨯++++++ ()()()()()22481631313131311=-+++++ 32311=-+323=故选D .【点睛】本题考查了平方差公式的应用.解题的关键与难点在于应用平方差公式.8、A【解析】【分析】分别根据积的乘方运算法则,合并同类项法则,完全平方公式以及同底数幂的乘法法则逐一判断即可.【详解】解:A 、(-ab 2)3=-a 3b 6,故本选项符合题意;B 、2a +3a =5a ,故本选项不合题意;C 、(a +b )2=a 2+2ab +b 2,故本选项不合题意;D 、a 2•a 3=a 5,故本选项不合题意;故选:A .【点睛】本题主要考查了积的乘方,同底数幂的乘法,完全平方公式以及合并同类项,熟记相关公式与运算法则是解答本题的关键.9、D【解析】【分析】先观察题干实例的运算步骤,发现103,95对应的数即为,,a b 从而可得出结论.【详解】 解:由题意得:22222222()()2244a b a b a ab b a ab b +-++-+-=- 4.4abab故选D【点睛】本题考查的是利用完全平方公式进行运算,掌握“()2222a b a ab b ±=±+”是解本题的关键.10、C【解析】【分析】把22m n -化为()()m n m n +-,代入3m n -=,整理后即可求解.【详解】解:∵3m n -=,∴226m n n --=()()6m n m n n +--=3()6m n n +-=3()m n -=339⨯=,故答选:C【点睛】此题考查了代数式求值,掌握平方差公式是解答此题的关键.二、填空题1、 6a 21b 3x ()21+a ()2x x - ()()11m m +-【解析】【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:()32a =6a ,2b -=21b,2217x y xy ÷=3x . 分解因式:221a a ++=()21+a ,22x x -=()2x x -,21m -=()()11m m +-.故答案为:6a ;21b ;3x ;()21+a ;()2x x -;()()11m m +- 【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.2、()()122a a a +-【解析】【分析】先提出公因式,再利用十字相乘法因式分解,即可求解.【详解】解:()()()32210241024122a a a a a a a a a +-=+-=+-.故答案为:()()122a a a +-本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并根据多项式的特征灵活选合适方法解答是解题的关键.3、6±【解析】【分析】根据完全平方公式的形式222a ab b ±+得到23my y =±⨯,计算即可.【详解】解:∵y 2+my +9是一个完全平方式,且9=32,∴23my y =±⨯,解得6m =±,故答案为:6±.【点睛】此题考查了完全平方公式的形式,熟记完全平方公式的构成形式是解题的关键.4、25【解析】【分析】根据完全平方公式解答即可.【详解】解:∵a 2+b 2=17,ab =4,∴(a +b )2=a 2+b 2+2ab =17+2×4=25,故(a +b )2的值为25,故答案为25.本题主要考查了完全平方公式,熟记公式是解答本题的关键.5、()2321y x -【解析】【分析】直接提取公因式3y 分解因式即可.【详解】解:263x y y -=()2321y x -故答案为:()2321y x -.【点睛】此题主要考查了提取公因式法分解因式,正确找到公因式是解题关键.三、解答题1、 (1)22()()a b a b a b -=+-; (2)①4,②20234044 【解析】【分析】(1)根据阴影部分面积等于大正方形的面积减去小正方形的面积,即可求解;(2)(1)①利用平方差公式,即可求解; ②利用平方差公式,原式可变形为111111111111111122334420222022⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即(1)解:根据题意得:能验证的公式是22()()a b a b a b -=+-;(2)解:①∵22424a b -=,∴(2)(2)24a b a b +-=.又∵26a b +=,∴6(2)24a b -=,即24a b -=; ②原式111111111111111122334420222022⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1324352021202322334420222022=⨯⨯⨯⨯⨯⨯⨯⨯ 1202322022=⨯ 20234044=. 【点睛】本题主要考查了平方差公式与几何图形,多项式的因式分解——平方差公式的应用,熟练掌握平方差公式22()()a b a b a b -=+-是解题的关键.2、(1)12-;(2)23()x y -【解析】【分析】(1)利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)提取公因式,再利用完全平方公式分解即可.(1)原式11144=+- 112=- 12=-; (2)原式223(2)x xy y =-+23()x y =-.【点睛】本题考查了提公因式法与公式法的综合运用,以及实数的运算,熟练掌握因式分解的方法是解本题的关键.3、72【解析】【分析】由题意表示出AB ,AD ,CG 、FG ,进而表示出BG ,阴影部分面积=正方形ABCD +正方形ECGF 面积−三角形ABD 面积−三角形FBG 面积,即可求得.【详解】解:∵四边形ABCD 、CGFE 都是正方形,∴AB =AD =a , CG =FG =b ,∴BG =BC +CG =a +b ,∴ABD FBG ABCD ECGF S S S S S =+--阴影正方形正方形1122AB AD CG FG AB AD BG FG =⋅+⋅-⋅-⋅ 22211()22a b a a b b =+--+221()2a b ab =+- 2[(12)]3a b ab =+-, ∵a +b =18,ab =60,2118(360722)S ∴=⨯-⨯=阴影 【点睛】此题考查了整式的混合运算,结合图形把阴影部分的面积表示为含有a +b ,ab 的代数式是解决本题的关键.4、5x y -+,7【解析】【分析】先利用乘法公式计算括号里面的乘方,乘法,然后将括号内的式子进行去括号,合并同类项化简,再用多项式除以单项式的运算法则进行计算,最后代入求值.【详解】解:原式=222269()42x xy y x y xy y ⎡⎤-+--+÷⎣⎦,=2222(69)24x xy y x xy y y +-+-+÷2(210)2xy y y =-+÷5x y =-+当x =-2,y =1时,原式=2+5×1=2+5=7.【点睛】本题考查整式的混合运算—化简求值,掌握完全平方公式(a ±b )2=a 2±2ab +b 2和平方差公式(a +b )(a -b )=a 2-b 2的结构是解题关键.5、28()()m n m n -+【解析】【分析】提公因式后利用平方差公式分解因式即可;【详解】解:22()(3)(3)()m n m n m n n m -+++-,22()[(3)(3)]m n m n m n =-+-+,()(33)(33)m n m n m n m n m n =-++++--,28()()m n m n =-+.【点睛】本题考查因式分解,解题的关键是掌握因式分解的方法有提公因式法、公式法、十字相乘法、分组分解法,注意需要根据题目特点,正确寻找方法.。
青岛版数学七年级下册第12章_知识检测B卷

第12章知识检测B卷一、选择题1.下列多项式中,可以提取公因式的是()A.x2-y2B.x2+xC.x2-yD.x2+2xy+y2答案:B2.若(-7x2-5y)( )=49x4-25y2,则括号内应填代数式为( )A.7x2+5yB.-7x2-5yC.-7x2+5yD.7x2-5y答案:C3.若(x-3)(x+5)是x2+px+q的因式,则p=()A.-15B.-2C.8D.2答案:D4.计算(-m+2n)2的结果是( )A.m2+4mn+4n2B.-m2-4mn+4n2C.m2-4mn+4n2D.m2-2mn+4n2答案:C5.若9x2+mxy+16y2是完全平方式,则m=()A.12B.24C.±12D.±24答案:D6.如果(x-y)2+M=(x+y)2,那么M=( )A.2xyB.-2xyC.4xyD.-4xy答案:C7.下列运算正确的是()A.(a+b)2=a2+b2+2aB.(a-b)2=a2-b2C.(x+3)(x+2)=x2+6D.(m+n)(-m+n)=-m2+n2答案:D8.下列多项式中,没有公因式的是()A.a(x+y)和(x+y)B.32(a+b)和(-x+b)C.3b(x-y)和2(x-y)D.(3a-3b)和6(b-a)答案:B9.下列多项式中,含有因式y+1的多项式是( )A.y2-2xy+x2B.(y+1)2-(y-1)2C.(y+1)2-(y2-1)D.(y+1)2+2(y+1)+1答案:C10.计算(-2)10+(-2)11的结果是( )A.-210B.-211C.210D.-2答案:A11.已知正方形的面积是9a2+6ab+b2(a>0,b>0),那么表示这个正方形边长的代数式是( )A.2a+3bB.a+3bC.3a+2bD.3a+b答案:D12.若(p-q)2-(q-p)3=(q-p)2·E,则E是()A.1-q-pB.q-pC.1+p-qD.1+q-p答案:C二、填空题13.填空:(-3a+2b)(-3a )=9a2-4b2.答案:-2b14.计算:(x+1)(x-1)(1+x2)= .答案:x4-115.4x2y3z-12x3y4的公因式为 .答案:4x2y316.填空:x2-4x+4=( )2.答案:x-217.分解因式:x3-x= .答案:x(x+1)(x-1)18.计算:-5 652×0.13+4 652×0.13= .答案:-130三、解答题。
青岛版初中数学七年级下册第12章学案及课堂同步练习试题

12.1 认识二元一次方程组(B)设计人:张晶审核人:李敏教学寄语:好的开始是成功的一半。
学习目标:1.通过对实际问题的分析,使学生进一步体会方程及方程组是刻画现实世界的有效数学模型。
2.掌握二元一次方程、二元一次方程组及其解得概念,并会判断一个数是不是给出的二元一次方程组的解。
学习重难点:重点:二元一次方程、二元一次方程组及其解的概念。
难点:二元一次方程解的个数。
学习过程:一、导入二、检查预习看本章情景导航中的问题并回答以下问题:1.哪些是已知量那些是未知量?2.有哪些等量关系3.如果设长城东段的长为x,西段的长为y千米,那么长城的全长为,西段比东段长。
4.观察你所列的两个方程,它们是一元一次方程吗?为什么?它们的共同点是什么?5.能否仿照一元一次方程给这样的方程加以命名?总结:像这样,含有两个未知数,并且含未知数的项都是一次的方程,叫做。
三、合作探究:1.以上两个方程中的 xy呢?2.把你所列的两个方程这样,便得到一个二元一次方程组。
3.4.5.二元一次方程和二元一次方程组的解(1)x=1,y=2适合方程x+y=3吗?x=-1,y=4呢?(2)你还能找出其它x,y的值适合方程x+y=3 吗?试一试。
叫做二元一次方程的一个解。
(1) 二元一次方程有多少个解?是不是任意一对有理数都是它的解?举例说明。
(1)的解吗?是方程(2)的解吗?所以 1)(2)的公共解。
总结:二元一次方程组中两个方程的公共解,做 。
四、练一练1.(1)哪几对数值是方程x-3y=3的解?哪几对数值是方程3x-10y=5的解? (2) 哪一对数值是方程组 的解?是二元一次方程组 的解吗?呢?五.典型例题解决课本75页 例题1,并回答下列问题:题目中哪些是已知量?哪些是未知量?有哪些等量关系?六.课堂达标检测 1、已知方程组(1) (2) (3) (4)正确的说法是( )A. 只有(1)(3)是二元一次方程组B. 只有(3)(4)是二元一次方程组C. 只有(1)(4)是二元一次方程组D. 只有(2)是二元一次方程组2.方程x+y=4 和A B C D3.方程x+y=3有( )个解,有( )组正整数解,它们是( )七、课后反思: 八、布置作业课本76页习题12.1A 组第1,2,4题。
青岛版七年级数学下册第十二章测试题(附答案)

青岛版七年级数学下册第十二章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.下列运算正确的是()A. a2﹣a4=a8B. (x﹣2)(x﹣3)=x2﹣6C. (x﹣2)2=x2﹣4D. 2a+3a=5a2.下列分解因式正确的是( )A. m3-m=m(m-1)(m+1)B. x2-x-6=x(x-1)-6C. 2a2+ab+a=a(2a+b)D. x2-y2=(x-y)23.下列多项式中,能用公式法分解因式的是()A. ﹣m2+n2B. a2﹣2ab﹣b2C. m2+n2D. ﹣a2﹣b24.下列多项式能分解因式的是()A. x2+y2B. ﹣x2﹣y2C. 2xy﹣x2﹣y2D. x2﹣xy+y25.下列各式能用平方差公式计算的是()A. (﹣3+x)(3﹣x)B. (﹣a﹣b)(﹣b+a)C. (﹣3x+2)(2﹣3x)D. (3x+2)(2x﹣3)6.下列各式,不能用平方差公式分解因式的是()A. x2-y2B. -x2+y2C. -x2-y2D. -a2b2+17.下列各式能用完全平方公式分解因式的是()A. 4x2+1B. 4x2-4x-1C. x2+xy+y2D. x2+2x+18.满足m2+n2+2m-6n+10=0的是()A. m=1,n=3B. m=1,n=-3C. m=-1,n=-3D. m=-1,n=39.下列计算正确的是()A. (a+b)2=a2+b2B. (﹣2a)2=﹣4a2C. (a5)2=a7D. a•a2=a310.下列多项式中能用提公因式法分解的是()A. x2+y2B. x2﹣y2C. x2+2x+1D. x2+2x11.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为()A. 10+6B. 10+10C. 10+4D. 2412.已知,则下列三个等式:① ,② ,③ 中,正确的个数有()A. 个B. 个C. 个D. 个二、填空题(共8题;共16分)13.已知:那么=________.14.分解因式:2a2﹣4a+2=________.15.分解因式:________16.已知m>0,如果x2+2(m﹣1)x+16是一个完全平方式,那么m的值为________.17.分解因式:=________.18.化简:=________.19.若x+y= —1,则x4+5x3y+x2y+8x2y2+xy2+5xy3+y4的值等于________。
基础强化青岛版七年级数学下册第12章乘法公式与因式分解专题练习试卷(含答案详解)

七年级数学下册第12章乘法公式与因式分解专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是( )A .()222a b a b -=-B .()235a a =C .532a a a ÷=D .325a a a +=2、下列各式中从左到右的变形,是因式分解的是( )A .2(2)(2)4x x x +-=-B .()2231535a b ab ab a b -=-C .322()x x x x x x ++=+D .()()2523a a a a +-=-+3、已知(x -1)2=2,则代数式2x -2x +5的值为 ( )A .4B .5C .6D .74、已知2211244m n n m +=--,则22m n - 的值等于( ) A .1 B .﹣1 C .-2 D .145、把2a 2﹣4a 因式分解的最终结果是( )A .2a (a ﹣2)B .2(a 2﹣2a )C .a (2a ﹣4)D .(a ﹣2)(a +2)6、下列运算一定正确的是( )A .623a a a ÷=B .325235a a a +=C .()326a a -=D .22()()a b a b a b +-=-7、把长和宽分别为a 和b 的四个相同的小长方形按不同的方式拼成如图1的正方形和如图2的大长方形这两个图形,由两图形中阴影部分面积之间的关系正好可以验证下面等式的正确性的是( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+ D .()()224a b a b ab +--= 8、已知3a b +=,2ab =,求代数式32232a b a b ab ++的值为( )A .18B .28C .50D .609、下列运算正确的是( )A .(﹣ab 2)3=﹣a 3b 6B .2a +3a =5a 2C .(a +b )2 = a 2+b 2D .a 2•a 3=a 610、下列计算正确的是( )A .()222a b a b +=+B .()()22a b b a a b -+-+=-C .()2222a b a ab b -+=++D .()22121a a a --=++ 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x2﹣3kx+9是一个完全平方式,则常数k=_____.2、分解因式:2244a ab b-+=________.3、化简:11+21x x x= ________.4、已知ab=2,11a b+=32,则多项式a3b+2a2b2+ab3的值为______.5、如图,边长为m,n(m>n)的长方形,它的周长为12,面积为8,则(m﹣n)2的值为______.三、解答题(5小题,每小题10分,共计50分)1、教科书中这样写道:“我们把多项式222a ab b++及222a ab b-+叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式.原式223x x=+-()2214x x=++-()2212x=+-()()1212x x=+++-()()31x x=+-例如.求代数式2241x x+-的最小值.原式2241x x=+-()222111x x =++--()2213x =+-. 可知当1x =-时,2241x x +-有最小值,最小值是-3.(1)分解因式:223a a --=__________.(2)试说明:x 、y 取任何实数时,多项式22426x y x y +-++的值总为正数.(3)当m ,n 为何值时,多项式22224425m mn n m n -+--+有最小值,并求出这个最小值.2、如果一个自然数M 能分解成A ×B ,其中A 和B 都是两位数,且A 与B 的十位数字之和为10,个位数字之和为9,则称M 为“十全九美数”,把M 分解成A ×B 的过程称为“全美分解”,例如: ∵2838=43×66,4+6=10,3+6=9,∴2838是“十全九美数”;∵391=23×17,2+1≠10,∴391不是“十全九美数”.(1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M 是“十全九美数”,“全美分解”为A ×B ,将A 的十位数字与个位数字的差,与B 的十位数字与个位数字的和求和记为()S M :将A 的十位数字与个位数字的和,与B 的十位数字与个位数字的差求差记为()T M .当()()S M T M 能被5整除时,求出所有满足条件的自然数M . 3、分解因式:36m 2﹣4n 24、分解因式:2x 3﹣8x 2+8x .5、已知a 2﹣4a +b 2+2b +5=0,求a 2b ﹣ab 2的值.-参考答案-一、单选题1、C【分析】根据完全平方公式,幂的乘方,同底数幂的除法及整式的加减依次判断即可得.【详解】解:A 、()2222a b a ab b -=-+,选项计算错误; B 、()236a a =,选项计算错误;C 、532a a a ÷=,选项计算正确;D 、32a a +不能进行计算,选项计算错误;故选:C .【点睛】题目主要考查完全平方公式,幂的乘方,同底数幂的除法,整式的加减等,熟练掌握各个运算法则是解题关键.2、B【解析】【分析】因式分解的结果是几个整式的积的形式.【详解】解:A.从左到右的变形是整式乘法,不是因式分解,故本选项不符合题意;B.从左到右的变形是因式分解,故本选项符合题意;C. 322(1)x x x x x x ++=++,故本选项不符合题意;D.()()2523a a a a +-≠-+,故本选项不符合题意;【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3、C【解析】【分析】根据完全平方公式可求出x 2-2x 的值,然后代入原式即可求出答案.【详解】解:∵(x -1)2=2,∴x 2-2x +1=2,∴x 2-2x =1,∴原式=1+5=6,故选:C .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.4、C【解析】【分析】 先将原式变形为221111044m m n n +++-+=,再根据完全平方公式,可得221111022m n ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭ ,从而得到1110,1022m n +=-= ,进而得到2,2m n =-= ,即可求解.解:∵2211244m n n m +=--, ∴22112044m n m n ++-+=, ∴221111044m m n n +++-+=, ∴221111022m n ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭, ∴1110,1022m n +=-= ,解得:2,2m n =-= , ∴2222222m n m n ----===-. 故选:C【点睛】本题主要考查了完全平方公式的应用,熟练掌握完全平方公式的特征是解题的关键.5、A【解析】【分析】2a 2-4a 中两项的公因式是2a ,提取公因式即可【详解】解:2a 2-4a = 2a (a - 2);故选A .【点睛】本题考查了提公因式法分解因式,正确确定公因式是关键.6、D【解析】【分析】由同底数幂除法、合并同类项、幂的乘方、平方差公式,分别进行判断,即可得到答案.【详解】解:A 、624a a a ÷=,故A 错误;B 、3223a a +,不能合并,故B 错误;C 、()326a a -=-,故C 错误; D 、22()()a b a b a b +-=-,故D 正确;故选:D .【点睛】本题考查了同底数幂除法、合并同类项、幂的乘方、平方差公式,解题的关键是掌握运算法则进行判断.7、D【解析】【分析】由图1可得:阴影部分的面积为:22,a ba b 由图2可得:阴影部分的面积为:4,ab 再利用阴影部分的面积相等可得答案.【详解】解:由图1可得:阴影部分的面积为:22,a b a b由图2可得:阴影部分的面积为:4,ab由阴影部分的面积相等可得:224,a b a b ab故选D【点睛】本题考查的是利用几何图形的面积证明乘法公式,掌握“利用图形面积的不同的计算方法证明乘法公式”是解本题的关键.8、A【解析】【分析】先利用提公因式法和完全平方公式对所求代数式因式分解,再整体代入求值即可.【详解】解:32232a b a b ab ++=22(2)ab a ab b ++=2()ab a b +,当3a b +=,2ab =时,原式=2×32=2×9=18,故选:A .【点睛】本题考查代数式求值、因式分解、完全平方公式,熟记公式,熟练掌握因式分解的方法是解答的关键.9、A【解析】【分析】分别根据积的乘方运算法则,合并同类项法则,完全平方公式以及同底数幂的乘法法则逐一判断即可.【详解】解:A、(-ab2)3=-a3b6,故本选项符合题意;B、2a+3a=5a,故本选项不合题意;C、(a+b)2=a2+2ab+b2,故本选项不合题意;D、a2•a3=a5,故本选项不合题意;故选:A.【点睛】本题主要考查了积的乘方,同底数幂的乘法,完全平方公式以及合并同类项,熟记相关公式与运算法则是解答本题的关键.10、D【解析】【分析】利用完全平方公式计算即可.【详解】解:A、原式=a2+2ab+b2,本选项错误;B、原式=()2--=-a2+2ab-b2,本选项错误;a bC、原式=a2−2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项正确,故选:D.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题1、±2【解析】【分析】根据完全平方式的结构特征解决此题.【详解】解:x 2﹣3kx +9=x 2﹣3kx +32.∵x 2﹣3kx +9是一个完全平方式,∴﹣3kx =±6x .∴﹣3k =±6.∴k =±2.故答案为:±2.【点睛】本题考查完全平方式,熟知完全平方式的结构是解答的关键.2、2(2)a b ##(-2b +a )2【解析】【分析】利用完全平方公式即可进行因式分解.【详解】解:原式=a 2-2×a ×2b +(2b )2=(a -2b )2,故答案为:(a-2b)2.【点睛】本题考查了应用公式法分解因式,掌握a2±2ab+b2=(a±b)2是正确解答的关键.3、221x x++【解析】【分析】先利用平方差公式,单项式乘以多项式进行整式的乘法运算,再合并同类项即可.【详解】解:11+21x x x2122x x221x x=++故答案为:221x x++【点睛】本题考查的是利用平方差公式进行计算,单项式乘以多项式,掌握“利用平方差公式进行简便运算”是解本题的关键.4、18【解析】【分析】已知第二个等式左边通分并利用同分母分式的加法法则计算,把ab=2代入求出a+b的值,原式提取公因式,再利用完全平方公式分解后代入计算即可求出值.【详解】解:∵ab=2,1132a b+=,∴32a bab+=,即a+b=3,则原式=ab(a2+2ab+b2)=ab(a+b)2=2×32=2×9=18.故答案为:18.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、4【解析】【分析】根据题意可得2(m+n)=12,mn=8,可得m+n=6,再根据完全平方公式求解即可.【详解】解:由题意,得:2(m+n)=12,mn=8,所以m+n=6,所以(m-n)2=(m+n)2-4mn=62-4×8=36-32=4.故答案为:4.【点睛】此题主要考查了完全平方公式,掌握完全平方公式的结构特点是解题关键.三、解答题1、 (1)(a-3)(a+1);(2)见解析(3)m=6,n=4,最小值为5.【解析】【分析】(1)把a²-2a-3化为a²-2a+1-4的形式,先用完全平方公式,再用平方差公式因式分解;(2)首先把x²+y²-4x+2y+6配方写成(x-2)2+(y+1)2+1,根据平方的非负性即可求解;(3)用拆项的方法首先把多项式化为m2-2m(n+2)+(n+2)2+n2-8n+16+5的形式,进一步分解因式,再根据平方的非负性求出多项式最小值.(1)解:a²-2a-3=a²-2a+1-4=(a-1)2-4=(a-1-2)(a-1+2)=(a-3)(a+1);(2)解:多项式x²+y²-4x+2y+6的值总为正数,理由:x²+y²-4x+2y+6=x²-4x+4+y²+2y+1+1=(x-2)2+(y+1)2+1,∵(x-2)2≥0,(y+1)2≥0,∴(x-2)2+(y+1)2+1≥1,∴多项式x²+y²-4x+2y+6的值总为正数;(3)解:m²-2mn+2n²-4m-4n+25=m2-2m(n+2)+(n+2)2+n2-8n+16+5=(m-n-2)2+(n-4)2+5,当m-n-2=0,n-4=0时代数式有最小值,解得m=6,n=4,最小值为5.【点睛】本题主要考查了因式分解的应用、非负数的性质:偶次方、完全平方式,熟练掌握这三个知识点的综合应用,用拆项法把多项式化为完全平方的形式是解题关键.2、 (1)2100是“十全九美数” , 168不是“十全九美数”,理由见解析;(2)满足“十全九美数”条件的M有:1564或1914或1164.【解析】【分析】(1)根据“十全九美数”的定义直接判定即可;(2)设A的十位数字为m,个位数字为n,得出S(M)=19-2n,T(M)=2m-1,当()()S MT M能被5整除时,设值为k,再分类进行讨论即可求解.(1)解:2100是“十全九美数” , 168不是“十全九美数”,理由如下:∵2100=25×84,2+8=10,5+4=9,∴2100是“十全九美数”;∵168=14×12,1+1≠10,∴168不是“十全九美数”;(2)解:设A 的十位数字为m ,个位数字为n ,则A =10m +n ,∵M 是“十全九美数”, M=A ×B ,∴B 的十位数字为10-m ,个位数字为9-n ,则B =10(10-m )+9-n =109-10m -n ,由题知:S (M )=m -n +10-m +9-n =19-2n ,T (M )=m +n -()109m n ⎡⎤---⎣⎦=2m -1,根据题意令()()192521S M n k T M m -==-(k 为整数), 由题意知:1≤m ≤9,0≤n ≤9,且都为整数,∴1≤19-2n ≤19,1≤2m -1≤17,当k =1时,19221n m --=5, ∴1925211n m -=⎧⎨-=⎩或19210212n m -=⎧⎨-=⎩或19215213n m -=⎧⎨-=⎩, 解得17m n =⎧⎨=⎩或3292m n ⎧=⎪⎪⎨⎪=⎪⎩(舍去)或22m n =⎧⎨=⎩; 当k =2时,19221n m --=10, ∴19210211n m -=⎧⎨-=⎩,解得192m n =⎧⎪⎨=⎪⎩(舍去), 当k =3时,19221n m --=15, ∴19215211n m -=⎧⎨-=⎩,解得12m n =⎧⎨=⎩, ∴A =10m +n =17,B =109-10m -n =92;或A =10m +n =22,B =109-10m -n =87;或A =10m +n =12,B =109-10m -n =97;∵M=A ×B =17×92=1564或M=A ×B =22×87=1914或M=A ×B =12×97=1164,综上,满足“十全九美数”条件的M 有:1564或1914或1164.【点睛】本题是新定义题,主要考查了列代数式,以及因式分解的应用,一元一次方程的应用,关键是准确理解“十全九美数”含义.3、()()433m n m n +-【解析】【分析】先提取公因数4,再用平方差公式将括号内的算式分解因式即可.【详解】解:原式()2249m n =-()2243m n ⎡⎤=-⎣⎦ ()()433m n m n =+-故答案为:()()433m n m n +-.【点睛】本题考查分解因式,能够熟练运用平方差公式进行因式分解是解决本题的关键.4、2x (x ﹣2)2【解析】【分析】先提取公因式2x ,在根据完全平方公式进行分解即可求得答案.【详解】原式22(44)x x x =-+22(2)x x =-,故答案为:22(2)x x -.【点睛】本题考查了提公因式法,公式法分解因式,注意分解因式的步骤,注意分解要彻底.5、﹣6【解析】【分析】先将224250a a b b -+++=左边进行配方,变为()()22210a b -++=,根据偶次方的非负性求出a ,b 的值,再将所求的式子进行因式分解,最后将a ,b 的值代入即可.【详解】解:∵224250a a b b -+++=,∴2244210a a b b -++++=,∴()()22210a b -++=,∴20a -=,10b +=,∴a =2,b =-1,∴22a b ab -()ab a b =-()()=⨯-⨯+2121=-,6∴22-为﹣6.a b ab【点睛】本题考查了配方法在代数式求值中的应用,熟练运用完全平方公式进行配方,明确偶次方的非负性,是解题的关键.。
基础强化青岛版七年级数学下册第12章乘法公式与因式分解同步练习试卷(无超纲带解析)

七年级数学下册第12章乘法公式与因式分解同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解错误的是( )A .()222a b a b -=-B .()()2933x x x -=+-C .()22442a a a +-=-D .()()222111x x y x y x y -+-=-+--2、如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为49,小正方形的面积为4,若分别用x ,()y x y >表示小长方形的长和宽,则下列关系式中不正确的是( )A .22249x xy y ++=B .2224x xy y -+=C .2225x y +=D .2214x y -=3、224﹣1可以被60和70之间某两个数整除,这两个数是( )A .64,63B .61,65C .61,67D .63,654、下列计算正确的是( )A .()222a b a b +=+B .()()22a b b a a b -+-+=-C .()2222a b a ab b -+=++D .()22121a a a --=++ 5、下面的计算正确的是( )A .(a +b )2=a 2+b 2B .(a 3)2=a 6C .a 2+a 3=2a 5D .(3a )2=6a 2 6、计算()22a b --得( )A .2244a ab b ++B .2244a ab b -+C .2224a ab b ---D .2244a ab b --- 7、下列运算正确的是( )A .(﹣a )2=﹣a 2B .2a 2﹣a 2=2C .a 2•a =a 3D .(a ﹣1)2=a 2﹣18、多项式23x x a -+可分解为()()52x x -+,则a 的值分别是( )A .10B .10-C .2D .2-9、用4个长为a ,宽为b 的长方形拼成如图所示的大正方形,则用这个图形可以验证的恒等式是( )A .222()2a b a ab b +=++B .222()2a b a ab b -=-+C .22()()a b a b a b +-=-D .22()()4a b a b ab +--=10、下列式子可用平方差公式计算的是( )A .(a +b )(﹣a ﹣b )B .(m ﹣n )(n ﹣m )C .(s +2t )(2t +s )D .(y ﹣2x )(2x +y )第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a -b =2,a 2-b 2=6,则a 2+b 2=______.2、分解因式:22368xy x y __________.3、若x +y =6,xy =7,则x 2+y 2的值等于 _____.4、m (a +b +c )=______;(m +n )(a +b )=______.(ma +mb +mc )÷m =______.平方差公式:(a +b )(a -b )=______;完全平方公式:(a +b )2=______ ;(a -b )2=______.5、因式分解:mx 2﹣mx +m =____________.三、解答题(5小题,每小题10分,共计50分)1、计算:2(3)(6)x x x ---2、如图1,边长为a 的大正方形中有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)上述操作能验证的等式是______;(请选择正确的选项)A .()()22a b a b a b -=+-;B .()2222a ab b a b -+=-;C .()2a ab a a b +=+(2)请利用你从(1)选出的等式,完成下列各题:①己知22424a b -=,26a b +=,则2a b -=______. ②计算:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅-- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3、同学们,我们以前学过乘法公式,你一定熟练掌握了吧!想办法计算:2222211111111112345100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4、先化简,再求值:(x +3y )(x -3y )-(2x -y )2-y (3x -7y ),其中x ,y 满足x +y =3,xy =1.5、把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:用配方法分解因式:268a a ++.解原式()2222681169131a a a a a =+++-=++-=+- ()()()()313142a a a a =+++-=++⎡⎤⎡⎤⎣⎦⎣⎦.请根据以上材料解决下列问题:(1)用配方法分解因式x 2+2xy -3y 2(2)若M =2x 2+8x +10,求M 的最小值;(3)已知x2+6y2+z2-4xy-4y+2yz+4=0,求x+y+z的值.-参考答案-一、单选题1、C【解析】【分析】利用提公因式法与公式法,分组分解法进行分解逐一判断即可.【详解】解:A、2a-2b=2(a-b),正确,故该选项不符合题意;B、x2-9=(x+3)(x-3),正确,故该选项不符合题意;C、a2+4a-4≠(a-2)2,原分解错误,故该选项符合题意;D、x2-2x+1-y2=(x-1+y)(x-1-y),正确,故该选项不符合题意;故选:C.【点睛】本题考查了因式分解-分组分解法,提公因式法与公式法的综合运用,一定要注意如果多项式的各项有公因式,必须先提公因式.2、C【解析】【分析】根据完全平方公式及图形的特点找到长度关系即可依次判断.【详解】解:A 、因为正方形图案的边长7,同时还可用()x y +来表示,故()22222749x y x xy y +=++==,正确;B 、由图象可知2()4x y -=,即2224x xy y -+=,正确;C 、由()22222749x y x xy y +=++==和222()24x y x xy y -=-+=,可得4522xy =,()2224524926.5252x y x y xy +=+-=-=≠,错误; D 、由7x y +=,2x y -=,可得 4.5x =, 2.5y =,所以22224.5 2.520.25 6.2514x y -=-=-=,正确.故选:C .【点睛】本题主要考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.3、D【解析】【分析】利用平方差因式分解即可求解.【详解】解:241212126621(21)(21)(21)(21)(21)-=+-=++-,∵66216521=63+=-,,∴224﹣1可以被60和70之间某两个数整除,这两个数是63,65,故选:D .【点睛】本题考查了平方差公式,解题关键是熟练运用平方差公式进行计算.4、D【分析】利用完全平方公式计算即可.【详解】解:A、原式=a2+2ab+b2,本选项错误;B、原式=()2--=-a2+2ab-b2,本选项错误;a bC、原式=a2−2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项正确,故选:D.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.5、B【解析】【分析】直接利用完全平方公式以及积的乘方运算法则、幂的乘方运算法则、合并同类项法则分别判断得出答案.【详解】A、(a+b)2=a2+2ab+b2,故此选项错误;B、(a3)2=a6,故此选项正确;C、a2+a3,无法合并,故此选项错误;D、(3a)2=9a2,故此选项错误;故选:B.此题主要考查了完全平方公式以及积的乘方运算、幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.6、A【解析】【分析】变形后根据完全平方公式计算即可.【详解】解:()22a b -- =()2+2a b=2244a ab b ++,故选A .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a ±b )2=a 2±2ab +b 2是解答本题的关键.7、C【解析】【分析】根据乘方的意义,合并同类项,同底数幂的乘法,完全平方公式逐项分析即可.【详解】解:A.(﹣a )2=a 2,故不正确;B. 2a 2﹣a 2=a 2,故不正确;C. a 2•a =a 3,正确;D.(a ﹣1)2=a 2﹣2 a +1,故不正确;故选C .【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.完全平方公式是(a ±b )2=a 2±2ab +b 2.8、B【解析】【分析】利用多项式乘法整理多项式进而得出a 的值.【详解】∵多项式23x x a -+可分解为()()52x x -+,∴23x x a -+()()2=52310x x x x -+=--,∴10a =-,故选:B .【点睛】此题主要考查了整式的混合运算,得出同类项系数相等是解题关键.9、D【解析】【分析】分别用公式法,与割补法求出阴影部分图形面积,根据:阴影部分面积=阴影部分面积,列出等式即可.【详解】解:用公式法求阴影部分的面积为:44a b ab ⨯⨯=,用割补法求阴影部分面积为:22(a b)(a b)+--,∵阴影部分面积=阴影部分面积,∴22()()4a b a b ab +--=,故选:D .【点睛】本题考查用几何验证乘法公式,能够掌握求图形面积的两种方法,并找到等量关系式解决本题的关键.10、D【解析】【分析】根据平方差公式的特点逐项排查即可.【详解】解:A .括号中的两项符号都相反,不符合公式特点,故此选项错误;B .括号中的两项符号都相反,不符合公式特点,故此选项错误;C .括号中的两项符号都相同,不符合公式特点,故此选项错误;D .y 的符号相同,2x 的符号相反,符合公式特点,故此选项正确.故选:D .【点睛】本题主要考查了平方差公式,掌握平方差公式的特点“一项的符号相同,另一项的符号相反”成为解答本题的关键.二、填空题1、132##6.5 【解析】【分析】根据平方差公式求出a+b =3,解方程组32a b a b +=⎧⎨-=⎩,求出解代入计算即可. 【详解】解:∵a -b =2,a 2-b 2=6,a 2-b 2=(a +b )(a -b )∴a+b =3,解方程组32a b a b +=⎧⎨-=⎩,得52{12a b ==, ∴a 2+b 2=225122⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭132, 故答案为:132. 【点睛】 此题考查了平方差公式的应用,解二元一次方程组,已知字母的值求代数式的值,正确掌握平方差公式是解题的关键.2、22(34)xy xy【解析】【分析】准确找到公因式,用提公因式法分解即可.【详解】解:22368xy x y -= 22(34)xy xy【点睛】本题考查了提公因式法进行因式分解,一定要注意准确找到公因式.3、22【解析】【分析】根据完全平方公式解答即可.【详解】解:6x y +=,7xy =,2222()2627361422x y x y xy ∴+=+-=-⨯=-=.故答案为:22.【点睛】本题是对完全平方公式的考查,解题的关键是熟记公式结构,完全平方公式:222)2(a ab b a b ±+=±.4、 ma +mb +mc ma +mb +na +nb a +b +c a 2-b 2 a 2+2ab +b 2 a 2-2ab +b 2【解析】略5、m (x 2﹣x +1)【解析】【分析】利用提公因式法提取m 进行分解因式即可.【详解】解:2mx mx m +﹣2(1)m x x =-+故答案为:m (x 2﹣x +1)【点睛】本题考查用提公因式法分解因式,熟练掌握是解题的关键.三、解答题1、9【解析】【分析】首先根据完全平方公式及单项式乘以多项式法则运算,再根据去括号法则去括号,最后合并同类项,即可求得【详解】解:2(3)(6)x x x ---2269(6)x x x x =-+--22696x x x x =-+-+9=【点睛】本题考查了完全平方公式,单项式乘以多项式法则,注意去括号时符号的变化2、 (1)A (2)①4;②1120【解析】【分析】(1)根据图1和图2阴影部分面积相等可得到答案;(2)①根据平方差公式,4a 2-b 2=(2a +b )(2a -b ),已知2a +b =6代入即可求出答案;②先利用平方差公式变形,再约分即可得到答案.(1)解:图1阴影部分的面积为:a 2-b 2,图2阴影部分的面积为:(a +b )(a -b ),∵图1和图2阴影部分面积相等,∴a 2-b 2=(a +b )(a -b ),故选:A ;(2)解:①∵4a 2-b 2=24,∴(2a +b )(2a -b )=24,∵2a +b =6,∴2a -b =4,故答案为:4; ②222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅-- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11111111111111111111223344991010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅-+-+ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 132435810911223344991010=⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯ 111210=⨯1120=. 【点睛】本题主要考查了平方差公式的几何背景及其应用与拓展,熟练掌握公式并灵活运用是解题的关键. 3、101200【解析】【分析】根据平方差公式进行计算即可【详解】 原式111111111111111111112233449999100100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+--++-+- ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭31425310098101992233449999100100=⨯⨯⨯⨯⨯⨯⨯⨯ 129934101=2310023100⎛⎫⎛⎫⨯⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯ ⎪ ⎪⎝⎭⎝⎭ 11011002=⨯ 101200=【点睛】本题考查了平方差公式的应用,掌握平方差公式是解题的关键.4、-3x 2+xy -3y 2,-20【解析】【分析】运用乘法公式化简,然后将化简结果配方后代值求解即可.【详解】解:(x +3y )(x -3y )-(2x -y )2-y (3x -7y )=(x 2-9y 2)-(4x 2-4xy +y 2)-(3xy -7y 2)=x 2-9y 2-4x 2+4xy -y 2-3xy +7y 2=-3x 2+xy -3y 2∵x +y =3,xy =1∴()2222373373320x x y x y y xy -+=-++=-⨯+--=∴原式的化简结果为-3x 2+xy -3y 2,值为20-.【点睛】本题考查了整式的运算,代数式求值.解题的关键在于熟练运用乘法公式.5、 (1)()()3x y x y +-(2)M 的最小值为2;(3)4【解析】【分析】(1)将原式变形为x 2+2xy +y 2-y 2-3y 2,然后利用完全平方公式和平方差公式进行因式分解;(2)原式通过配方,然后根据偶次幂的非负性求其最小值;(3)将原式整理为(x 2+4y 2-4xy )+(y 2-4y +4)+(z 2+2yz +y 2)=0,然后利用完全平方公式进行变形,从而利用偶次幂的非负性求得x ,y ,z 的值,从而代入求值.(1)解:x 2+2xy -3y 2=x 2+2xy +y 2-y 2-3y 2=(x +y )2-4y 2=(x+y+2y)(x+y-2y)=(x+3y)(x-y);(2)解:M=2x2+8x+10=2(x2+4x)+10=2(x2+4x+4)-8+10=2(x+2)2+2,∵(x+2)2≥0,∴M的最小值为2;(3)解:x2+6y2+z2-4xy-4y+2yz+4=0,整理得:(x2+4y2-4xy)+(y2-4y+4)+(z2+2yz+y2)=0,即(x-2y)2+(y-2)2+(z+y)2=0,∵(x-2y)2≥0,(y-2)2≥0,(z+y)2≥0,∴x-2y=0,y-2=0,z+y=0,解得:x=4,y=2,z=-2,则x+y+z=2+4+(-2)=4.【点睛】本题考查了整式的运算与因式分解,理解偶次幂的非负性,掌握完全平方公式(a±b)2=a2±2ab+b2和平方差公式(a+b)(a-b)=a2-b2是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12章知识检测B卷
一、选择题
1.下列多项式中,可以提取公因式的是()
A.x2-y2
B.x2+x
C.x2-y
D.x2+2xy+y2
答案:B
2.若(-7x2-5y)( )=49x4-25y2,则括号内应填代数式为( )
A.7x2+5y
B.-7x2-5y
C.-7x2+5y
D.7x2-5y
答案:C
3.若(x-3)(x+5)是x2+px+q的因式,则p=()
A.-15
B.-2
C.8
D.2
答案:D
4.计算(-m+2n)2的结果是( )
A.m2+4mn+4n2
B.-m2-4mn+4n2
C.m2-4mn+4n2
D.m2-2mn+4n2
答案:C
5.若9x2+mxy+16y2是完全平方式,则m=()
A.12
B.24
C.±12
D.±24
答案:D
6.如果(x-y)2+M=(x+y)2,那么M=( )
A.2xy
B.-2xy
C.4xy
D.-4xy
答案:C
7.下列运算正确的是()
A.(a+b)2=a2+b2+2a
B.(a-b)2=a2-b2
C.(x+3)(x+2)=x2+6
D.(m+n)(-m+n)=-m2+n2
答案:D
8.下列多项式中,没有公因式的是()
A.a(x+y)和(x+y)
B.32(a+b)和(-x+b)
C.3b(x-y)和2(x-y)
D.(3a-3b)和6(b-a)
答案:B
9.下列多项式中,含有因式y+1的多项式是( )
A.y2-2xy+x2
B.(y+1)2-(y-1)2
C.(y+1)2-(y2-1)
D.(y+1)2+2(y+1)+1
答案:C
10.计算(-2)10+(-2)11的结果是( )
A.-210
B.-211
C.210
D.-2
答案:A
11.已知正方形的面积是9a2+6ab+b2(a>0,b>0),那么表示这个正方形边长的代数式是( )
A.2a+3b
B.a+3b
C.3a+2b
D.3a+b
答案:D
12.若(p-q)2-(q-p)3=(q-p)2·E,则E是()
A.1-q-p
B.q-p
C.1+p-q
D.1+q-p
答案:C
二、填空题
13.填空:(-3a+2b)(-3a )=9a2-4b2.
答案:-2b
14.计算:(x+1)(x-1)(1+x2)= .
答案:x4-1
15.4x2y3z-12x3y4的公因式为 .
答案:4x2y3
16.填空:x2-4x+4=( )2.
答案:x-2
17.分解因式:x3-x= .
答案:x(x+1)(x-1)
18.计算:-5 652×0.13+4 652×0.13= .
答案:-130
三、解答题
19.将下列各式分解因式.
(1)2x2-18;(2)x2y-2y2x+y3. 答案:解:(1)原式=2(x2-9)=2(x+3)(x-3). (2)原式=y(x2-2xy+y2)=y(x-y)2.
20.计算.
(1)3(a+b)(a-b)-2(1
2
a-b)2;
(2)(5-2x)(2x+5)+(x+5)2.
答案:解:(1)原式=3(a2-b2)-2(1
4
a2-ab+b2)
=3a2-3b2-1
2
a2+2ab-2b2
=5
2
a2+2ab-5b2.
(2)原式=25-4x2+x2+10x+25=50+10x-3x2. 21.已知x+y=4,xy=3,求下列各式的值:(1)(x-y)2;(2)x2y+xy2.
答案:解:(1)(x-y)2=(x+y)2-4xy=42-4×3=4. (2)x2y+xy2=xy(x+y)=3×4=12.
22.先化简,再求值:2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=1
2
.
答案:解:原式=2b2+a2-b2-(a2-2ab+b2) =a2+b2-a2+2ab-b2
=2ab.
当a=-3,b=1
2
时,
原式=2ab=2×(-3)×1
2
=-3.
23.在三个整式x2+2xy,y2+2xy,x2中,请你选出两个进行加减运算,使得整式
可以因式分解,并进行分解.
答案:略
24.观察下面的4个等式:
32=2+22+3,42=3+32+4,52=4+42+5,62=5+52+6.
(1)请你写出第5个等式;
(2)如果用n表示正整数,你能用含有字母n的等式表示出你发现的规律吗?你能说明所发现的规律是正确的吗?
答案:解:(1)第5个等式:72=6+62+7.
(2)(n+1)2=n+n2+(n+1).
证明如下:
右边=n+n2+(n+1)=n2+2n+1=(n+1)2=左边
或:左边=(n+1)2=n2+2n+1=n+n2+(n+1)=右边.
25.先阅读下列材料,再分解因式.
要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得到a(m+n)+b(m+n),这时由于a(m+n)与b(m+n)又有公因式(m+n),于是可提出公因式(m+n),从而得到(m+n)(a+b).因此有:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种分解因式的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.请用上面提供的方法分解因式:
(1)a2-ab+ac-bc;(2)m2+5n-mn-5m.
答案:解:(1)a2-ab+ac-bc=a(a-b)+c(a-b)
=(a-b)(a+c).
(2)m2+5n-mn-5m=m2-mn+5n-5m
=m(m-n)-5(m-n)=(m-n)(m-5).。