2016-2017学年高二(上)期中数学试卷(解析版)

合集下载

江苏省扬州中学2016-2017学年高二上学期期中数学试卷 含解析

江苏省扬州中学2016-2017学年高二上学期期中数学试卷 含解析

2016-2017学年江苏省扬州中学高二(上)期中数学试卷一、填空题:本大题共14小题,每小题5分,共70分。

1.命题:“∃x∈R,x2﹣x﹣1<0”的否定是.2.直线y=x+1的倾斜角是.3.若方程+=1表示的曲线为焦点在x轴上的椭圆,则实数a的取值范围是.4.命题“若a>b,则a2>b2”的逆命题是.5.与椭圆+=1有相同的焦点,且离心率为的椭圆标准方程为.6.如果对任何实数k,直线(3+k)x+(1﹣2k)y+1+5k=0都过一个定点A,那么点A的坐标是.7.如果p:x>2,q:x>3,那么p是q的条件.(从“充分不必要"、“必要不充分”、“充要"、“既不充分也不必要”中选出适当的一种填空)8.已知椭圆+上一点M到左焦点F1的距离是8,则M到右准线的距离为.9.在平面直角坐标系xOy中,已知双曲线C:﹣y2=1(a>0)的一条渐近线与直线l:2x﹣y+1=0垂直,则实数a=.10.如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是.11.圆心在抛物线y=x2上,并且和该抛物线的准线及y轴都相切的圆的标准方程为.12.已知F1、F2为双曲线﹣=1(a>0,b>0)的左、右焦点,过F2作双曲线渐近线的垂线,垂足为P,若|PF1|2﹣|PF2|2=c2.则双曲线离心率的值为.13.已知直线:ax+by=1(其中a,b是实数) 与圆:x2+y2=1(O是坐标原点)相交于A,B两点,且△AOB是直角三角形,点P(a,b)是以点M(0,1)为圆心的圆M上的任意一点,则圆M的面积最小值为.14.已知直线l:y=x+4,动圆O:x2+y2=r2(1<r<2),菱形ABCD的一个内角为60°,顶点A,B在直线l上,顶点C,D在圆O上.当r变化时,菱形ABCD的面积S的取值范围是.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知命题p:“关于x,y的方程x2﹣2ax+y2+2a2﹣5a+4=0(a∈R)表示圆”,命题q:“∀x ∈R,使得x2+(a﹣1)x+1>0(a∈R)恒成立”.(1)若命题p为真命题,求实数a的取值范围;(2)若命题p∧q为真命题,求实数a的取值范围.16.已知直线l过点P(2,1)(1)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程;(2)若直线l与x正半轴、y正半轴分别交于A,B两点,且△ABO的面积为4,求直线l 的方程.17.如图,F1,F2分别是椭圆C: +=1(a>b>0)的左、右焦点,A是椭圆C的上顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°(1)求椭圆C的离心率;(2)若a=2,求△AF1B的面积.18.为了迎接青奥会,南京将在主干道统一安装某种新型节能路灯,该路灯由灯柱和支架组成.在如图所示的直角坐标系中,支架ACB是抛物线y2=2x的一部分,灯柱CD经过该抛物线的焦点F且与路面垂直,其中C在抛物线上,B为抛物线的顶点,DH表示道路路面,BF∥DH,A为锥形灯罩的顶,灯罩轴线与抛物线在A处的切线垂直.安装时要求锥形灯罩的顶到灯柱的距离是1.5米,灯罩的轴线正好通过道路路面的中线.(1)求灯罩轴线所在的直线方程;(2)若路宽为10米,求灯柱的高.19.已知圆O:x2+y2=4与x轴负半轴的交点为A,点P在直线l:x+y﹣a=0上,过点P 作圆O的切线,切点为T(1)若a=8,切点T(,﹣1),求点P的坐标;(2)若PA=2PT,求实数a的取值范围;(3)若不过原点O的直线与圆O交于B,C两点,且满足直线OB,BC,OC的斜率依次成等比数列,求直线l的斜率.20.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为.A为椭圆上异于顶点的一点,点P满足=,(1)若点P的坐标为(2,),求椭圆的方程;(2)设过点P的一条直线交椭圆于B,C两点,且=m,直线OA,OB的斜率之积﹣,求实数m的值;(3)在(1)的条件下,是否存在定圆M,使得过圆M上任意一点T都能作出该椭圆的两条切线,且这两条切线互相垂直?若存在,求出定圆M;若不存在,说明理由.2016—2017学年江苏省扬州中学高二(上)期中数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1.命题:“∃x∈R,x2﹣x﹣1<0”的否定是∀x∈R,x2﹣x﹣1≥0.【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题:“∃x∈R,x2﹣x﹣1<0”的否定是∀x∈R,x2﹣x﹣1≥0;故答案为:∀x∈R,x2﹣x﹣1≥0.2.直线y=x+1的倾斜角是.【考点】直线的倾斜角.【分析】设直线y=x+1的倾斜角为α,α∈[0,π).可得tanα=1,解得α即可得出.【解答】解:设直线y=x+1的倾斜角为α,α∈[0,π).∴tanα=1,解得α=.故答案为:.3.若方程+=1表示的曲线为焦点在x轴上的椭圆,则实数a的取值范围是a>7.【考点】椭圆的标准方程.【分析】方程=1表示焦点在x轴上的椭圆的充要条件是,即可求出实数m 的取值范围.【解答】解:∵方程+=1表示的曲线为焦点在x轴上的椭圆,∴,解得:a>7.∴实数m的取值范围是a>7.故答案为:a>7.4.命题“若a>b,则a2>b2"的逆命题是“若a2>b2,则a>b”.【考点】四种命题.【分析】根据已知中的原命题,结合逆命题的定义,可得答案.【解答】解:命题“若a>b,则a2>b2”的逆命题是“若a2>b2,则a>b”,故答案为:“若a2>b2,则a>b”5.与椭圆+=1有相同的焦点,且离心率为的椭圆标准方程为.【考点】椭圆的标准方程.【分析】由已知得所求椭圆的焦点坐标为(±,0),离心率为,由此能求出椭圆方程.【解答】解:由椭圆+=1,得a2=9,b2=4,∴c2=a2﹣b2=5,∴该椭圆的焦点坐标为(±,0).设所求椭圆方程为,a>b>0,则,又,解得a=5.∴b2=25﹣5=20.∴所求椭圆方程为:.故答案为:.6.如果对任何实数k,直线(3+k)x+(1﹣2k)y+1+5k=0都过一个定点A,那么点A的坐标是(﹣1,2).【考点】恒过定点的直线.【分析】由(3+k)x+(1﹣2k)y+1+5k=0可得3x+y+1+k(x﹣2y+5)=0,进而有x﹣2y+5=0且3x+y+1=0,由此即可得到结论.【解答】解:由(3+k)x+(1﹣2k)y+1+5k=0可得3x+y+1+k(x﹣2y+5)=0∴x﹣2y+5=0且3x+y+1=0∴x=﹣1,y=2∴对任何实数k,直线(3+k)x+(1﹣2k)y+1+5k=0都过一个定点A(﹣1,2)故答案为:(﹣1,2)7.如果p:x>2,q:x>3,那么p是q的必要不充分条件.(从“充分不必要”、“必要不充分"、“充要"、“既不充分也不必要”中选出适当的一种填空)【考点】必要条件、充分条件与充要条件的判断.【分析】直接利用充要条件的判断方法结合集合的包含关系判断即可.【解答】解:因为p:x>2,得不到q:x>3;但是x>3;得到x>2;所以么p是q的必要不充分条件.故答案为:必要不充分.8.已知椭圆+上一点M到左焦点F1的距离是8,则M到右准线的距离为.【考点】椭圆的简单性质.【分析】先由椭圆的第一定义求出点M到左焦点的距离,再用第二定义求出点M到右准线的距离d即可.【解答】解:由椭圆+,得a=5,b=3,c==4,由椭圆的第一定义得点M到右焦点的距离等于10﹣8=2,离心率e=,再由椭圆的第二定义得=e=,∴点M到右准线的距离d=.故答案为:.9.在平面直角坐标系xOy中,已知双曲线C:﹣y2=1(a>0)的一条渐近线与直线l:2x﹣y+1=0垂直,则实数a=2.【考点】双曲线的简单性质.【分析】先求出直线方程的斜率,并表示出双曲线方程的渐近线,再由双曲线C:﹣y2=1(a>0)的一条渐近线与直线l:2x﹣y+1=0垂直可知两直线的斜率之积等于﹣1,可求出a的值.【解答】解:直线l:2x﹣y+1=0的斜率等于2,双曲线C:﹣y2=1(a>0)的渐近线可以表示为:y=±又因为双曲线C:﹣y2=1(a>0)的一条渐近线与直线l:2x﹣y+1=0垂直,∴2×(﹣)=﹣1,∴a=2,故答案为210.如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是.【考点】直线与圆的位置关系.【分析】设,的最大值就等于连接原点和圆上的点的直线中斜率的最大值,由数形结合法的方式,易得答案.【解答】解:设,则y=kx表示经过原点的直线,k为直线的斜率.所以求的最大值就等价于求同时经过原点和圆上的点的直线中斜率的最大值.从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,此时的斜率就是其倾斜角∠EOC的正切值.易得,可由勾股定理求得|OE|=1,于是可得到,即为的最大值.故答案为:11.圆心在抛物线y=x2上,并且和该抛物线的准线及y轴都相切的圆的标准方程为(x ±1)2+(y﹣)2=1.【考点】抛物线的简单性质.【分析】由题意设出圆心坐标,由相切列出方程求出圆心坐标和半径,代入圆的标准方程即可.【解答】解:由题意知,设P(t,t2)为圆心,且准线方程为y=﹣,∵与抛物线的准线及y轴相切,∴|t|=t2+,∴t=±1.∴圆的标准方程为(x±1)2+(y﹣)2=1.故答案为:(x±1)2+(y﹣)2=1.12.已知F1、F2为双曲线﹣=1(a>0,b>0)的左、右焦点,过F2作双曲线渐近线的垂线,垂足为P,若|PF1|2﹣|PF2|2=c2.则双曲线离心率的值为2.【考点】双曲线的简单性质.【分析】求出双曲线的一条渐近线方程,运用点到直线的距离公式,求得|PF2|=b,运用余弦函数的定义和余弦定理,计算即可得到所求值.【解答】解:设双曲线﹣=1(a>0,b>0)的一条渐近线方程为y=x,F2(c,0)到渐近线的距离为d=|PF2|==b,cos∠POF2==,在△POF1中,|PF1|2=|PO|2+|OF1|2﹣2|PO|•|OF1|•cos∠POF1=a2+c2﹣2ac•(﹣)=3a2+c2,则|PF1|2﹣|PF2|2=3a2+c2﹣b2=4a2,∵|PF1|2﹣|PF2|2=c2,∴4a2=c2,∴e=2.故答案为2.13.已知直线:ax+by=1(其中a,b是实数)与圆:x2+y2=1(O是坐标原点)相交于A,B 两点,且△AOB是直角三角形,点P(a,b)是以点M(0,1)为圆心的圆M上的任意一点,则圆M的面积最小值为(3﹣2)π.【考点】直线与圆相交的性质.【分析】根据圆的方程找出圆心坐标和半径,由|OA|=|OB|根据题意可知△AOB是等腰直角三角形,根据勾股定理求出|AB|的长度,根据等腰直角三角形的性质可得圆心到直线的距离等于|AB|的一半,然后利用点到直线的距离公式表示出圆心到直线的距离,两者相等即可得到a与b的轨迹方程为一个椭圆,圆M的面积最小时,所求半径为椭圆a2+=1上点P(a,b)到焦点(0,1)的距离最小值,即可得出结论.【解答】解:由圆x2+y2=1,所以圆心(0,0),半径为1所以|OA|=|OB|=1,则△AOB是等腰直角三角形,得到|AB|=则圆心(0,0)到直线ax+by=1的距离为,所以2a2+b2=2,即a2+=1.因此,圆M的面积最小时,所求半径为椭圆a2+=1上点P(a,b)到焦点(0,1)的距离最小值,由椭圆的性质,可知最小值为﹣1.所以圆M的面积最小值为π(﹣1)2=(3﹣2)π.故答案为:(3﹣2)π.14.已知直线l:y=x+4,动圆O:x2+y2=r2(1<r<2),菱形ABCD的一个内角为60°,顶点A,B在直线l上,顶点C,D在圆O上.当r变化时,菱形ABCD的面积S的取值范围是(0,)∪(,6).【考点】直线与圆的位置关系.【分析】设AB=a,直线CD的方程为y=x+b,则圆心到直线的距离为d=<r,进而可得b的范围,结合=,可得a的范围,再由菱形ABCD的面积S=a2,得到答案.【解答】解:设AB=a,直线CD的方程为y=x+b,则圆心到直线的距离为d=<r,又由1<r<2,∴﹣2<b<4,且b≠1∵=,∴b=4﹣a,∴a=(4﹣b)∴0<a<,或<a<2,∴菱形ABCD的面积S=a2∈(0,)∪(,6),故答案为:(0,)∪(,6)二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤。

2016-2017学年高二上学期期中考试数学试题 Word版含答案

2016-2017学年高二上学期期中考试数学试题 Word版含答案

2016-2017学年高二上学期期中考试数学试题一、选择题(本大题共8小题,每小题5分,共40分)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.05B .0.35C .0.7D .0.95 2.全称命题“2,54x R x x ∀∈+=”的否定是( )A .2000,54x R x x ∃∈+=B .2,54x R x x ∀∈+≠C .2000,54x R x x ∃∈+≠D .以上都不正确3.在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A .6B .8C .10D .144.某程序框图如图所示,若输出的结果是62,则判断框中可以是( ) A .7?i ≥ B .6?i ≥ C .5?i ≥ D .4?i ≥5.对于实数,,a b c ,“a b >”是“22ac bc >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知椭圆22221(0)x y a b a b+=>>的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8,则椭圆的左顶点为( )A .(2,0)-B .(3,0)-C .(4,0)-D .(5,0)- 7.点P 在边长为1的正方形ABCD 内运动,则动点P 到 定点A 的距离|PA |1<|的概率为( )A.πB.2π C.4π D .6π8.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅ 的最大值为( ) A .2 B .3 C .6 D .8二、填空题(每题5分,共6个小题,满分30分) 9.某课题组进行城市空气质量调查,按地域把24个城市分 成甲、乙、丙三组,对应城市数分别为 4、12、8.若用分层 抽样方法抽取6个 城市,则甲组中应抽取的城市数为________.10.执行如图所示的程序框图,若输入的x 的值为1, 则输出的n 的值为________.11.有一个容量为200的样本,其频率分布直方图如图所示, 据图知,样本数据在[8,10)内的频数为 12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN 重合) 的中点的轨迹方程为13.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点12,F F 在x轴上,离心率为2.过点1F 的直线L 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为 . 14.有下列命题:①“若0x y +>,则00x y >>且”的否命题; ②“矩形的对角线相等”的否命题;③“若1m ≥,则22(m 1)x m 30mx -+++>的解集是R ”的逆命题; ④“若7a +是无理数,则a 是无理数”的逆否命题. 其中正确命题的序号是三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)15.(满分13分)设命题p :x y c =为R 上的减函数,命题q :函数2(x)234f x x c =-+>在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立.若p q ∨为真命题,p q ∧为假命题,求c 的取值范围.第18题图16.(满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.17.(满分13分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(II )线段AC 的中点为M ,求证EA //平面FDM18(满分14分).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.19.(满分14分)某同学利用国庆节期间进行社会实践活动,在[25,55]岁的人群中随机抽取n 人进行了一次生活习惯是否符合低碳生活的调查,若生活习惯符合低碳生活的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:(1)补全频率分布直方图,并求,,n a p 的值;(2)从年龄在[40,50)岁的“低碳族”中采用分层抽样的方法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.20.(满分14分)已知椭圆的标准方程为:22221(0)43x y a a a+=>(1)当1a =时,求椭圆的焦点坐标及椭圆的离心率; (2)过椭圆的右焦点2F 的直线与圆222:4(0)C x y a a +=>常数交于,A B 两点,求22|F ||F |A B ⋅的值.2016-2017学年高二上学期期中考试数学试题答案一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.95B .0.7C .0.35D .0.05解析:“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05.答案:D2.全称命题“∀x ∈R ,x 2+5x =4”的否定是( )A .∃x 0∈R ,x 20+5x 0=4 B .∀x ∈R ,x 2+5x ≠4 C .∃x 0∈R ,x 20+5x 0≠4 D .以上都不正确解析:选C 全称命题的否定为特称命题.3.在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A .6B .8C .10D .14解析:由甲组数据的众数为14得x =y =4,乙组数据中间两个数分别为6和14,所以中位数是6+142=10.答案:C4.某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .i >6?B .i >7?C .i ≥6?D .i ≥5?解析:根据题意可知该程序运行情况如下: 第1次:S =0+21=2,i =1+1=2; 第2次:S =2+22=6,i =3; 第3次:S =6+23=14,i =4; 第4次:S =14+24=30,i =5; 第5次:S =30+25=62,i =6; 第6次:S =62+26=126,i =7;此时S =126,结束循环,因此判断框应该是“i >6?”.答案:A5.“a <0”是“方程ax 2+1=0至少有一个负根”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选C 方程ax 2+1=0至少有一个负根等价于x 2=-1a,故a <0,故选C.6.已知椭圆22221(0)x y a b a b+=>>的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8,则椭圆的左顶点为( )A .(2,0)-B .(3,0)-C .(4,0)-D .(5,0)-【解析】圆心坐标为(3,0),∴c =3,又b =4,∴5a =. ∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0). 【答案】 D7.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA |<1的概率为( )A.14B.12C.π4D .π 解析:如图所示,动点P 在阴影部分满足|PA |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P到定点A 的距离|PA |<1的概率为S ′S =π4. 答案:C 8.直线l 经过椭圆的一个短轴顶点顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12C .23D .34解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +yb=1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B .二、填空题(每题5分,共6个小题,满分30分)9.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8.若用分层抽样方法抽取6个城市,则甲组中应抽取的城市数为________.答案:110.执行如图所示的程序框图,若输入的x 的值为1, 则输出的n 的值为________.答案:311.有一个容量为200的样本,其频率分布直方图如图所示,据图知,样本数据在[8,10)内的频数为( )A .38B .57C .76D .95 答案:C12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN 重合)的中点的轨迹方程为2214x y += 13.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过点1F 的直线L 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.【答案】221168x y +=14.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是 ①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)15.(满分13分)设命题p :x y c =为R 上的减函数,命题q :函数2(x)234f x x c =-+>在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立.若p q ∨为真命题,p q ∧为假命题,求c 的取值范围.解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可. 若p 真,由y =c x为减函数,得0<c <1. .....................3分 当1,22x ⎡⎤∈⎢⎥⎣⎦时,由不等式2(x 1)22-+≥(x =1时取等号)知(x)f 在1,22⎡⎤⎢⎥⎣⎦上的最小值为2 ......................6分若q 真,则42c <,即12c < .......................8分 若p 真q 假,则112c ≤<; .......................10分 若p 假q 真,则0c ≤. ......................12分 综上可得,(]1,0,12c ⎡⎫∈-∞⎪⎢⎣⎭......................13分16.(满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,计算被调查的出租车司机对新法规知晓情况比较好的频率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.解:(1)答对题目数小于9的人数为55,记“答对题目数大于等于9”为事件A ,P (A )=1-55100=0.45. .......................6分 (2)记“选出的2人中至少有一名女出租车司机”为事件M ,设答对题目数小于8的司机为A ,B ,C ,D ,E ,其中A ,B 为女司机,任选出2人包含AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE ,共10种情况,.......................9分(3)至少有一名女出租车司机的事件为AB ,AC ,AD ,AE ,BC ,BD ,BE ,共7种 ..12分则P (M )=710=0.7. ......13分16.(满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(II )线段AC 的中点为M ,求证EA //平面FDM第3题图17.(本小题满分14分) (Ⅰ)证明:在△ABC 中,因为AC =,2AB =,1BC =,所以 BC AC ⊥. ………………3分 又因为 AC FB ⊥, 因为BC FB B =所以 ⊥AC 平面FBC . ………………6分 (Ⅱ)M 为AC 中点时,连结CE ,与DF 交于点N ,连结MN .因为 CDEF 为正方形,所以N 为CE 中点. ……………8分 所以 EA //MN . ……………10分 因为 ⊂MN 平面FDM ,⊄EA 平面FDM , ………12分 所以 EA //平面FDM . …………13分18(满分14分).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率. 规范解答不失分 (Ⅰ)由茎叶图可知:甲班身高集中于160179:之间, 而乙班身高集中于170180: 之间.因此乙班平均身高高于甲班 ...............4分 (Ⅱ)158162163168168170171179182170.10x ++++++++==...............6分 甲班的样本方差为:222222222221(158170)(162170)(163170)(168170)10(168170)(170170)(171170)(179170)(179170)(182170)57.2.s ⎡=-+-+-+-⎣+-+-+-+-+-+-=...............8分(Ⅲ)设身高为176cm的同学被抽中的事件为A;从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173)(181,176)(181,178)(181,179)(179,173)(179,176)(179,178)(178,173)(178, 176) (176,173)共10个基本事件,...............10分而事件A含有4个基本事件;...............12分所以42().105P A ...............14分19.(满分14分)某同学利用国庆节期间进行社会实践活动,在[25,55]岁的人群中随机抽取n人进行了一次生活习惯是否符合低碳生活的调查,若生活习惯符合低碳生活的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:(1)补全频率分布直方图,并求n,a,p的值;(2)从年龄在[40,50)岁的“低碳族”中采用分层抽样的方法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.解:(1)第二组的概率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以频率组距=0.35=0.06.............2分 频率分布直方图如下:............4分第一组的人数为1200.6=200,频率为0.04×5=0.2, 所以n =2000.2=1 000 .............6分 因为第二组的频率为0.3,所以第二组的人数为1 000×0.3=300,所以p =195300=0.65. 第四组的频率为0.03×5=0.15,所以第四组的人数为1 000×0.15=150.所以a =150×0.4=60 .............8分(2)因为年龄在[40,45)岁的“低碳族”与[45,50)岁的“低碳族”的人数的比为60∶30=2∶1,所以采用分层抽样法抽取6人,[40,45)中有4人,[45,50)中有2人.设[40,45)中的4人为a ,b ,c ,d ,[45,50)中的2人为m ,n ,则选取2人作为领队的情况有(a ,b ),(a ,c ),(a ,d ),(a ,m ),(a ,n ),(b ,c ),(b ,d ),(b ,m ),(b ,n ),(c ,d ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),(m ,n ),共15种, ............10分(3)其中恰有1人年龄在[40,45)岁的情况有(a ,m ),(a ,n ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),共8种, ............12分(4)所以选取的2名领队中恰有1人年龄在[40,45)岁的概率P =815.............14分 20.(满分14分)已知椭圆的标准方程为:22221(0)43x y a a a+=> (1)当1a =时,求椭圆的焦点坐标及离心率;(2)过椭圆的右焦点2F 的直线与圆222:4(0)C x y a a +=>常数交于,A B 两点,证明22|F ||F |A B ⋅为定值. 解:(1)焦点坐标12(1,0),F (1,0)F - ..........2分离心率12e = ..........3分(2)当斜率不存在时11|||F B |F A ===此时212|FA ||F B|3a ⋅= 5分当斜率不存在=时,设1122(x ,y ),B(x ,y )A:()AB y k x a =-由222(x a)x 4y k y a =-⎧⎨+=⎩ 得222222(1k )x 240ak x k a a +-+-= 7分 222212122224,11ak k a a x x x x k k -+==++ 9分11|FA |x a |==-22|F A |x a |==-所以22111212|FA||FB|(1)|x x a(x )a |k x ⋅=+-++ 12分 22222222242(1k )|a |11k a a a k k k -=+-+++23a = 13分 所以 22|F ||F |A B ⋅为定值23a .。

2016-2017学年河南省南阳市高二上学期数学期中试卷带解析(理科)

2016-2017学年河南省南阳市高二上学期数学期中试卷带解析(理科)

2016-2017学年河南省南阳市高二(上)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={x|x2>1},集合A={x|x2﹣4x+3<0},则∁U A=()A.(1,3) B.(﹣∞,1)∪[3,+∞) C.(﹣∞,﹣1)∪[3,+∞)D.(﹣∞,﹣1)∪(3,+∞)2.(5分)已知在△ABC中,角A,B,C的对边是a,b,c,若A:B:C=1:2:3,则a:b:c=()A.1:2:3 B. C.D.3.(5分)设x>1,则x+的最小值是()A.4 B.5 C.6 D.74.(5分)等差数列{a n}的前n项和为S n,若a2+a4+a6=15,则S7的值是()A.28 B.35 C.42 D.75.(5分)已知数列{a n}为等比数列,其前n项和S n=3n﹣1+t,则t的值为()A.﹣1 B.﹣3 C.D.16.(5分)在△ABC中,根据下列条件解三角形,则其中有两个解的是()A.b=10,A=45°,B=60°B.a=60,c=48,B=120°C.a=7,b=5,A=75°D.a=14,b=16,A=45°7.(5分)裴波那契数列的通项公式为a n=[()n﹣()n],又称为“比内公式”,是用无理数表示有理数的一个范例,由此,a5=()A.3 B.5 C.8 D.138.(5分)已知在正项等比数列{a n}中,a1=1,a2a4=16,则|a1﹣12|+|a2﹣12|+…+|a8﹣12|=()A.224 B.225 C.226 D.2569.(5分)不等式>1的解集为(﹣∞,﹣1)∪(3,+∞),则不等式x2+ax ﹣2b<0的解集为()A.(﹣3,﹣2)B.C.(﹣∞,﹣3)∪(﹣2,+∞)D.10.(5分)在△ABC中,若=,则△ABC的形状是()A.锐角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形11.(5分)某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.2日和5日B.5日和6日C.6日和11日 D.2日和11日12.(5分)已知方程x2+ax+b=0的一根在(0,1)上,另一根在(1,2)上,则的取值范围是()A.(2,+∞)B.C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*),则a2016=.14.(5分)在约束条件下,目标函数z=|x﹣y+4|的最大值为.15.(5分)有两个斜边长相等的直角三角板,其中一个为等腰直角三角形,另一个边长为3,4,5,将它们拼成一个平面四边形,则不是斜边的那条对角线长是.16.(5分)若﹣1<a<0,则不等式﹣的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知不等式mx2+2mx﹣8≥0有解,求m的取值范围.18.(12分)已知数列{a n}满足:a n≠0,a1=,a n﹣a n+1=2a n•a n+1.(n∈N*).(1)求证:{}是等差数列,并求出a n;(2)证明:a1a2+a2a3+…+a n a n+1<.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,A=60°,a=3.(1)若b=2,求cosB;(2)求△ABC的面积的最大值.20.(12分)已知数列{a n}的前n项和为S n,且a n是S n与2的等差中项,数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0上.(1)求a1和a2的值;(2)求数列{a n},{b n}的通项a n和b n;(3)设c n=a n•b n,求数列{c n}的前n项和T n.21.(12分)小张打算在2001年初向建行贷款50万元先购房,银行贷款的年利率为4%,按复利计算,要求从贷款开始到2010年要分10年还清,每年年底等额归还且每年1次,每年至少要还多少钱呢(保留两位小数)?(提示:(1+4%)10≈1.48)22.(12分)△ABC中,角A,B,C的对边分别为a,b,c,且cosC=.(1)求角B的大小;(2)若BD为AC边上的中线,cosA=,BD=,求△ABC的面积.2016-2017学年河南省南阳市高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={x|x2>1},集合A={x|x2﹣4x+3<0},则∁U A=()A.(1,3) B.(﹣∞,1)∪[3,+∞) C.(﹣∞,﹣1)∪[3,+∞)D.(﹣∞,﹣1)∪(3,+∞)【解答】解:U={x|x2>1}={x|x>1或x<﹣1},集合A={x|x2﹣4x+3<0}={x|1<x<3},∁U A={x|x≥3或x<﹣1},故选:C.2.(5分)已知在△ABC中,角A,B,C的对边是a,b,c,若A:B:C=1:2:3,则a:b:c=()A.1:2:3 B. C.D.【解答】解:由题意:∵角A,B,C是△ABC的内角,∴B+A+C=π∵A:B:C=1:2:3,∴A=30°,B=60°,C=90°根据正弦定理:sinA:sinB:sinC=a:b:c∴a:b:c=1::2故选:C.3.(5分)设x>1,则x+的最小值是()A.4 B.5 C.6 D.7【解答】解:∵x>1,∴+1=5.当且仅当x=3时取等号.故选:B.4.(5分)等差数列{a n}的前n项和为S n,若a2+a4+a6=15,则S7的值是()A.28 B.35 C.42 D.7【解答】解:由等差数列{a n}的性质,a2+a4+a6=15=3a4,解得a4=5.则S7==7a4=35.故选:B.5.(5分)已知数列{a n}为等比数列,其前n项和S n=3n﹣1+t,则t的值为()A.﹣1 B.﹣3 C.D.1【解答】解:∵等比数列{a n}的前n项和S n=3n﹣1+t,∴n=1时,a1=S1=1+t;n≥2时,a n=S n﹣S n﹣1=3n﹣1+t﹣(3n﹣2+t)=2×3n﹣2,n=1时上式成立,∴1+t=2×3﹣1,解得t=﹣.故选:C.6.(5分)在△ABC中,根据下列条件解三角形,则其中有两个解的是()A.b=10,A=45°,B=60°B.a=60,c=48,B=120°C.a=7,b=5,A=75°D.a=14,b=16,A=45°【解答】解:若b=10,A=45°,B=60°,则由正弦定理可得=,求得a=,故△ABC有一解;若a=60,c=48,B=120°,则由余弦定理可得b2=a2+c2﹣2ac•cosB=8784,求得b 只有一解,故△ABC有一解;若a=7,b=5,A=75°,则由正弦定理可得=,求得sinB=,再根据b<a,可得B为锐角,故角B只有一个,故△ABC有一解;若a=14,b=16,A=45°,则由正弦定理可得=,求得sinB=,再根据b>a,可得B>A,∴B可能是锐角也可能是钝角,即角B有2个值,故△ABC有两解,故选:D.7.(5分)裴波那契数列的通项公式为a n=[()n﹣()n],又称为“比内公式”,是用无理数表示有理数的一个范例,由此,a5=()A.3 B.5 C.8 D.13【解答】解:∵a n=[()n﹣()n],∴a1===1,同理可得:a2=1,a3=2,a4=3,a5=5.故选:B.8.(5分)已知在正项等比数列{a n}中,a1=1,a2a4=16,则|a1﹣12|+|a2﹣12|+…+|a8﹣12|=()A.224 B.225 C.226 D.256【解答】解:设正项等比数列{a n}的公比为q>0,∵a1=1,a2a4=16,∴q4=16,解得q=2.∴=2n﹣1,由2n﹣1≤12,解得n≤4.∴|a1﹣12|+|a2﹣12|+…+|a8﹣12|=12﹣a1+12﹣a2+12﹣a3+12﹣a4+a5﹣12+…+a8﹣12=﹣2(a1+a2+a3+a4)+(a1+a2+…+a8)=﹣+=﹣2(24﹣1)+28﹣1=225.故选:B.9.(5分)不等式>1的解集为(﹣∞,﹣1)∪(3,+∞),则不等式x2+ax ﹣2b<0的解集为()A.(﹣3,﹣2)B.C.(﹣∞,﹣3)∪(﹣2,+∞)D.【解答】解:由题意:不等式>1转化为[x(a﹣1)﹣b+1](x+b)>0的解集为(﹣∞,﹣1)∪(3,+∞),可知a>1由方程(ax﹣x﹣b+1)(x+b)=0可知其解:x1=﹣1,x2=3,可得:或,解得:或,∵a>1,∴a=5,b=﹣3,那么:不等式x2+ax﹣2b<0转化为:x2+5x+6<0,解得:﹣3<x<﹣2,所以不等式x2+ax﹣2b<0的解集为{x|﹣3<x<﹣2}.故选:A.10.(5分)在△ABC中,若=,则△ABC的形状是()A.锐角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【解答】解:∵=,∴可得:(a2+b2)sin(A﹣B)=(a2﹣b2)sin C,∵2Rsin(A﹣B)=2R(sinAcosB﹣cosAsinB)=2RsinAcosB﹣2RsinBcosA=a•﹣b•=,∴已知等式变形得:(a2+b2)•=(a2﹣b2)•,∴a2=b2或a2+b2=c2,则△ABC是等腰三角形或直角三角形.故选:D.11.(5分)某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.2日和5日B.5日和6日C.6日和11日 D.2日和11日【解答】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.12.(5分)已知方程x2+ax+b=0的一根在(0,1)上,另一根在(1,2)上,则的取值范围是()A.(2,+∞)B.C. D.【解答】解:令f(x)=x2+ax+b,∵方程x2+ax+b=0的一根在(0,1)上,另一根在(1,2)上,∴,即,由约束条件画出可行域,如右图中的△ABC内的区域,B(﹣2,0),C(﹣1,0),联立,解得A(﹣3,2),∵的几何意义为:可行域内的动点与定点P(3,2)连线的斜率,且k AP=0,=,∴的取值范围为(0,),故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*),则a2016=.【解答】解::∵数列{a n}的前n项积为T n,且T n=2﹣2a n,∴当n=1时,a1=2﹣2a1,解得a1=,=2﹣2a n﹣1,当n≥2时,T n﹣1∴a n==,化为a n=,取n=2,3,可得a2=,a3=,…,猜想a n=.经过验证成立.∴a n=,∴a2016=,故答案为:.14.(5分)在约束条件下,目标函数z=|x﹣y+4|的最大值为5.【解答】解:画出满足条件的平面区域,如图示:,由z=|x﹣y+4|,得:y=x+4±z,结合图象:若4±z=2,则,|z|=2,若4±z=﹣1,则|z|=5,故答案为:5.15.(5分)有两个斜边长相等的直角三角板,其中一个为等腰直角三角形,另一个边长为3,4,5,将它们拼成一个平面四边形,则不是斜边的那条对角线长是.【解答】解:如图所示,AC⊥BC,BD⊥DA.DB=4,AB=5,AD=3,AC=BC=.设∠DAB=α,cosα=,sinα=.cos=cosαcos﹣sinαsin=﹣.∴在△ACD中,CD2=+32﹣2××=.∴CD=.故答案为:.16.(5分)若﹣1<a<0,则不等式﹣的最大值为﹣3﹣2.【解答】解:设f(a)=﹣,∴f′(a)=﹣+=,∵﹣1<a<0,令f′(a)=0,解得a=﹣2+,当f′(a)>0,即(﹣2+,0)单调递减,当f′(a)<0,即(﹣1,﹣2+)单调递增,当a=﹣2+函数f(a)有最大值,即f(﹣2+)=,故答案为:﹣3﹣2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知不等式mx2+2mx﹣8≥0有解,求m的取值范围.【解答】解:(1)当m=0时,原不等式化为﹣8≥0,解集为空集,故不满足题意;…(2分)(2)当m>0时,一元二次不等式对应二次函数开口向上,显然满足题意;…(5分)(3)当m<0时,由题意,得:△≥0,即(2m)2﹣4×(﹣8)≥0,又m2+8>0,所以取m<0;…(.9分)综上,当m∈R且m≠0时,不等式mx2+2mx﹣8≥0有解…(10分)18.(12分)已知数列{a n}满足:a n≠0,a1=,a n﹣a n+1=2a n•a n+1.(n∈N*).(1)求证:{}是等差数列,并求出a n;(2)证明:a1a2+a2a3+…+a n a n+1<.【解答】证明:(1)a1=,a n﹣a n+1=2a n•a n+1.可得﹣=2,则{}是首项为3,公差为2的等差数列,=+2(n﹣1)=3+2(n﹣1)=2n+1,即有a n=;(2)证明:a1a2+a2a3+…+a n a n+1=++…+=(﹣+﹣+…+﹣)=(﹣)=﹣•<.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,A=60°,a=3.(1)若b=2,求cosB;(2)求△ABC的面积的最大值.【解答】(本题满分为12分)解:(1)∵,∴=,可得,…(3分)又∵a>b,∴A>B,可得B为锐角,∴.…(6分)(2),∵,∴bc=b2+c2﹣9≥2bc﹣9,…(9分)∴得bc≤9,当且仅当b=c时等号成立,∴故S=bcsinA≤9×=,即△ABC的面积的最大值为.…(12△ABC20.(12分)已知数列{a n}的前n项和为S n,且a n是S n与2的等差中项,数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0上.(1)求a1和a2的值;(2)求数列{a n},{b n}的通项a n和b n;(3)设c n=a n•b n,求数列{c n}的前n项和T n.【解答】解:(1)∵a n是S n与2的等差中项∴S n=2a n﹣2∴a1=S1=2a1﹣2,解得a1=2a1+a2=S2=2a2﹣2,解得a2=4(2)∵S n=2a n﹣2,S n﹣1=2a n﹣1﹣2,又S n﹣S n﹣1=a n,n≥2∴a n=2a n﹣2a n﹣1,∵a n≠0,∴=2(n≥2),即数列{a n}是等比数列,∵a1=2,∴a n=2n∵点P(b n,b n+1)在直线x﹣y+2=0上,∴b n﹣b n+1+2=0,∴b n+1﹣b n=2,即数列{b n}是等差数列,又b1=1,∴b n=2n﹣1,(3)∵c n=(2n﹣1)2n∴T n=a1b1+a2b2+…+a n b n=1×2+3×22+5×23+…+(2n﹣1)2n,∴2T n=1×22+3×23+…+(2n﹣3)2n+(2n﹣1)2n+1因此:﹣T n=1×2+(2×22+2×23+…+2×2n)﹣(2n﹣1)2n+1,即:﹣T n=1×2+(23+24+…+2n+1)﹣(2n﹣1)2n+1,∴T n=(2n﹣3)2n+1+621.(12分)小张打算在2001年初向建行贷款50万元先购房,银行贷款的年利率为4%,按复利计算,要求从贷款开始到2010年要分10年还清,每年年底等额归还且每年1次,每年至少要还多少钱呢(保留两位小数)?(提示:(1+4%)10≈1.48)【解答】解:50万元10年产生本息和与每年存入x万元的本息和相等,故有购房款50万元十年的本息和:50(1+4%)10…4 分每年存入x万元的本息和:x•(1+4%)9+x•(1+4%)8+…+x…(8分)=•x…(10分)从而有50(1+4%)10=•x解得:x≈6.17(万元)…12分22.(12分)△ABC中,角A,B,C的对边分别为a,b,c,且cosC=.(1)求角B的大小;(2)若BD为AC边上的中线,cosA=,BD=,求△ABC的面积.【解答】解:(1)2bcosC+c=2a,由正弦定理,得2sinBcosC+sinC=2sinA.∵A+B+C=π,∴sinA=sin(B+C)=sinBcosC+cosBsinC,∴2sinBcosC+sinC=2(sinBcosC+cosBsinC),∴sinC=2cosBsinC,∵0<C<π,∴sinC≠0,∴.又∵0<B<π,∴B=.(2)在△ABD中,由余弦定理得=c2+﹣2c×cosA,∴=c2+﹣bc,①,在△ABC中,由正弦定理得=,由已知得sinA=.∴sinC=sin(A+B)=sinAcosB+cosAsinB=,∴c=b…②,由①,②解得b=7,c=5,=bcsinA=10.∴S△ABC。

2016-2017年福建省福州市高二上学期数学期中试卷及参考答案

2016-2017年福建省福州市高二上学期数学期中试卷及参考答案

2016-2017学年福建省福州市高二(上)期中数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1.(5分)若数列的前4项分别是,则此数列的一个通项公式为()A.B.C.D.2.(5分)下列选项中正确的是()A.若a>b,则ac2>bc2B.若a>b,c<d,则C.若a>b,c>d,则a﹣c>b﹣d D.若ab>0,a>b,则3.(5分)不等式ax2+bx+c<0(a≠0)的解集为∅,那么()A.a<0,△≥0 B.a<0,△≤0 C.a>0,△≤0 D.a>0,△>0 4.(5分)已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a99=0 D.a51=575.(5分)在△ABC中,若b=2asinB,则A等于()A.30°或60°B.45°或60°C.120°或60°D.30°或150°6.(5分)若三条线段的长为5、6、7,则用这三条线段()A.能组成直角三角形B.能组成锐角三角形C.能组成钝角三角形D.不能组成三角形7.(5分)下列函数中,y的最小值为2的是()A.y=x+B.y=x+(x>0)C.y=x+(x>0)D.y=+8.(5分)已知等比数列{a n}的前n项和为S n,若S3=12,S6=60,则S9=()A.192 B.300 C.252 D.3609.(5分)△ABC中,a,b,c分别为角A,B,C的对边,S表示△ABC的面积,=(b2+c2﹣a2),则角B等于()若acosB+bcosA=csinC,S△ABCA.30°B.45°C.60°D.90°10.(5分)如图,为测得河对岸塔AB的高,先在河岸上选一点C,使在C塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔高AB的高度为()A.10 B.10C.10D.1011.(5分)设实数x,y满足条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.412.(5分)将等差数列1,4,7…,按一定的规则排成了如图所示的三角形数阵.根据这个排列规则,数阵中第20行从左至右的第3个数是()A.571 B.574 C.577 D.580二、填空题:(本大题共4小题,每小题5分,共20分.在答题卡作答). 13.(5分)不等式组表示的平面区域是一个三角形,则这三角形的面积为.14.(5分)在△ABC中,A=60°,|AB|=2,且△ABC的面积为,则|AC|=.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,记M n=2a1a2…a n,求M n的最大值=.16.(5分)如图,第n个图形是由正n+2边形“扩展”而来,(n=1,2,3,…),则第n个图形中边的个数a n=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)若不等式ax2+5x﹣2>0的解集是{x|<x<2},(1)求a的值;(2)求不等式>a+5的解集.18.(12分)已知△ABC的三内角A,B,C,所对三边分别为a,b,c,且sin(A)=(1)求sinA的值;(2)若△ABC的面积S=24,b=10,求a的值.19.(12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.20.(12分)如图,梯形ABCD中,AB.(1)若,求AC的长;(2)若BD=9,求△BCD的面积.21.(12分)某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第n年需要付出设备的维修和工人工资等费用a n构成等差数列如图所示.(1)求a n表达式;(2)引进这种设备后,第几年后该公司开始获利;(3)这种设备使用多少年,该公司的年平均获利最大?22.(12分)若数列{a n}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前项的和T n.(3)是否存在自然数m,使得<T n<对一切n∈N*恒成立?若存在,求出m的值;若不存在,说明理由.四、填空题(共1小题,每小题0分,满分0分)23.若二次函数f(x)≥0的解的区间是[﹣1,5],则不等式(1﹣x)•f(x)≥0的解为.五、解答题(共1小题,满分0分)24.已知{a n}是各项均为正数的等差数列,公差为d,对任意的n∈N*,b n是a n 的等比中项.和a n+1(Ⅰ)设,求证:{c n}是等差数列;(Ⅱ)设,求证:.2016-2017学年福建省福州市高二(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1.(5分)若数列的前4项分别是,则此数列的一个通项公式为()A.B.C.D.【解答】解:根据数列的前4项分别是,可得奇数项为负数,偶数项为正数,第n项的绝对值等于||,故此数列的一个通项公式为,故选:C.2.(5分)下列选项中正确的是()A.若a>b,则ac2>bc2B.若a>b,c<d,则C.若a>b,c>d,则a﹣c>b﹣d D.若ab>0,a>b,则【解答】解:若a>b,且c=0,则ac2=bc2,A不正确;若a>b,c<d,比如a=1,b=0,c=﹣2,d=﹣1,则<,则不成立;若a>b,c>d,比如a=0,b=﹣3,c=2,d=﹣6,则a﹣c<b﹣d,a﹣c>b﹣d不成立;若ab>0,a>b,则﹣=<0,可得<成立.故选:D.3.(5分)不等式ax2+bx+c<0(a≠0)的解集为∅,那么()A.a<0,△≥0 B.a<0,△≤0 C.a>0,△≤0 D.a>0,△>0【解答】解:不等式ax2+bx+c<0(a≠0)的解集为∅,可得a>0,△≤0;若a<0,抛物线开口向下,函数值不可能小于0,故选:C.4.(5分)已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a99=0 D.a51=57【解答】解:数列列{a n}是等差数列,则:当m+n=p+q时,则:a m+a n=a p+a q.由于等差数列{a n}满足a1+a2+a3+…+a101=0,则:a1+a101=a2+a100=a3+a99=0.故选:C.5.(5分)在△ABC中,若b=2asinB,则A等于()A.30°或60°B.45°或60°C.120°或60°D.30°或150°【解答】解:∵b=2asinB,由正弦定理可得,sinB=2sinAsinB∵sinB≠0∴sinA=∴A=30°或150°故选:D.6.(5分)若三条线段的长为5、6、7,则用这三条线段()A.能组成直角三角形B.能组成锐角三角形C.能组成钝角三角形D.不能组成三角形【解答】解:∵三条线段的长为5、6、7,∴满足任意两边之和大于第三边,∴能构成三角形,可排除D;设此三角形最大角为A,∵52+62﹣72=25+36﹣49=12>0,∴cosA>0,∴能组成锐角三角形.故选:B.7.(5分)下列函数中,y的最小值为2的是()A.y=x+B.y=x+(x>0)C.y=x+(x>0)D.y=+【解答】解:基本不等式的应用要把握三条:一正,二定,三相等,缺一不可.故选项A,x≠0不能满足一正;选项C,y=x+(x>0)≥=4;选项D,当时取等号,此时x2=﹣1,矛盾;故只由选项B正确.故选:B.8.(5分)已知等比数列{a n}的前n项和为S n,若S3=12,S6=60,则S9=()A.192 B.300 C.252 D.360【解答】解:由等比数列的前n项和公式的性质可得:S3,S6﹣S3,S9﹣S6成等比数列,∴=S3•(S9﹣S6),∴(60﹣12)2=12×(S9﹣60),解得S9=252.故选:C.9.(5分)△ABC中,a,b,c分别为角A,B,C的对边,S表示△ABC的面积,=(b2+c2﹣a2),则角B等于()若acosB+bcosA=csinC,S△ABCA.30°B.45°C.60°D.90°【解答】解:由正弦定理可知acosB+bcosA=2RsinAcosB+2RsinBcosA=2Rsin(A+B)=2RsinC=2RsinC•sinC∴sinC=1,C=90°.∴S=ab=(b2+c2﹣a2),解得a=b,因此∠B=45°.故选:B.10.(5分)如图,为测得河对岸塔AB的高,先在河岸上选一点C,使在C塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔高AB的高度为()A.10 B.10C.10D.10【解答】解:设塔高AB为x米,根据题意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,从而有BC=x,AC=x在△BCD中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30°由正弦定理可得,=∴BC==10∴x=10∴x=故选:D.11.(5分)设实数x,y满足条件,若目标函数z=ax+by(a>0,b >0)的最大值为12,则+的最小值为()A.B.C.D.4【解答】解:由约束条件作出可行域如图,联立,解得A(6,8),化目标函数z=ax+by(a>0,b>0)为,由图可知,当直线为过A时,直线在y轴上的截距最大,z有最大值为6a+8b=12.∴.则+=()()=.当且仅当a=b=时上式等号成立.故选:A.12.(5分)将等差数列1,4,7…,按一定的规则排成了如图所示的三角形数阵.根据这个排列规则,数阵中第20行从左至右的第3个数是()A.571 B.574 C.577 D.580【解答】解:设各行的首项组成数列{a n},则a2﹣a1=3,a3﹣a2=6,…,a n﹣a n﹣1=3(n﹣1)叠加可得:a n﹣a1=3+6+…+3(n﹣1)=,∴a n=+1∴a20=+1=571∴数阵中第20行从左至右的第3个数是577.故选:C.二、填空题:(本大题共4小题,每小题5分,共20分.在答题卡作答). 13.(5分)不等式组表示的平面区域是一个三角形,则这三角形的面积为2.【解答】解:由约束条件作出可行域如图,联立,解得B(4,﹣1),联立,解得C(2,1),又A(0,﹣1),∴|AB|=4,则.故答案为:2.14.(5分)在△ABC中,A=60°,|AB|=2,且△ABC的面积为,则|AC|=1.【解答】解:在△ABC中,A=60°,|AB|=2,且△ABC的面积为,所以,则|AC|=1.故答案为:1.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,记M n=2a1a2…a n,求M n的最大值=64.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•()=2=2,当n=3或4时,M n的最大值=2=64.故答案是:64.16.(5分)如图,第n个图形是由正n+2边形“扩展”而来,(n=1,2,3,…),则第n个图形中边的个数a n=n2+5n+6.【解答】解:由已知中的图形我们可以得到:当n=1时,边共有12=3×4(条),n=2时,边共有20=4×5(条),n=3时,边共有30=5×6(条),n=4时,边共有42=6×7(条),…由此我们可以推断:第n个图形共有边(n+2)(n+3)=n2+5n+6条,故答案为:n2+5n+6.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)若不等式ax2+5x﹣2>0的解集是{x|<x<2},(1)求a的值;(2)求不等式>a+5的解集.【解答】解:(1)依题意可得:ax2+5x﹣2=0的两个实数根为和2,由韦达定理得:+2=﹣,解得:a=﹣2;(2)将a=﹣2代入不等式得:>3,即﹣3>0,整理得:>0,即(x+1)(x+2)<0,可得或,解得:﹣2<x<﹣1,则不等式的解集为{x|﹣2<x<﹣1}.18.(12分)已知△ABC的三内角A,B,C,所对三边分别为a,b,c,且sin(A)=(1)求sinA的值;(2)若△ABC的面积S=24,b=10,求a的值.【解答】解:(1)∵A为锐角,,且sin(A)=,∴=,…(4分)∴=.(2),bc=60,b=10,∴c=6…(6分),sinA=,cosA=…(8分)由余弦定理,a2=b2+c2﹣2bccosA,,∴=64,∴a=8…(12分)19.(12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,=b n﹣1+b n,∴a n﹣1∴a n﹣a n=b n+1﹣b n﹣1.﹣1∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n========6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.20.(12分)如图,梯形ABCD中,AB.(1)若,求AC的长;(2)若BD=9,求△BCD的面积.【解答】解:(1)因为,所以∠ABC为钝角,且,,因为AB∥CD,所以∠BAC=∠ACD=,在△ABC中,可得=,可得AC==8;(2)因为AB∥CD,所以∠BCD=180°﹣∠ABC,可得cos∠BCD=﹣cos∠ABC=,在△BCD中,,整理得CD2﹣4CD﹣45=0,解得CD=9,所以.21.(12分)某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第n年需要付出设备的维修和工人工资等费用a n构成等差数列如图所示.(1)求a n表达式;(2)引进这种设备后,第几年后该公司开始获利;(3)这种设备使用多少年,该公司的年平均获利最大?【解答】解:(1)如图,a 1=2,a2=4,∴每年的费用是以2为首项,2为公差的等差数列,∴a n=a1+2(n﹣1)=2n.(2)设纯收入与年数n的关系为f(n),则f(n)=21n﹣[2n+×2]﹣25=20n﹣n2﹣25,由f(n)>0得n2﹣20n+25<0,解得10﹣5<n<10+5,因为n∈N,所以n=2,3,4,…18.即从第2年该公司开始获利.(3)年平均收入为=20﹣(n+)≤20﹣2×5=10,当且仅当n=5时,年平均收益最大.所以这种设备使用5年,该公司的年平均获利最大.22.(12分)若数列{a n}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前项的和T n.(3)是否存在自然数m,使得<T n<对一切n∈N*恒成立?若存在,求出m的值;若不存在,说明理由.【解答】解:(1)在等差数列中,设公差为d≠0,由题意,∴,解得.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(2)由(1)知,a n=2n﹣1.则b n===(﹣),所以T n=(1﹣+﹣+﹣+﹣)=(1﹣)=;﹣T n=﹣=>0,(3)T n+1∴{T n}单调递增,∴T n≥T1=.∵T n=<,∴≤T n<<T n<对一切n∈N*恒成立,则≤﹣<∴≤m<∵m是自然数,∴m=2.四、填空题(共1小题,每小题0分,满分0分)23.若二次函数f(x)≥0的解的区间是[﹣1,5],则不等式(1﹣x)•f(x)≥0的解为[﹣1,1]∪[5,+∞).【解答】解:∵二次函数f (x )≥0的解的区间是[﹣1,5],∴f (x )=0的根分别是﹣1,5,且二次项的系数<0.∴不等式(1﹣x )•f (x )≥0⇔(x ﹣1)(x +1)(x ﹣5)≥0, 如图所示:上述不等式解集为[﹣1,1]∪[5,+∞). 故答案为[﹣1,1]∪[5,+∞).五、解答题(共1小题,满分0分)24.已知{a n }是各项均为正数的等差数列,公差为d ,对任意的n ∈N*,b n 是a n 和a n +1的等比中项. (Ⅰ)设,求证:{c n }是等差数列;(Ⅱ)设,求证:. 【解答】证明:(I )∵b n 是a n 和a n +1的等比中项.∴=a n a n +1,∴c n =﹣=a n +1a n +2﹣a n a n +1=2da n +1.∴c n +1﹣c n =2da n +2﹣2da n +1=2d•d=2d 2, ∴{c n }是等差数列,公差为2d 2. (II )T n =(﹣+)+(﹣)+…+(﹣+)=2d (a 2+a 4+…+a 2n )=2d ×=2d 2n (n +1).∴==<.。

2016-2017年第一学期高二数学期中试题及答案

2016-2017年第一学期高二数学期中试题及答案
总点数
2
3
4
5
6
7
8
9
10
11
12
礼券额
20
40
60
80
100
120
100
80
60
40
20
方案3总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.
总点数
2
3
4567891011
12
礼券额
120
100
80
60
40
20
40
60
80
100
120
如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.
17.(10分)用秦九韶算法求多项式
当 时的值。
18.(12分)为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为 ,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多 少?
(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为 时的销售价格.
21.(12分)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.
(1)如果甲船和乙船的停泊的时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率;
(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.
(2)记“3个矩形颜色都不同”为事件B,由图可知,事件B的基本事件有2×3=6个,故P

安徽省蚌埠二中2016-2017学年高二(上)期中数学试卷(解析版)(理科)

安徽省蚌埠二中2016-2017学年高二(上)期中数学试卷(解析版)(理科)

2016-2017学年安徽省蚌埠二中高二(上)期中数学试卷(理科)一.选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果直线ax+2y+2=0与直线3x﹣y﹣2=0互相垂直,那么实数a=()A.B.C.D.62.圆(x+2)2+y2=5关于直线x﹣y+1=0对称的圆的方程为()A.(x﹣2)2+y2=5 B.x2+(y﹣2)2=5 C.(x﹣1)2+(y﹣1)2=5 D.(x+1)2+(y+1)2=53.两平行直线kx+6y+2=0与4x﹣3y+4=0之间的距离为()A.B.C.1 D.4.过平行六面体ABCD﹣A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有()A.4条 B.6条 C.8条 D.12条5.过点(﹣2,4)且在两坐标轴上截距的绝对值相等的直线有()A.1条 B.2条 C.3条 D.4条6.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面7.已知p,q满足p+2q﹣1=0,则直线px+3y+q=0必过定点()A.B.C.D.8.某几何体的三视图如图所示,则该几何体的表面积为()A.12+4B.12 C.D.89.若点P(m﹣2,n+1),Q(n,m﹣1)关于直线l对称,则l的方程是()A.x﹣y+1=0 B.x﹣y=0 C.x+y+1=0 D.x+y=010.直线的倾斜角的取值范围是()A.B.C.D.11.如图,M是正方体ABCD﹣A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③12.已知圆,定直线l经过点A(1,0),若对任意的实数a,定直线l被圆C截得的弦长始终为定值d,求得此定值d等于()A.B. C. D.二.填空题(本大题共4小题,每小题5分,共20分.)13.点M(3,﹣1)是圆x2+y2﹣4x+y﹣2=0内一点,过点M最长的弦所在的直线方程为.14.正方体ABCD﹣A1B1C1D1中,AB=2,点E为AD1的中点,点F在AB上.若EF⊥平面AB1C,则线段EF的长度等于.15.直线l1与直线l2交于一点P,且l1的斜率为,l2的斜率为2k,直线l1、l2与x轴围成一个等腰三角形,则正实数k的所有可能的取值为.16.已知底面边长为a的正三棱柱ABC﹣A1B1C1的六个顶点在球O1上,又知球O2与此正三棱柱的5个面都相切,求球O1与球O2的表面积之比为.三.解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)直线l0:y=x+1绕点P(3,1)逆时针旋转90°得到直线l,求直线l的方程.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,底面是边长为2的正三角形,AA1=2,点M,N分别为A1B和B1C1的中点.(1)求异面直线MN与A1C所成角的余弦值;(2)求三棱锥A1﹣MNC的体积.19.(12分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.20.(12分)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,.(1)证明:面PQC⊥面DQC;(2)求面PAB与面DQC所成锐二面角的余弦值.21.(12分)如图,在直角梯形ABCD中,AB⊥AD,AB∥CD,PD⊥面ABCD,QC⊥面ABCD,且AB=AD=PD=QC=CD,(1)设直线QB与平面PDB所成角为θ,求sinθ的值;(2)设M为AD的中点,在PD边上求一点N,使得MN∥面PBC,求的值.22.(12分)已知圆C:x2+y2﹣2x﹣4y+3=0,直线l:y=kx,直线l与圆C交于A,B两点,点M的坐标为(0,m),且满足.(1)当m=1时,求k的值;(2)当时,求k的取值范围.2016-2017学年安徽省蚌埠二中高二(上)期中数学试卷(理科)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果直线ax+2y+2=0与直线3x﹣y﹣2=0互相垂直,那么实数a=()A.B.C.D.6【考点】直线的一般式方程与直线的垂直关系.【分析】通过两条直线的垂直,利用斜率乘积为﹣1,即可求解a的值.【解答】解:因为直线ax+2y+2=0与3x﹣y﹣2=0互相垂直,所以﹣×3=﹣1,所以a=.故选A.【点评】本题考查直线的垂直条件的应用,斜率乘积为﹣1时必须直线的斜率存在.2.圆(x+2)2+y2=5关于直线x﹣y+1=0对称的圆的方程为()A.(x﹣2)2+y2=5 B.x2+(y﹣2)2=5 C.(x﹣1)2+(y﹣1)2=5 D.(x+1)2+(y+1)2=5【考点】圆的标准方程.【分析】根据已知圆的圆心求出关于直线x﹣3y﹣5=0对称的圆的圆心,求出半径,即可得到所求结果.【解答】解;由圆(x+2)2+y2=5可知,圆心(﹣2,0),半径r=.设点(﹣2,0)关于直线x﹣y+1=0对称的点为(x,y),则,解得.∴所求圆的圆心为(﹣1,﹣1).又∵半径r=.∴圆(x+2)2+y2=5关于直线x﹣y+1=0对称的圆的方程为(x+1)2+(y+1)2=5.故选:D.【点评】本题考查点关于直线对称问题,圆的标准方程等知识,属于中档题.3.两平行直线kx+6y+2=0与4x﹣3y+4=0之间的距离为()A.B.C.1 D.【考点】两条平行直线间的距离.【分析】先根据直线平行的性质求出k的值,后利用平行线的距离公式求解即可.【解答】解:∵直线kx+6y+2=0与4x﹣3y+4=0平行∴k=﹣8.∴直线kx+6y+2=0可化为4x﹣3y﹣1=0∴两平行直线kx+6y+2=0与4x﹣3y+4=0之间的距离为d==1.故选C.【点评】本题主要考查直线平行的性质和平行线间的距离公式.属于基础题.4.过平行六面体ABCD﹣A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有()A.4条 B.6条 C.8条 D.12条【考点】直线与平面平行的判定.【分析】由题意求平面DBB1D1平行的直线,画出图形然后进行判断.【解答】解:如图,过平行六面体ABCD﹣A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有12条,故选D.【点评】此题是一道作图题,解题的关键是画出图形,然后数出来,是高考常考的选择题.5.过点(﹣2,4)且在两坐标轴上截距的绝对值相等的直线有()A.1条 B.2条 C.3条 D.4条【考点】直线的图象特征与倾斜角、斜率的关系.【分析】根据直线截距的意义即可得到结论.【解答】解:若直线过原点,则满足条件,此时设直线方程为y=kx,则4=﹣2k,解得k=﹣2,此时直线为y=﹣2x,若直线不经过原点,则设直线的截距式方程为,∵直线过点(﹣2,4,),∴,∵|a|=|b|,∴a=b或a=﹣b,若a=b,则方程等价为,解得a=b=2,此时直线方程为x+y=2,若a=﹣b,则方程等价为,解得b=6,a=﹣6,此时直线方程为x﹣y=﹣6,故满足条件的直线有3条,故选:C【点评】本题主要考查直线截距式方程的应用,注意要进行分类讨论.6.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面【考点】平面的基本性质及推论;空间中直线与直线之间的位置关系.【分析】通过两条直线垂直的充要条件两条线所成的角为90°;判断出B对;通过举常见的图形中的边、面的关系说明命题错误.【解答】解:对于A,通过常见的图形正方体,从同一个顶点出发的三条棱两两垂直,A错;对于B,∵l1⊥l2,∴l1,l2所成的角是90°,又∵l2∥l3∴l1,l3所成的角是90°∴l1⊥l3,B对;对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;对于D,例如三棱锥的三侧棱共点,但不共面,故D错.故选B.【点评】本题考查两直线垂直的定义、考查判断线面的位置关系时常借助常见图形中的边面的位置关系得到启示.7.已知p,q满足p+2q﹣1=0,则直线px+3y+q=0必过定点()A.B.C.D.【考点】过两条直线交点的直线系方程.【分析】消元整理可得x+3y+q(1﹣2x)=0,由直线系的知识解方程组可得.【解答】解:∵p,q满足p+2q﹣1=0,∴p=1﹣2q,代入直线方程px+3y+q=0可得(1﹣2q)x+3y+q=0,整理可得x+3y+q(1﹣2x)=0,解方程组可得,∴直线px+3y+q=0必过定点(,﹣)故选:C.【点评】本题考查直线系方程,涉及消元思想和方程组的解法,属基础题.8.某几何体的三视图如图所示,则该几何体的表面积为()A.12+4B.12 C.D.8【考点】由三视图求面积、体积.【分析】由三视图还原原图形如图,然后利用三角形面积公式求解.【解答】解:由三视图可得原几何体如图,AB=BC=BE=DF=2,则△AEC与△AFC边AC上的高为,∴该几何体的表面积为S==.故选:A.【点评】本题考查空间几何体的三视图,由三视图还原原图形是关键,是中档题.9.若点P(m﹣2,n+1),Q(n,m﹣1)关于直线l对称,则l的方程是()A.x﹣y+1=0 B.x﹣y=0 C.x+y+1=0 D.x+y=0【考点】点到直线的距离公式.【分析】由对称的特点,直线l经过PQ的中点,且l垂直于PQ,运用中点坐标公式和直线垂直的条件,再由点斜式方程,即可得到.【解答】解:由对称的特点,直线l经过PQ的中点(,),且PQ的斜率为=﹣1,则l的斜率为1,则直线l方程为:y﹣=x﹣,化简即得,x﹣y+1=0,故选A.【点评】本题考查点关于直线对称的求法,考查直线方程的求法,考查运算能力,属于中档题.10.直线的倾斜角的取值范围是()A.B.C.D.【考点】直线的倾斜角.【分析】利用直线的倾斜角与斜率的关系,即可得出结论.【解答】解:设直线的倾斜角为α,则|tanα|=||≥,∴α∈,故选D.【点评】本题考查直线的倾斜角与斜率的关系,考查学生的计算能力,比较基础.11.如图,M是正方体ABCD﹣A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③【考点】直线与平面平行的性质;平面与平面垂直的性质.【分析】点M不在这两异面直线中的任何一条上,所以,过M点有且只有一条直线与直线AB、B1C1都相交,①正确.②过M点有且只有一条直线与直线AB、B1C1都垂直,正确.过M点有无数个平面与直线AB、B1C1都相交,③不正确.④过M点有且只有一个平面与直线AB、B1C1都平行,正确.【解答】解:直线AB与B1C1是两条互相垂直的异面直线,点M不在这两异面直线中的任何一条上,如图所示:取C1C的中点N,则MN∥AB,且MN=AB,设BN 与B1C1交于H,则点A、B、M、N、H 共面,直线HM必与AB直线相交于某点O.所以,过M点有且只有一条直线HO与直线AB、B1C1都相交;故①正确.过M点有且只有一条直线与直线AB、B1C1都垂直,此垂线就是棱DD1,故②正确.过M点有无数个平面与直线AB、B1C1都相交,故③不正确.过M点有且只有一个平面与直线AB、B1C1都平行,此平面就是过M点与正方体的上下底都平行的平面,故④正确.综上,①②④正确,③不正确,故选C.【点评】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想.12.已知圆,定直线l经过点A(1,0),若对任意的实数a,定直线l被圆C截得的弦长始终为定值d,求得此定值d等于()A.B. C. D.【考点】直线与圆的位置关系.【分析】根据圆的方程求出圆心和半径,由题意可得圆心C到直线l的距离为定值.当直线l的斜率不存在时,经过检验不符合条件.当直线l的斜率存在时,直线l的方程为y﹣0=k(x﹣1),圆心C到直线l的距离为定值,即可得出结论.【解答】解:圆C:即[x﹣(a﹣2)]2+(y﹣)2=16,表示以C(a﹣2,)为圆心,半径等于4的圆.∵直线l经过点(1,0),对任意的实数m,定直线l被圆C截得的弦长为定值,则圆心C到直线l的距离为定值.当直线l的斜率不存在时,直线l的方程为x=1,圆心C到直线l的距离为|a﹣2﹣1|=|a﹣3|,不是定值.当直线l的斜率存在时,设直线l的斜率为k,则直线l的方程为y﹣0=k(x﹣1),即kx﹣y﹣k=0.此时,圆心C到直线l的距离h=为定值,与a无关,故k=,h=,∴d=2=,故选:D【点评】本题主要考查圆的标准方程,直线和圆的位置关系,点到直线的距离公式,体现了分类讨论的数学思想,属于中档题二.填空题(本大题共4小题,每小题5分,共20分.)13.点M(3,﹣1)是圆x2+y2﹣4x+y﹣2=0内一点,过点M最长的弦所在的直线方程为x+2y﹣1=0.【考点】直线与圆的位置关系.【分析】由M为已知圆内一点,可知过M最长的弦为过M点的直径,故过点M 最长的弦所在的直线方程为点M和圆心确定的直线方程,所以把圆的方程化为标准,找出圆心坐标,设出所求直线的方程,把M和求出的圆心坐标代入即可确定出直线的方程.【解答】解:把圆的方程x2+y2﹣4x+y﹣2=0化为标准方程得:(x﹣2)2+(y+)2=6.25,所以圆心坐标为(2,﹣),又M(3,0),根据题意可知:过点M最长的弦为圆的直径,则所求直线为过圆心和M的直线,设为y=kx+b,把两点坐标代入得:解得:k=﹣,b=1,则过点M最长的弦所在的直线方程是y=﹣x+1,即x+2y﹣1=0.故答案为x+2y﹣1=0.【点评】此题考查了直线与圆的位置关系,要求学生会将圆的方程化为标准方程,会利用待定系数法求一次函数的解析式,根据题意得出所求直线为过圆心和M 的直线是本题的突破点.14.正方体ABCD﹣A1B1C1D1中,AB=2,点E为AD1的中点,点F在AB上.若EF⊥平面AB1C,则线段EF的长度等于.【考点】直线与平面所成的角.【分析】如图所示,由正方体的性质可得:AO⊥平面BDD1.可得AC⊥BD1,可得BD1⊥平面ACB1.由EF⊥平面AB1C,可得EF∥BD1,可得EF为△ABD1的中位线,即可得出.【解答】解:如图所示.由正方体的性质可得:AO⊥平面BDD1.∴AC⊥BD1,同理可得BD1⊥AB1,又AC∩AB1=A,∴BD1⊥平面ACB1.又EF⊥平面AB1C,∴EF∥BD1,又点E为AD1的中点,∴点F为AB的中点,而AB,∴EF==×=.故答案为:.【点评】本题考查了正方体的性质、线面垂直的判定与性质定理、三角形中位线定理,考查了推理能力与计算能力,属于中点题.15.直线l1与直线l2交于一点P,且l1的斜率为,l2的斜率为2k,直线l1、l2与x轴围成一个等腰三角形,则正实数k的所有可能的取值为,.【考点】直线的斜率.【分析】设出直线的倾斜角,利用直线l1、l2与x轴围成一个等腰三角形,判断斜率的符号,倾斜角是锐角,利用α=2β时,或β=2α时,分别求出直线的斜率的值.【解答】解:设直线l1与直线l2的倾斜角为α,β,因为k>0,所以α,β均为锐角,由于直线l1、l2与x轴围成一个等腰三角形,则有以下两种情况:(1)α=2β时,tanα=tan2β,有,因为k>0,解得;(2)β=2α时,tanβ=tan2α,有,因为k>0,解得.故答案为:,.【点评】本题考查直线的斜率的求法以及直线的倾斜角的关系的应用,基本知识的考查.16.已知底面边长为a的正三棱柱ABC﹣A1B1C1的六个顶点在球O1上,又知球O2与此正三棱柱的5个面都相切,求球O1与球O2的表面积之比为5:1.【考点】球的体积和表面积.【分析】由题意得两球心是重合的,设球O1的半径为R,球O2的半径为r,则正三棱柱的高为2r,且a=r,又(a)2+r2=R2,即可得出结论.【解答】解:由题意得两球心是重合的,设球O1的半径为R,球O2的半径为r,则正三棱柱的高为2r,且a=r,又(a)2+r2=R2,∴5r2=R2,∴球O1与球O2的表面积之比为5:1.故答案为5:1.【点评】本题考查球的表面积,考查学生的计算能力,确定半径的关系是关键.三.解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)(2016秋•蚌山区校级期中)直线l0:y=x+1绕点P(3,1)逆时针旋转90°得到直线l,求直线l的方程.【考点】待定系数法求直线方程.【分析】求出所求直线的斜率,利用点斜式写出直线方程即可.【解答】解:直线l0:y=x+1的斜率是1,则直线l的斜率是﹣1.则y﹣1=﹣(x ﹣3),整理,得y+x﹣4=0.【点评】本题考查了直线方程问题,考查直线的垂直关系,是一道基础题.18.(12分)(2016秋•蚌山区校级期中)如图,直三棱柱ABC﹣A1B1C1中,底面是边长为2的正三角形,AA1=2,点M,N分别为A1B和B1C1的中点.(1)求异面直线MN与A1C所成角的余弦值;(2)求三棱锥A1﹣MNC的体积.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)以A为原点,在平面ABC中过A作AC的垂线为x轴,AC为y轴,AA1为z轴,建立空间直角系,利用向量法能求出异面直线MN与A1C所成角的余弦值.(2)求出平面MNC的法向量,进而求出点A1到平面MNC的距离,利用向量法求出△MNC的面积,由此能求出三棱锥A1﹣MNC的体积.【解答】解:(1)以A为原点,在平面ABC中过A作AC的垂线为x轴,AC为y轴,AA1为z轴,建立空间直角系,则B(),A1(0,0,2),C(0,2,0),B1(),C1(0,2,2),M(,,1),N(,,2),=(0,1,1),=(0,2,﹣2),=0+2﹣2=0,∴异面直线MN与A1C所成角的余弦值为0.(2)=(0,1,1),=(﹣,,﹣1),=(﹣,﹣,1),设平面MNC的法向量=(x,y,z),则,取y=1,得=(,1,﹣1),点A1到平面MNC的距离d===.||=,||=2,cos<>===,∴sin<>==,∴=,∴三棱锥A1﹣MNC的体积V===.【点评】本题考查异面直线所成角的余弦值的求法,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意向量法的合理运用.19.(12分)(2013•江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.【考点】圆的切线方程;点到直线的距离公式;圆与圆的位置关系及其判定.【分析】(1)联立直线l与直线y=x﹣1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;(2)设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a 的范围.【解答】解:(1)联立得:,解得:,∴圆心C(3,2).若k不存在,不合题意;若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即=1,解得:k=0或k=﹣,则所求切线为y=3或y=﹣x+3;(2)设点M(x,y),由MA=2MO,知:=2,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,C(a,2a﹣4),∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,解得:0≤a≤.【点评】此题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,涉及的知识有:两直线的交点坐标,直线的点斜式方程,两点间的距离公式,圆的标准方程,是一道综合性较强的试题.20.(12分)(2016秋•蚌山区校级期中)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,.(1)证明:面PQC⊥面DQC;(2)求面PAB与面DQC所成锐二面角的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能证明面PQC⊥面DQC.(2)求出面PAB的法向量和平面DQC的法向量,利用向量法能求出面PAB与面DQC所成锐二面角的余弦值.【解答】证明:(1)∵四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,.∴以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,设=1,则P(0,0,2),Q(1,0,1),C(0,1,0),D(0,0,0),=(﹣1,0,1),=(﹣1,1,﹣1),=(﹣1,0,﹣1),设平面PQC的法向量=(x,y,z),则,取x=1,得=(1,2,1),设平面DQC的法向量=(a,b,c),则,取a=1,得=(1,0,﹣1),∵=1+0﹣1=0,∴面PQC⊥面DQC.(2)A(1,0,0),B(1,1,0),=(1,0,﹣2),=(1,1,﹣2),设面PAB的法向量=(x1,y1,z1),则,取z1=1,得=(2,0,1),平面DQC的法向量=(1,0,﹣1),设面PAB与面DQC所成锐二面角的平面角为θ,则cosθ===.∴面PAB与面DQC所成锐二面角的余弦值为.【点评】本题考查面面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.(12分)(2016秋•蚌山区校级期中)如图,在直角梯形ABCD中,AB⊥AD,AB∥CD,PD⊥面ABCD,QC⊥面ABCD,且AB=AD=PD=QC=CD,(1)设直线QB与平面PDB所成角为θ,求sinθ的值;(2)设M为AD的中点,在PD边上求一点N,使得MN∥面PBC,求的值.【考点】直线与平面平行的判定.【分析】(1)由题意,分别以DA、DC、DP所在直线为x、y、z轴建立空间直角坐标系如图,设CD=2,求得D,P,B,Q的坐标,求出及平面PDB的一个法向量由与平面法向量所成角的余弦值的绝对值可得sinθ的值;(2)求出M的坐标,设N(0,0,y),且=λ(λ≥0),则由,得y=.可得N的坐标,再求出平面PBC的一个法向量,由与平面PBC的法向量的数量积为0求得λ值.【解答】解:(1)∵PD⊥面ABCD,∴PD⊥AD,PD⊥DC,又ABCD为直角梯形,且AB⊥AD,AB∥CD,∴AD⊥DC,分别以DA、DC、DP所在直线为x、y、z轴建立空间直角坐标系如图,∵AB=AD=PD=QC=CD,设CD=2,则D(0,0,0),P(0,0,1),B(1,1,0),Q(0,2,1),,,.设平面PDB的一个法向量为,由,取y=1,得.∴sinθ=|cos<>|=||=;(2)∵M为AD的中点,∴M(,0,0),设N(0,0,y),且=λ(λ≥0),则由,得(0,0,y)=(0,0,λ﹣λy),∴y=.∴N(0,0,),则,设平面PBC的一个法向量为=(x,y,z),由,取x=1,得,由MN∥面PBC,得,解得,∴=.【点评】本题考查线面角,考查了直线与平面平行的判定,训练了利用空间向量求线面角,是中档题.22.(12分)(2016秋•蚌山区校级期中)已知圆C:x2+y2﹣2x﹣4y+3=0,直线l:y=kx,直线l与圆C交于A,B两点,点M的坐标为(0,m),且满足.(1)当m=1时,求k的值;(2)当时,求k的取值范围.【考点】平面向量数量积的运算;直线与圆的位置关系.【分析】(1)当m=1时,点M(0,m)在圆C上,当且仅当直线l经过圆心C时,满足,把圆心坐标(1,2)代入直线l:y=kx,可得k的值;(2)把直线l的方程代入圆的方程转化为关于x的一元二次方程,利用根与系数的关系以及,求得=+m∈(,4),解此不等式求得k 的取值范围.【解答】解:(1)将圆C转化成标准方程:(x﹣1)2+(y﹣2)2=2,当m=1时,点M(0,1)在圆C上,当且仅当直线l经过圆心C时,满足,即MA⊥MB.∵圆心C的坐标为(1,2),∴k=2.(2)由,消去y得:(k2+1)x2﹣(4k+2)x+3=0,①设P(x1,y1)Q(x2,y2),∴x1+x2=,x1•x2=,∵,即(x1,y1﹣m)(x2,y2﹣m)=0,即x1•x2+(y1﹣m)(y2﹣m)=0,∵y1=kx1,y2=kx2,∴(1+k2)x1•x2﹣km(x1+x2)+m2=0,∴(1+k2)•﹣km•+m2=0,即=+m,∵。

上海市浦东新区2016-2017学年高二上学期期中数学试卷 含解析

上海市浦东新区2016-2017学年高二上学期期中数学试卷 含解析

2016—2017学年上海市浦东新区高二(上)期中数学试卷一、填空题1.4和10的等差中项是.2.等比数列{a n}中,a1=2,公比q=3,则a5= .3.向量=(4,﹣3),则与同向的单位向量= .4.= .5.在平面直角坐标系中,已知两点A(2,﹣1)和B (﹣1,5),点P满足=2,则点P的坐标为.6.等比数列{a n}中,a2=1,a4=4,则a6= .7.S n是数列{a n}的前n项和,若a4=7,a n=a n﹣1+2(n ≥2,n∈N*),则S8= .8.已知等边三角形ABC的边长为1,则= .9.已知向量=(1,2),=(3,﹣4),则向量在向量上的投影为.10.在数列{a n}中,S n是其前n项和,若S n=n2+1,n ∈N*,则a n= .11.若等比数列{a n}的前n项和S n=()n+a(n∈N*),则数列{a n}的各项和为.12.数列{a n}中,a n+1=,a1=2,则数列{a n}的前2015项的积等于.二、选做题13.=(1,2),=(k,4),若∥,则下列结论正确的是()A.k=﹣6 B.k=2 C.k=6 D.k=﹣214.已知等差数列{a n}中,前n项和S n=n2﹣15n,则使S n有最小值的n是()A.7 B.7或8 C.8 D.915.用数学归纳法证明1+a+a2+…+a n+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2D.1+a+a2+a416.下列命题中,正确命题的个数是()①若2b=a+c,则a,b,c成等差数列;②“a,b,c成等比数列”的充要条件是“b2=ac”;③若数列{a n2}是等比数列,则数列{a n}也是等比数列;④若||=||,则=.A.3 B.2 C.1 D.0三、解答题17.在等差数列{a n}中,已知a1+a2=2,a2+a3=10,求通项公式a n及前n项和S n.18.已知||=2,||=3,且向量与的夹角为,求|3﹣2|.19.已知数列满足a1=1,a n+1=2a n+1(n∈N*)(1)求证:数列{a n+1}是等比数列;(2)求{a n}的通项公式.20.已知=(m﹣2)+2,=+(m+1),其中、分别为x、y轴正方向单位向量.(1)若m=2,求与的夹角;(2)若(+)⊥(﹣),求实数m的值.21.已知各项为正的数列{a n}是等比数列,a1=2,a5=32,数列{b n}满足:对于任意n∈N*,有a1b1+a2b2+…+a n b n=(n﹣1)•2n+1+2.(1)求数列{a n}的通项公式;(2)令f(n)=a2+a4+…+a2n,求的值;(3)求数列{b n}通项公式,若在数列{a n}的任意相邻两项a k与a k+1之间插入b k(k∈N*)后,得到一个新的数列{c n},求数列{c n}的前100项之和T100.2016-2017学年上海市浦东新区高二(上)期中数学试卷参考答案与试题解析一、填空题1.4和10的等差中项是7 .【考点】等差数列的通项公式.【分析】利用等差中项的定义即可得出.【解答】解:4和10的等差中项==7,故答案为:7.2.等比数列{a n}中,a1=2,公比q=3,则a5= 162 .【考点】等比数列的通项公式.【分析】直接利用等比数列的通项公式得答案.【解答】解:在等比数列{a n}中,由a1=2,公比q=3,得a5=.故答案为:162.3.向量=(4,﹣3),则与同向的单位向量= (,﹣).【考点】平面向量数量积的运算.【分析】与向量同向的单位向量是【解答】解:∵向量=(4,﹣3),∴||==5,∴与同向的单位向量=(,﹣),故答案为:(,﹣).4.= 2 .【考点】极限及其运算.【分析】利用=,即可得出结论.【解答】解:==2,故答案为:2.5.在平面直角坐标系中,已知两点A(2,﹣1)和B (﹣1,5),点P满足=2,则点P的坐标为(0,3).【考点】平面向量的坐标运算.【分析】市场P的坐标,利用向量相等,列出方程求解即可.【解答】解:设P(a,b),点A(2,﹣1)和B(﹣1,5),点P满足=2,可得(a﹣2,b+1)=2(﹣1﹣a,5﹣b),可得a﹣2=﹣2﹣2a,b+1=10﹣2b,解得a=0,b=3.点P的坐标为(0,3).故答案为:(0,3).6.等比数列{a n}中,a2=1,a4=4,则a6= 16 .【考点】等比数列的通项公式.【分析】有已知求出q2,再由得答案.【解答】解:在等比数列{a n}中,由a2=1,a4=4,得,∴.故答案为:16.7.S n是数列{a n}的前n项和,若a4=7,a n=a n﹣1+2(n ≥2,n∈N*),则S8= 64 .【考点】等差数列的前n项和.【分析】利用等差数列的通项公式与求和公式即可得出.【解答】解:∵a n=a n﹣1+2(n≥2,n∈N*),∴数列{a n}是公差为2的等差数列,又a4=7,∴a1+3×2=7,解得a1=1.∴S8=8+=64.故答案为:64.8.已知等边三角形ABC的边长为1,则= .【考点】平面向量数量积的运算.【分析】由题意,等边三角形ABC的边长为1,可知两向量模已知,夹角已知,故易求【解答】解:由题意,等边三角形ABC的边长为1,∴=﹣=﹣1×1×cos60°=﹣故答案为﹣9.已知向量=(1,2),=(3,﹣4),则向量在向量上的投影为﹣1 .【考点】平面向量数量积的运算.【分析】利用向量投影的意义解答.【解答】解:由已知向量在向量上的投影为==﹣1;故答案为:﹣1.10.在数列{a n}中,S n是其前n项和,若S n=n2+1,n∈N*,则a n= .【考点】数列递推式.【分析】由S n=n2+1,n∈N*,可得n=1时,a1=S1=2;n≥2时,a n=S n﹣S n﹣1,即可得出.【解答】解:∵S n=n2+1,n∈N*,∴n=1时,a1=S1=2,n≥2时,a n=S n﹣S n﹣1=n2+1﹣[(n﹣1)2+1]=2n﹣1,则a n=.故答案为:.11.若等比数列{a n}的前n项和S n=()n+a(n∈N*),则数列{a n}的各项和为﹣1 .【考点】等比数列的通项公式.【分析】由数列的前n项和求出首项和通项公式(n ≥2),把首项代入求a,得到等比数列的通项公式,求出公比,代入无穷递缩等比数列的所有项和的公式得答案.【解答】解:由,得,=(n≥2),∵数列{a n}是等比数列,∴,得a=﹣1.∴,则,则数列{a n}的各项和为.故答案为:﹣1.12.数列{a n}中,a n+1=,a1=2,则数列{a n}的前2015项的积等于 3 .【考点】数列的求和;数列递推式.【分析】通过计算出数列前几项的值,判断该数列为周期数列,进而可得结论.【解答】解:∵且a1=2,∴a2===﹣3,a3===﹣,a4===,a5===2,不难发现数列{a n}是周期数列,四个为一周期且最前四个乘积为=1,∵2015=503×4+3,∴数列{a n}前2015项的积为:=3,故答案为:3.二、选做题13.=(1,2),=(k,4),若∥,则下列结论正确的是()A.k=﹣6 B.k=2 C.k=6 D.k=﹣2【考点】平面向量共线(平行)的坐标表示.【分析】根据平面向量平行的坐标关系解答即可.【解答】解:因为=(1,2),=(k,4),∥,所以4=2k,解得k=2;故选:B.14.已知等差数列{a n}中,前n项和S n=n2﹣15n,则使S n有最小值的n是()A.7 B.7或8 C.8 D.9【考点】等差数列的前n项和;数列的函数特性.【分析】S n=n2﹣15n看作关于n的二次函数.结合二次函数的图象与性质可以求解.【解答】解:S n=n2﹣15n=(n﹣)2﹣,∴数列{S n}的图象是分布在抛物线y=(x﹣)2﹣上的横坐标为正整数的离散的点.又抛物线开口向上,以x=为对称轴,且|﹣7|=|8﹣|,所以当n=7,8时,S n有最小值.故选B.15.用数学归纳法证明1+a+a2+…+a n+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2D.1+a+a2+a4【考点】数学归纳法.【分析】在验证n=1时,左端计算所得的项.把n=1代入等式左边即可得到答案.【解答】解:用数学归纳法证明1+a+a2+…+a n+1=(a≠1,n∈N*),在验证n=1时,把当n=1代入,左端=1+a+a2.故选:C.16.下列命题中,正确命题的个数是()①若2b=a+c,则a,b,c成等差数列;②“a,b,c成等比数列”的充要条件是“b2=ac”;③若数列{a n2}是等比数列,则数列{a n}也是等比数列;④若||=||,则=.A.3 B.2 C.1 D.0【考点】等比数列的通项公式;命题的真假判断与应用;等差数列的通项公式.【分析】由等差中项的概念判断①;由充分必要条件的判断方法判断②;举例说明③④错误;【解答】解:对于①,若2b=a+c,则b﹣a=c﹣b,即a,b,c成等差数列,故①正确;对于②,由b2=ac,不一定有a,b,c成等比数列,反之,若a,b,c成等比数列,则b2=ac,∴b2=ac是a,b,c成等比数列的必要不充分条件,故②错误;对于③,若数列{a n2}是等比数列,则数列{a n}也是等比数列错误,如1,2,4成等比数列,但﹣1,﹣,2不是等比数列,故③错误;对于④,由,不一定有,如,故④错误.∴正确命题的个数是1个,故选:C.三、解答题17.在等差数列{a n}中,已知a1+a2=2,a2+a3=10,求通项公式a n及前n项和S n.【考点】等差数列的前n项和;等差数列的通项公式.【分析】设等差数列{a n}的公差为d,由a1+a2=2,a2+a3=10,可得2a1+d=2,2a1+3d=10,联立解得a1,d.再利用等差数列的通项公式与求和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a1+a2=2,a2+a3=10,∴2a1+d=2,2a1+3d=10,联立解得a1=﹣1,d=4.∴通项公式a n=﹣1+4(n﹣1)=4n﹣5,前n项和S n==2n2﹣3n.18.已知||=2,||=3,且向量与的夹角为,求|3﹣2|.【考点】平面向量数量积的运算.【分析】首先由已知求出的数量积,然后利用向量的平方与其模的平方相等解答.【解答】解:|3﹣2|2==36+36﹣12×=36;|3﹣2|=6.19.已知数列满足a1=1,a n+1=2a n+1(n∈N*)(1)求证:数列{a n+1}是等比数列;(2)求{a n}的通项公式.【考点】等比数列的通项公式.【分析】(1)给等式a n+1=2a n+1两边都加上1,右边提取2后,变形得到等于2,所以数列{a n+1}是等比数列,得证;(2)设数列{a n+1}的公比为2,根据首项为a1+1等于2,写出数列{a n+1}的通项公式,变形后即可得到{a n}的通项公式.【解答】解:(1)由a n+1=2a n+1得a n+1+1=2(a n+1),又a n+1≠0,∴=2,即{a n+1}为等比数列;(2)由(1)知a n+1=(a1+1)q n﹣1,即a n=(a1+1)q n﹣1﹣1=2•2n﹣1﹣1=2n﹣1.20.已知=(m﹣2)+2,=+(m+1),其中、分别为x、y轴正方向单位向量.(1)若m=2,求与的夹角;(2)若(+)⊥(﹣),求实数m的值.【考点】平面向量数量积的运算;平面向量的坐标运算.【分析】由已知,将与坐标化,利用平面向量的坐标运算解答即可.(1)将m代入两个向量的坐标,进行数量积的坐标运算即可;(2)分别求出+,﹣的坐标,利用向量垂直数量积为0,求出m.【解答】解:因为、分别为x、y轴正方向单位向量,所以=(m﹣2,2),=(1,m+1),所以(1)m=2时,=(0,2,),=(1,3),与的夹角的余弦值,所以与的夹角为arccos;(2)+=(m﹣1,m+2),﹣=(m﹣3,1﹣m),又(+)⊥(﹣),所以(m﹣1)(m﹣3)+(m+2)(1﹣m)=0,即﹣5m+5=0,解得m=1.21.已知各项为正的数列{a n}是等比数列,a1=2,a5=32,数列{b n}满足:对于任意n∈N*,有a1b1+a2b2+…+a n b n=(n﹣1)•2n+1+2.(1)求数列{a n}的通项公式;(2)令f(n)=a2+a4+…+a2n,求的值;(3)求数列{b n}通项公式,若在数列{a n}的任意相邻两项a k与a k+1之间插入b k(k∈N*)后,得到一个新的数列{c n},求数列{c n}的前100项之和T100.【考点】数列的求和;数列递推式;数列的极限.【分析】(1利用q=,即可得出.(2)利用等比数列的求和公式可得f(n)=,f (n+1)=.再利用极限的运算法则即可得出.(3)由a1b1+a2b2+…+a n b n=(n﹣1)•2n+1+2,当n≥2时,a1b1+a2b2+…+a n﹣1b n﹣1=(n﹣2)•2n+2,两式相减得:可得b n==n(n≥2),b1=1满足上式,可得b n=n.设S n表示数列{c n}的前n项之和,S100=(a1+a2+…+a50)+(b1+b2+…+b50),即可得出.【解答】解:(1)∵a1=2,a5=32,∴q==2,∴a n=2n.(2)f(n)=a2+a4+…+a2n=22+24+…+22n==,f(n+1)=.∴===4.(3)∵a1b1+a2b2+…+a n b n=(n﹣1)•2n+1+2,∴当n≥2时,a1b1+a2b2+…+a n﹣1b n﹣1=(n﹣2)•2n+2,两式相减得:a n b n=(n﹣1)•2n+1+2﹣(n﹣2)•2n+2=n•2n,即b n==n(n≥2),又∵a1b1=2,即b1=1满足上式,∴b n=n;设S n表示数列{c n}的前n项之和,S100=(a1+a2+…+a50)+(b1+b2+…+b50)=2+22+…+250+1+2+…+50=+=251+1273.2016年11月14日。

衡水中学2016-2017学年高二上学期期中数学试卷(理科) 含解析

衡水中学2016-2017学年高二上学期期中数学试卷(理科) 含解析

2016—2017学年河北省衡水中学高二(上)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设a,b∈R,则“(a﹣b)a2<0”是“a<b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.若以双曲线﹣=1(b>0)的左、右焦点和点(1,)为顶点的三角形为直角三角形,则b等于()A.B.1 C.D.23.已知双曲线E:﹣=1(a>0,b>0)的离心率是,则E的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±2x4.已知p:∀m∈R,x2﹣mx﹣1=0有解,q:∃x0∈N,;则下列选项中是假命题的为()A.p∧q B.p∧(¬q)C.p∨q D.p∨(¬q)5.抛物线y=x2上一点到直线2x﹣y﹣4=0的距离最短的点的坐标是( )A.(1,1) B.()C.D.(2,4)6.命题“∀n∈N*,f(n)≤n”的否定形式是()A.∀n∈N*,f(n)>n B.∀n∉N*,f(n)>n C.∃n∈N*,f(n)>n D.∀n∉N*,f(n)>n7.过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于()A.B. C. D.8.已知椭圆(a>b>0)的半焦距为c(c>0),左焦点为F,右顶点为A,抛物线与椭圆交于B、C两点,若四边形ABFC 是菱形,则椭圆的离心率是()A.B.C. D.9.焦点在x轴上的椭圆方程为+=1(a>b>0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为,则椭圆的离心率为()A.B. C. D.10.以下有关命题的说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.命题“在△ABC中,若A>B,则sinA>sinB"的逆命题为假命题D.对于命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R,则x2+x+1≥011.过抛物线y2=2px(p>0)的焦点F的直线与双曲线x2﹣=1的一条渐近线平行,并交抛物线于A,B两点,若|AF|>|BF|,且|AF|=2,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=x12.设F1、F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐过线于M,N两点,且满足∠MAN=120°,则该双曲线的离心率为()A.B.C. D.二、填空题若命题“∃x0∈R,x02+mx0+2m﹣3<0”为假命题,则实数m的取值范围是…14.已知直线l:x+3y﹣2b=0过双曲线的右焦点F,则双曲线的渐近线方程为.15.已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点到准线的距离为.16.给出下列结论:动点M(x,y)分别到两定点(﹣3,0)、(3,0)连线的斜率之乘积为,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左、右焦点,则下列命题中:(1)曲线C的焦点坐标为F1(﹣5,0)、F2(5,0);(2)若∠F1MF2=90°,则S=32;(3)当x<0时,△F1MF2的内切圆圆心在直线x=﹣3上;(4)设A(6,1),则|MA|+|MF2|的最小值为;其中正确命题的序号是:.三、解答题(本大题共6小题,共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年高二(上)期中数学模拟试卷一.填空题(本大题共13小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.)1.命题“∃x∈R,x2≤0”的否定为.2.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为.3.“m<”是“方程+=1表示在y轴上的椭圆”的条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)4.已知椭圆+=1上的点P到一个焦点的距离为3,则P到另一个焦点的距离为.5.两平行直线3x﹣4y﹣3=0和6x﹣8y+5=0之间的距离是.6.如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是.7.已知两点A(﹣3,﹣4),B(6,3)到直线l:ax+y+1=0的距离相等,则实数a的值等于.8.“0<a<3”是“双曲线﹣=1(a>0)的离心率大于2”的条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)9.已知椭圆+=1的左、右焦点分别为F1、F2,点A在椭圆上,且|AF2|=6,则△AF1F2的面积是.10.已知椭圆﹣=1的离心率e=,则m的值为:.11.过直线y=2x上的一点P作⊙M:(x﹣2)2+(y﹣1)2=1的两条切线l1,l2,A,B两点为切点.若直线l1,l2关于直线y=2x对称,则四边形PAMB的面积为.12.已知x∈R,若“4﹣2a≤x≤a+3”是“x2﹣4x﹣12≤0”的必要不充分条件,则实数a的取值范围是.13.已知直线l的方程是x+y﹣6=0,A,B是直线l上的两点,且△OAB是正三角形(O为坐标原点),则△OAB外接圆的方程是.二、解答题14.若椭圆+=1与双曲线x2﹣=1有相同的焦点,且椭圆与双曲线交于点P(,y),求椭圆及双曲线的方程.15.设椭圆M的方程为: +=1.(1)求M的长轴长与短轴长;(2)若椭圆N的焦点为椭圆M在y轴上的顶点,且椭圆N经过点A(﹣,),求椭圆N的方程.16.已知p:4x2+12x﹣7≤0,q:a﹣3≤x≤a+3.(1)当a=0时,若p真q假,求实数x的取值范围;(2)若p是q的充分条件,求实数a的取值范围.17.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.18.已知椭圆C: +=1(a>b>0)的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线l:y=kx+与椭圆C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.19.已知以点C(t,)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(Ⅰ)求证:△AOB的面积为定值;(Ⅱ)设直线2x+y﹣4=0与圆C交于点M、N,若丨OM丨=丨ON丨,求圆C的方程;(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求丨PB丨+丨PQ丨的最小值及此时点P的坐标.2015-2016学年高二(上)期中数学模拟试卷参考答案与试题解析一.填空题1.命题“∃x∈R,x2≤0”的否定为∀x∈R,x2>0.【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x∈R,x2≤0”的否定为:∀x ∈R,x2>0.故答案为:∀x∈R,x2>0.2.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为18.【考点】椭圆的简单性质.【分析】由题意知a=5,b=3,c=4,从而可得|PF1|+|PF2|=2a=10,|F1F2|=2c=8.【解答】解:由题意作图如右图,∵椭圆的标准方程为+=1,∴a=5,b=3,c=4,∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8,∴△PF1F2的周长为10+8=18;故答案为:18.3.“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)【考点】必要条件、充分条件与充要条件的判断.【分析】根据椭圆的定义,求出m的范围,结合集合的包含关系判断充分必要性即可.【解答】解:若“方程+=1表示在y轴上的椭圆”,则,解得:1<m<,故“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件,故答案为:必要不充分.4.已知椭圆+=1上的点P到一个焦点的距离为3,则P到另一个焦点的距离为7.【考点】椭圆的定义.【分析】椭圆的长轴长为10,根据椭圆的定义,利用椭圆上的点P 到一个焦点的距离为3,即可得到P到另一个焦点的距离.【解答】解:椭圆的长轴长为10根据椭圆的定义,∵椭圆上的点P到一个焦点的距离为3∴P到另一个焦点的距离为10﹣3=7故答案为:75.两平行直线3x﹣4y﹣3=0和6x﹣8y+5=0之间的距离是.【考点】两条平行直线间的距离.【分析】根据题意,将直线3x﹣4y﹣3=0化为6x﹣8y﹣6=0,利用平行线间的距离公式求解.【解答】解:3x﹣4y﹣3=0可化为6x﹣8y﹣6=0.∴两平行直线3x﹣4y﹣3=0和6x﹣8y+5=0之间的距离:d==.故答案为:.6.如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是.【考点】直线与圆的位置关系.【分析】设,的最大值就等于连接原点和圆上的点的直线中斜率的最大值,由数形结合法的方式,易得答案.【解答】解:设,则y=kx表示经过原点的直线,k为直线的斜率.所以求的最大值就等价于求同时经过原点和圆上的点的直线中斜率的最大值.从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,此时的斜率就是其倾斜角∠EOC的正切值.易得,可由勾股定理求得|OE|=1,于是可得到,即为的最大值.故答案为:7.已知两点A(﹣3,﹣4),B(6,3)到直线l:ax+y+1=0的距离相等,则实数a的值等于﹣或﹣.【考点】点到直线的距离公式.【分析】利用点到直线的距离公式即可得出.【解答】解:∵两点A(﹣3,﹣4),B(6,3)到直线l:ax+y+1=0的距离相等,∴,化为|3a+3|=|6a+4|.∴6a+4=±(3a+3),解得或.故答案为:或.8.“0<a<3”是“双曲线﹣=1(a>0)的离心率大于2”的充要条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)【考点】必要条件、充分条件与充要条件的判断.【分析】双曲线双曲线﹣=1(a>0)的离心率大于2,a>0,可得e=>2,解得0<a<3.即可判断出.【解答】解:双曲线双曲线﹣=1(a>0)的离心率大于2,a>0,可得e=>2,解得0<a<3.∴“0<a<3”是“双曲线双曲线﹣=1(a>0)的离心率大于2”的充要条件.故答案为:充要9.已知椭圆+=1的左、右焦点分别为F1、F2,点A在椭圆上,且|AF2|=6,则△AF1F2的面积是24.【考点】椭圆的简单性质.【分析】根据椭圆方程求得离心率及右准线方程,根据椭圆的第二定义,求得A点横坐标,代入椭圆方程求得纵坐标,根据三角形面积公式△AF1F2的面积是•2c•|y A,即可求得△AF1F2的面积.【解答】解:椭圆+=1,a=7,b=2,c==5,由离心率e==,右准线方程为x==,|AF2|=ed=e(﹣x A)=a﹣ex A=6,即为7﹣x A=6,可得x A=,y A=±=±,则△AF1F2的面积是•2c•|y A|=5•=24.故答案为:24.10.已知椭圆﹣=1的离心率e=,则m的值为:﹣3或﹣.【考点】椭圆的简单性质.【分析】分两种情况加以讨论:当椭圆的焦点在x轴上时,椭圆离心率为e==,解之得m=﹣3;当椭圆的焦点在y轴上时,椭圆的离心率为e==,解之得m=﹣.最后综上所述,得到正确答案.【解答】解:将椭圆﹣=1化成标准形式为:①当椭圆的焦点在x轴上时,a2=5,b2=﹣m∴椭圆的离心率为e==,解之得m=﹣3②当椭圆的焦点在y轴上时,a2=﹣m,b2=5∴椭圆的离心率为e==,解之得m=﹣综上所述,可得m的值为:﹣3或﹣故答案为:﹣3或﹣11.过直线y=2x上的一点P作⊙M:(x﹣2)2+(y﹣1)2=1的两条切线l1,l2,A,B两点为切点.若直线l1,l2关于直线y=2x对称,则四边形PAMB的面积为.【考点】直线与圆的位置关系.【分析】本题考查了直线和圆的有关问题,结合对称性,可以判断出MP和直线y=2x对称,利用切线长相等,可以求出两个全等的三角形的面积.【解答】解:直线l1,l2关于直线y=2x对称,所以PM与直线y=2x垂直,由点到直线的距离公式可得PM==,因为切线长相等,△PAM≌△PBM,所以四边形的面积为:2×.故答案为:.12.已知x∈R,若“4﹣2a≤x≤a+3”是“x2﹣4x﹣12≤0”的必要不充分条件,则实数a的取值范围是a>3.【考点】必要条件、充分条件与充要条件的判断.【分析】先求出不等式x2﹣4x﹣12≤0的解集,再结合充分必要条件的定义得到不等式组,解出即可.【解答】解:解不等式x2﹣4x﹣12≤0得:﹣2≤x≤6,若“4﹣2a≤x≤a+3”是“x2﹣4x﹣12≤0”的必要不充分条件,则,解得:a>3,故答案为:a>3.13.已知直线l的方程是x+y﹣6=0,A,B是直线l上的两点,且△OAB是正三角形(O为坐标原点),则△OAB外接圆的方程是(x﹣2)2+(y﹣2)2=8.【考点】圆的标准方程.【分析】取AB中点D,连结OD,由已知得圆心在OD上,且半径为=2,由此能求出圆的方程.【解答】解:取AB中点D,连结OD,则D点坐标为(3,3),则OD=3,由已知得圆心在OD上,且半径为=2,∴圆心为(2,2),∴圆的方程为(x﹣2)2+(y﹣2)2=8.故答案:(x﹣2)2+(y﹣2)2=8.二、解答题14.若椭圆+=1与双曲线x2﹣=1有相同的焦点,且椭圆与双曲线交于点P(,y),求椭圆及双曲线的方程.【考点】双曲线的标准方程;椭圆的标准方程.【分析】求出双曲线的两焦点坐标,即为椭圆的焦点坐标,即可得到m,b的值,然后根据椭圆的定义得到a,最后利用a,b,c的关系即可求出b的值,得到椭圆及双曲线的方程.【解答】解:由题意可知10﹣m=1+b,,,解得,m=1,b=8,所以椭圆的方程为;双曲线的方程为.15.设椭圆M的方程为: +=1.(1)求M的长轴长与短轴长;(2)若椭圆N的焦点为椭圆M在y轴上的顶点,且椭圆N经过点A(﹣,),求椭圆N的方程.【考点】椭圆的简单性质.【分析】(1)求出椭圆M的a,b,即可得到长轴长2a,短轴长2b;(2)求出椭圆M的短轴的顶点,可设椭圆N的方程为+=1(m>n>0),由焦点坐标和A点满足椭圆方程,解方程可得所求.【解答】解:(1)椭圆M的方程为: +=1的a=3,b=,可得M的长轴长为6,短轴长为2;(2)由椭圆M可得y轴上的顶点为(0,±),设椭圆N的方程为+=1(m>n>0),由题意可得,m2﹣n2=5,+=1,解得m=3,n=2,即有椭圆N的方程为+=1.16.已知p:4x2+12x﹣7≤0,q:a﹣3≤x≤a+3.(1)当a=0时,若p真q假,求实数x的取值范围;(2)若p是q的充分条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【分析】(1)将a=0代入q,求出x的范围即可;(2)根据集合的包含关系得到关于a的不等式组,解出即可.【解答】解:由4x2+12x﹣7≤0,解得:﹣≤x≤,q:a﹣3≤x≤a+3.(1)当a=0时,q:﹣3≤x≤3,若p真q假,则﹣≤x<﹣3;(2)若p是q的充分条件,则,解得:﹣≤x≤﹣,(“=”不同时取到).17.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【分析】(1)由椭圆的离心率公式及菱形的面积公式求得a和b的值,可求得椭圆的方程;(2)利用椭圆方程及直线AM,AN的方程求得x M、x N、x P及x Q的值根据三角形面积公式求得k的值,求得直线方程.【解答】解:(1)由题意可知:e===,且2ab=4,且a2﹣b2=c2,解得a=2,b=,∴椭圆的标准方程:,(2)由(1)可知,A(0,﹣),则直线AM的方程为y=kx﹣,将直线方程代入椭圆方程得:消去并整理得:(3+4k2)x2﹣8kx=0,解得x M=,直线AN的方程y=﹣﹣,同理可得:x N=﹣,解得x P=k,同理可得x Q=﹣,∴==丨丨==,即3k4﹣10k2+3=0,解得k2=3或k2=,所以=或﹣,故存在直线l:y=x,y=﹣x,满足题意.18.已知椭圆C: +=1(a>b>0)的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线l:y=kx+与椭圆C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)设椭圆的焦半距为c,则由题设,得:,解得a,b,c值,可得椭圆C的方程;(2)设点A(x1,y1),B(x2,y2),将直线l 的方程y=kx+代入+x2=1,利用韦达定理,及向量垂直的充要条件,可求出满足条件的k值.【解答】解:(1)设椭圆的焦半距为c,则由题设,得:,解得所以b2=a2﹣c2=4﹣3=1,故所求椭圆C的方程为+x2=1.(2)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.理由如下:设点A(x1,y1),B(x2,y2),将直线l 的方程y=kx+代入+x2=1,并整理,得(k2+4)x2+2 kx﹣1=0.(*)则x1+x2=﹣,x1x2=﹣.因为以线段AB为直径的圆恰好经过坐标原点O,所以•=0,即x1x2+y1y2=0.又y1y2=k2x1x2+k(x1+x2)+3,于是﹣﹣+3=0,解得k=±,经检验知:此时(*)式的△>0,符合题意.所以当k=±时,以线段AB为直径的圆恰好经过坐标原点O.19.已知以点C(t,)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(Ⅰ)求证:△AOB的面积为定值;(Ⅱ)设直线2x+y﹣4=0与圆C交于点M、N,若丨OM丨=丨ON丨,求圆C的方程;(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求丨PB丨+丨PQ丨的最小值及此时点P的坐标.【考点】圆的标准方程;两点间的距离公式.【分析】(Ⅰ)根据题意写出圆C的方程,整理后分别令y=0与x=0求出对应的x与y的值,确定出A与B坐标,求出三角形AOB面积,即可得证;(Ⅱ)根据|OM|=|ON|,得到O在MN的中垂线上,设MN中点为H,得到CH与MN垂直,进而确定出C,H,O共线,求出直线OC斜率,得到t的值确定出圆心C坐标,即可得到圆C的方程;(Ⅲ)找出B关于x+y+2=0的对称点B′坐标,利用三角形两边之和大于第三边求出|PB|+|PQ|的最小值,以及此时直线B′C的方程,即可求出交点P坐标.【解答】解:(Ⅰ)由题设知,圆C的方程为(x﹣t)2+(y﹣)2=t2+,化简得x2﹣2tx+y2﹣y=0,当y=0时,x=0或2t,则A(2t,0);当x=0时,y=0或,则B(0,),=|OA|•|OB|=×|2t|×||=4为定值;∴S△AOB(II)∵|OM|=|ON|,∴原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k===,∴t=2或t=﹣2,∴圆心C(2,1)或C(﹣2,﹣1),∵当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去;∴圆C的方程为(x﹣2)2+(y﹣1)2=5;(Ⅲ)点B(0,2)关于直线x+y+2=0的对称点为B′(﹣4,﹣2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圆上点Q的最短距离为|B′C|﹣r=﹣=3﹣=2,∴|PB|+|PQ|的最小值为2,直线B′C的方程为y=x,则直线B′C与直线x+y+2=0的交点P的坐标为(﹣,﹣).2016年11月1日。

相关文档
最新文档