2018---2019学年度第一学期沪教版八年级数学单元测试题第十八章正比例函数与反比例函数
沪教版(上海市)八年级(上)学 第18章 正比例函数与反比例函数 单元测试卷 (解析版)

第18章 正比例函数与反比例函数 单元测试卷一.选择题(共6小题)1.圆周长公式2C R π=中,下列说法正确的是( ) A .π、R 是变量,2为常量 B .C 、R 为变量,2、π为常量 C .R 为变量,2、π、C 为常量 D .C 为变量,2、π、R 为常量2.函数13y x =+-x 的取值范围是( ) A .2x ,且3x ≠ B .2x C .3x ≠ D .2x >,且3x ≠3.已知反比例函数的图象经过点(2,4)-,那么这个反比例函数的解析式是( ) A .2y x=B .2y x=-C .8y x=D .8y x=-4.在下列函数中,当x 增大时,y 的值减小的函数是( ) A .2y x=B .5y x =C .3y x=-D .4x y =-5.关于函数2y x=-,下列说法中错误的是( ) A .函数的图象在第二、四象限 B .y 的值随x 的值增大而增大C .函数的图象与坐标轴没有交点D .函数的图象关于原点对称6.若1(3B -,1)y 、2(2,)A y -、3(1,)C y 三点都在函数(0)ky k x=>的图象上,则1y 、2y 、3y 的大小关系是( ) A .312y y y >>B .213y y y >>C .231y y y >>D .321y y y >>二.填空题(共12小题) 7.函数123y x =+的定义域是 . 8.圆的面积计算公式2S R π=中 是自变量. 9.已知33y x m =++是正比例函数,则m = . 10.已知2()1f x x =-,那么f (3)的值是 . 11.已知变量s 与t 的关系式是2132s t t =-,则当2t =-时,s = .12.若y 与x 成正比例,且当1x =时,4y =-,则y 与x 的函数表达式为 .13.已知反比例函数31m y x-=的图象有一分支在第二象限,那么常数m 的取值范围是 . 14.已知正比例函数(y kx k =是常数,0)k ≠的图象经过第二、四象限,那么y 的值随着x 的值增大而 .(填“增大”或“减小” ) 15.设函数4y x =-与3y x =的图象的交点坐标为(,)m n ,则11m n -的值为 . 16.如图,过反比例函数(0)ky x x=<的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若3AOB S ∆=,则反比例函数的表达式为 .17.我们把[a ,]b 称为一次函数y ax b =+的“特征数”.如果“特征数”是[2,1]n +的一次函数为正比例函数,则n 的值为 .18.从A 市到B 市汽车行驶的高速公路里程固定.假设汽车匀速行驶,汽车行驶的速度v (千米/时)与速度t (小时)的函数图象如图所示.若高速公路的速度限定不超过每小时120千米,则汽车从A 市到B 市行驶的最短时间为 小时.三.解答题(共7小题)19.已知反比例函数的图象经过点(3,2)A -和(1,1)B m -,求m 的值和反比例函数的解析式.20.函数m y x =与函数(xy m k=、k 为不等于零的常数)的图象有一个公共点(3,2)A k -,其中正比例函数y 的值随x 的值增大而减小,求这两个函数的解析式.21.已知y 与x 成正比例,且当3x =时,4y =. (1)求y 与x 之间的函数解析式; (2)当1x =-时,求y 的值.22.已知正比例函数11(0)y k x k =≠的图象经过(2,4)A -、(,2)B m 两点. (1)求m 的值;(2)如果点B 在反比例函数22(0)k y k x=≠的图象上,求反比例函数的解析式.23.反比例函数ky x=的图象经过点(2,3)A 、(,3)B m -. (1)求这个函数的解析式及m 的值;(2)请判断点(1,6)C 是否在这个反比例函数的图象上,并说明理由.24.如图,直线(0)y ax a =>与双曲线(0)ky k x=>交于A 、B 两点,且点A 的坐标为(4,2),点B 的坐标为(,2)n -. (1)求a ,n 的值; (2)若双曲线(0)ky y k x==>的上点C 的纵坐标为8,求AOC ∆的面积.25.如图所示是某一蓄水池每小时的排水量3(/)V m h 与排完水池中的水所用的时间()t h 之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)求出此函数的解析式;(3)若要6h 排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量不超过5 3000m ,那么水池中的水至少要多少小时排完?第18章 正比例函数与反比例函数参考答案与试题解析一.选择题(共6小题)1.圆周长公式2C R π=中,下列说法正确的是( ) A .π、R 是变量,2为常量 B .C 、R 为变量,2、π为常量 C .R 为变量,2、π、C 为常量D .C 为变量,2、π、R 为常量解:在圆周长公式2C R π=中,2、π是常量,C ,R 是变量. 故选:B .2.函数13y x =+-x 的取值范围是( ) A .2x ,且3x ≠ B .2x C .3x ≠ D .2x >,且3x ≠解:根据题意得:20x -,且30x -≠, 解得2x ,且3x ≠. 故选:A .3.已知反比例函数的图象经过点(2,4)-,那么这个反比例函数的解析式是( ) A .2y x=B .2y x=-C .8y x=D .8y x=-解:设反比例函数解析式为k y x=, 将(2,4)-代入,得:42k -=, 解得8k =-,所以这个反比例函数解析式为8y x=-, 故选:D .4.在下列函数中,当x 增大时,y 的值减小的函数是( ) A .2y x= B .5y x = C .3y x=-D .4x y =-解:2y x=的图象是双曲线,双曲线的两个分支分别位于一三象限,在每个象限内,y 随x 的增大而减小,因此①不符合题意;5y x =的图象是过原点,且图象位于一三象限的一条直线,y 随x 的增大而增大,因此②不符合题意;3y x=-的图象是双曲线,双曲线的两个分支分别位于二四象限,在每个象限内,y 随x 的增大而增大,因此③不符合题意; 4x y =-,即14y x =-,的图象是过原点,且图象位于二四象限的一条直线,y 随x 的增大而减小,因此④符合题意; 故选:D . 5.关于函数2y x=-,下列说法中错误的是( ) A .函数的图象在第二、四象限 B .y 的值随x 的值增大而增大C .函数的图象与坐标轴没有交点D .函数的图象关于原点对称 解:函数2y x=-, ∴该函数的图象在第二、四象限,故选项A 正确;在每个象限内,y 随x 的增大而增大,故选项B 错误; 函数的图象与坐标轴没有交点,故选项C 正确; 函数的图象关于原点对称,故选项D 正确; 故选:B .6.若1(3B -,1)y 、2(2,)A y -、3(1,)C y 三点都在函数(0)ky k x=>的图象上,则1y 、2y 、3y 的大小关系是( ) A .312y y y >> B .213y y y >> C .231y y y >> D .321y y y >>解:0k >,∴反比例函数图象在一、三象限内,且在每个象限内y 随x 的增大而减小121(,),(2,)3B y A y --在第三象限,123->-,210y y ∴>> 3(1,)C y 在一象限, 30y ∴>, 321y y y ∴>>,故选:D .二.填空题(共12小题) 7.函数123y x =+的定义域是 2x ≠ . 解:函数123y x =+, 230x ∴+≠,解得,32x ≠-,故答案为:32-.8.圆的面积计算公式2S R π=中 R 是自变量. 解:圆的面积计算公式2S R π=中R 是自变量. 故答案为:R .9.已知33y x m =++是正比例函数,则m = 3- . 解:由题意得30m +=, 解得3m =-. 故答案为:3-. 10.已知2()1f x x =-,那么f (3)的值是 1 . 解:2()1f x x =-, f ∴(3)2131==-, 故答案为:1.11.已知变量s 与t 的关系式是2132s t t =-,则当2t =-时,s = 8- .解:把2t =-代入2132s t t =-,13(2)46282s =⨯--⨯=--=-,故答案为:8-.12.若y 与x 成正比例,且当1x =时,4y =-,则y 与x 的函数表达式为 4y x =- . 解:设y kx =,把1x =,4y =-代入y kx =,可得:4k -=, 解得:4k =-,所以y 与x 的函数表达式为:4y x =-, 故答案为:4y x =-. 13.已知反比例函数31m y x-=的图象有一分支在第二象限,那么常数m 的取值范围是 13m < .解:反比例函数31m y x-=的图象有一分支在第二象限, 310m ∴-<,解得13m <,故答案是:13m <.14.已知正比例函数(y kx k =是常数,0)k ≠的图象经过第二、四象限,那么y 的值随着x 的值增大而 减小 .(填“增大”或“减小” )解:函数(0)y kx k =≠的图象经过第二、四象限,那么y 的值随x 的值增大而减小, 故答案为:减小. 15.设函数4y x =-与3y x =的图象的交点坐标为(,)m n ,则11m n -的值为 43- . 解:函数4y x =-与3y x=的图象的交点坐标为(,)m n , 4n m ∴-=-,3mn =, ∴114433n m m n mn ---===-, 故答案为:43-.16.如图,过反比例函数(0)ky x x=<的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若3AOB S ∆=,则反比例函数的表达式为 6y x=-.解:因为11||322AOB S OB BA x y ∆===又因为x y k = 即1||32k =所以6k =-故答案是:6y x=-. 17.我们把[a ,]b 称为一次函数y ax b =+的“特征数”.如果“特征数”是[2,1]n +的一次函数为正比例函数,则n 的值为 1- . 解:由题意得:10n +=, 解得:1n =-, 故答案为:1-.18.从A 市到B 市汽车行驶的高速公路里程固定.假设汽车匀速行驶,汽车行驶的速度v (千米/时)与速度t (小时)的函数图象如图所示.若高速公路的速度限定不超过每小时120千米,则汽车从A 市到B 市行驶的最短时间为 1 小时.解:根据题意可知从A 市到B 市汽车行驶的高速公路的里程为:80 1.5120⨯=(千米), 高速公路的速度限定不超过每小时120千米, ∴从A 市到B 市行驶的最短时间为1小时.故答案为:1.三.解答题(共7小题)19.已知反比例函数的图象经过点(3,2)A -和(1,1)B m -,求m 的值和反比例函数的解析式. 解:反比例函数的图象经过点(3,2)A -, ∴把(3,2)A -代入ky x=,得3(2)6k =⨯-=-, ∴反比例函数的解析式为6y x=-. 把(1,1)B m -代入6y x=-得,16m -=-, 5m ∴=-.20.函数m y x =与函数(xy m k=、k 为不等于零的常数)的图象有一个公共点(3,2)A k -,其中正比例函数y 的值随x 的值增大而减小,求这两个函数的解析式. 解:根据题意可得32k k=-, 整理得2230k k -+=, 解得11k =-,23k =,正比例函数y 的值随x 的值增大而减小, 1k ∴=-,∴点A 的坐标为(3,3)-, ∴反比例函数是解析式为:9y x=-; 正比例函数的解析式为:y x =-.21.已知y 与x 成正比例,且当3x =时,4y =. (1)求y 与x 之间的函数解析式; (2)当1x =-时,求y 的值. 解:(1)y 与x 成正比例,∴设y kx =,当3x =时,4y =, 43k ∴=,解得43k =, y ∴与x 之间的函数关系式为43y x =; (2)把1x =-代入43y x =得43y =-; 22.已知正比例函数11(0)y k x k =≠的图象经过(2,4)A -、(,2)B m 两点. (1)求m 的值;(2)如果点B 在反比例函数22(0)k y k x=≠的图象上,求反比例函数的解析式. 解:(1)因为函数图象经过点(2,4)A -, 所以124k =-,得12k =-.(2分)所以,正比例函数解析式:2y x =-.(1分)(2)根据题意,当2y =时,22m -=,得1m =-.(1分) 于是,由点B 在反比例函数2k y x =的图象上,得221k=-, 解得22k =-.所以,反比例函数的解析式是2y x =-.(2分) 23.反比例函数k y x=的图象经过点(2,3)A 、(,3)B m -. (1)求这个函数的解析式及m 的值;(2)请判断点(1,6)C 是否在这个反比例函数的图象上,并说明理由.解:(1)把(2,3)A 代入(2,3)A ,得:236k =⨯=,所以函数的解析式为6y x =, 把(,3)B m -代入6y x =,得:63m-=, 解得2m =-;(2)(1,6)C 在这个反比例函数的图象上;理由如下:把1x =代入6y x =,得:6y =, 所以点(1,6)C 在这个反比例函数的图象上.24.如图,直线(0)y ax a =>与双曲线(0)k y k x=>交于A 、B 两点,且点A 的坐标为(4,2),点B 的坐标为(,2)n -.(1)求a ,n 的值;(2)若双曲线(0)k y y k x ==>的上点C 的纵坐标为8,求AOC ∆的面积.解:(1)直线(0)y ax a =>与双曲线(0)k y k x=>交于A 、B 两点, ∴422a an =⎧⎨=-⎩, 解得12a =,4n =-; (2)双曲线(0)k y k x=>经过A 点,双曲线(0)k y y k x==>的上点C 的纵坐标为8, C ∴点的坐标为(1,8),如图,作AE x ⊥轴于E ,CD x ⊥轴于D ,()()18241152AOC COD AOE ACDE ACDE S S S S S ∆∆∆∴=+-==+-=梯形梯形.25.如图所示是某一蓄水池每小时的排水量3(/)V m h 与排完水池中的水所用的时间()t h 之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)求出此函数的解析式;(3)若要6h 排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量不超过5 3000m ,那么水池中的水至少要多少小时排完?解:(1)设k V t=. 点(12,4000)在此函数图象上,∴蓄水量为312400048000m ⨯=;(2)点(12,4000)在此函数图象上,400012k ∴=,∴此函数的解析式48000V t =;(3)当6t =时,34800080006V m ==; ∴每小时的排水量应该是38000m ;(4)5000V , ∴480005000t ,9.6t ∴.∴水池中的水至少要9.6小时排完.。
沪教版(上海市)八年级第一学期 第18章 正比例函数与反比例函数 单元测试卷 (解析版)

第18章正比例函数与反比例函数单元测试卷一.选择题(共6小题)1.圆周长公式中,下列说法正确的是A.、是变量,2为常量B.、为变量,2、为常量C.为变量,2、、为常量D.为变量,2、、为常量2.函数的自变量的取值范围是A.,且B.C.D.,且3.已知反比例函数的图象经过点,那么这个反比例函数的解析式是A.B.C.D.4.在下列函数中,当增大时,的值减小的函数是A.B.C.D.5.关于函数,下列说法中错误的是A.函数的图象在第二、四象限B.的值随的值增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称6.若,、、三点都在函数的图象上,则、、的大小关系是A.B.C.D.二.填空题(共12小题)7.函数的定义域是.8.圆的面积计算公式中是自变量.9.已知是正比例函数,则.10.已知,那么(3)的值是.11.已知变量与的关系式是,则当时,.12.若与成正比例,且当时,,则与的函数表达式为.13.已知反比例函数的图象有一分支在第二象限,那么常数的取值范围是.14.已知正比例函数是常数,的图象经过第二、四象限,那么的值随着的值增大而.(填“增大”或“减小”15.设函数与的图象的交点坐标为,则的值为.16.如图,过反比例函数的图象上一点作轴于点,连接,若,则反比例函数的表达式为.17.我们把,称为一次函数的“特征数”.如果“特征数”是,的一次函数为正比例函数,则的值为.18.从市到市汽车行驶的高速公路里程固定.假设汽车匀速行驶,汽车行驶的速度(千米时)与速度(小时)的函数图象如图所示.若高速公路的速度限定不超过每小时120千米,则汽车从市到市行驶的最短时间为小时.三.解答题(共7小题)19.已知反比例函数的图象经过点和,求的值和反比例函数的解析式.20.函数与函数、为不等于零的常数)的图象有一个公共点,其中正比例函数的值随的值增大而减小,求这两个函数的解析式.21.已知与成正比例,且当时,.(1)求与之间的函数解析式;(2)当时,求的值.22.已知正比例函数的图象经过、两点.(1)求的值;(2)如果点在反比例函数的图象上,求反比例函数的解析式.23.反比例函数的图象经过点、.(1)求这个函数的解析式及的值;(2)请判断点是否在这个反比例函数的图象上,并说明理由.24.如图,直线与双曲线交于、两点,且点的坐标为,点的坐标为.(1)求,的值;(2)若双曲线的上点的纵坐标为8,求的面积.25.如图所示是某一蓄水池每小时的排水量与排完水池中的水所用的时间之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)求出此函数的解析式;(3)若要排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量不超过5 ,那么水池中的水至少要多少小时排完?第18章正比例函数与反比例函数参考答案与试题解析一.选择题(共6小题)1.圆周长公式中,下列说法正确的是A.、是变量,2为常量B.、为变量,2、为常量C.为变量,2、、为常量D.为变量,2、、为常量解:在圆周长公式中,2、是常量,,是变量.故选:.2.函数的自变量的取值范围是A.,且B.C.D.,且解:根据题意得:,且,解得,且.故选:.3.已知反比例函数的图象经过点,那么这个反比例函数的解析式是A.B.C.D.解:设反比例函数解析式为,将代入,得:,解得,所以这个反比例函数解析式为,故选:.4.在下列函数中,当增大时,的值减小的函数是A.B.C.D.解:的图象是双曲线,双曲线的两个分支分别位于一三象限,在每个象限内,随的增大而减小,因此①不符合题意;的图象是过原点,且图象位于一三象限的一条直线,随的增大而增大,因此②不符合题意;的图象是双曲线,双曲线的两个分支分别位于二四象限,在每个象限内,随的增大而增大,因此③不符合题意;,即,的图象是过原点,且图象位于二四象限的一条直线,随的增大而减小,因此④符合题意;故选:.5.关于函数,下列说法中错误的是A.函数的图象在第二、四象限B.的值随的值增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称解:函数,该函数的图象在第二、四象限,故选项正确;在每个象限内,随的增大而增大,故选项错误;函数的图象与坐标轴没有交点,故选项正确;函数的图象关于原点对称,故选项正确;故选:.6.若,、、三点都在函数的图象上,则、、的大小关系是A.B.C.D.解:,反比例函数图象在一、三象限内,且在每个象限内随的增大而减小在第三象限,,在一象限,,,故选:.二.填空题(共12小题)7.函数的定义域是.解:函数,,解得,,故答案为:.8.圆的面积计算公式中是自变量.解:圆的面积计算公式中是自变量.故答案为:.9.已知是正比例函数,则.解:由题意得,解得.故答案为:.10.已知,那么(3)的值是1.解:,(3),故答案为:1.11.已知变量与的关系式是,则当时,.解:把代入,,故答案为:.12.若与成正比例,且当时,,则与的函数表达式为.解:设,把,代入,可得:,解得:,所以与的函数表达式为:,故答案为:.13.已知反比例函数的图象有一分支在第二象限,那么常数的取值范围是.解:反比例函数的图象有一分支在第二象限,,解得,故答案是:.14.已知正比例函数是常数,的图象经过第二、四象限,那么的值随着的值增大而减小.(填“增大”或“减小”解:函数的图象经过第二、四象限,那么的值随的值增大而减小,故答案为:减小.15.设函数与的图象的交点坐标为,则的值为.解:函数与的图象的交点坐标为,,,,故答案为:.16.如图,过反比例函数的图象上一点作轴于点,连接,若,则反比例函数的表达式为.解:因为又因为即所以故答案是:.17.我们把,称为一次函数的“特征数”.如果“特征数”是,的一次函数为正比例函数,则的值为.解:由题意得:,解得:,故答案为:.18.从市到市汽车行驶的高速公路里程固定.假设汽车匀速行驶,汽车行驶的速度(千米时)与速度(小时)的函数图象如图所示.若高速公路的速度限定不超过每小时120千米,则汽车从市到市行驶的最短时间为1小时.解:根据题意可知从市到市汽车行驶的高速公路的里程为:(千米),高速公路的速度限定不超过每小时120千米,从市到市行驶的最短时间为1小时.故答案为:1.三.解答题(共7小题)19.已知反比例函数的图象经过点和,求的值和反比例函数的解析式.解:反比例函数的图象经过点,把代入,得,反比例函数的解析式为.把代入得,,.20.函数与函数、为不等于零的常数)的图象有一个公共点,其中正比例函数的值随的值增大而减小,求这两个函数的解析式.解:根据题意可得,整理得,解得,,正比例函数的值随的值增大而减小,,点的坐标为,反比例函数是解析式为:;正比例函数的解析式为:.21.已知与成正比例,且当时,.(1)求与之间的函数解析式;(2)当时,求的值.解:(1)与成正比例,设,当时,,,解得,与之间的函数关系式为;(2)把代入得;22.已知正比例函数的图象经过、两点.(1)求的值;(2)如果点在反比例函数的图象上,求反比例函数的解析式.解:(1)因为函数图象经过点,所以,得.(2分)所以,正比例函数解析式:.(1分)(2)根据题意,当时,,得.(1分)于是,由点在反比例函数的图象上,得,解得.所以,反比例函数的解析式是.(2分)23.反比例函数的图象经过点、.(1)求这个函数的解析式及的值;(2)请判断点是否在这个反比例函数的图象上,并说明理由.解:(1)把代入,得:,所以函数的解析式为,把代入,得:,解得;(2)在这个反比例函数的图象上;理由如下:把代入,得:,所以点在这个反比例函数的图象上.24.如图,直线与双曲线交于、两点,且点的坐标为,点的坐标为.(1)求,的值;(2)若双曲线的上点的纵坐标为8,求的面积.解:(1)直线与双曲线交于、两点,,解得,;(2)双曲线经过点,双曲线的上点的纵坐标为8,点的坐标为,如图,作轴于,轴于,.25.如图所示是某一蓄水池每小时的排水量与排完水池中的水所用的时间之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)求出此函数的解析式;(3)若要排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量不超过5 ,那么水池中的水至少要多少小时排完?解:(1)设.点在此函数图象上,蓄水量为;(2)点在此函数图象上,,此函数的解析式;(3)当时,;每小时的排水量应该是;(4),,.水池中的水至少要9.6小时排完.。
沪教版8年级上册数学第18章正比例函数与反比例函数单元检测卷

沪教版8年级上册数学第18章正比例函数与反比例函数单元检测卷一、选择题(共12小题;每小题3分,共36分)1.下列函数中,反比例函数是()A. y=x﹣1B. y=C. y=+3x+1D. y=2.关于正比例函数y=﹣2x,下列说法错误的是()A. 图象经过原点B. 图象经过第二,四象限C. y随x增大而增大D. 点(2,﹣4)在函数的图象上3.关于函数y=﹣x,下列结论正确的是()A. 函数图象必过点(﹣2,﹣1)B. 函数图象经过第1、3象限C. y随x的增大而减小D. y随x的增大而增大4.如果反比例函数的图像经过点(-3,-4),那么函数的图像应在()A. 第一、三象限B. 第一、二象限C. 第二、四象限D. 第三、四象限5.已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是()A. B.C. D.6.双曲线与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B 两点,连接OA、OB,则△AOB的面积为()A. 1B. 2C. 3D. 47.函数y=﹣x+1与函数y=-在同一坐标系中的大致图象是()A. B.C. D.8.函数y=中自变量x的取值范围是()A. x≥﹣1B. x≤﹣1C. x>﹣1D. x<﹣19.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A. 1B. 2C. 3D. 410.关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③y=|x|;④y= .其中y是x函数的是()A. ①②③B. ①②③④C. ①③D. ①③④11.如图,反比例函数y=(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<时,则x的取值范围是()A. 1<x<3B. x<1或x>3C. 0<x<1D. 0<x<1或x>312.甲、乙二人沿相同的路线由A到B匀速行进,A,B两地间的路程为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图像如图所示.根据图像信息,下列说法正确的是()A. 甲的速度是4km/ hB. 乙的速度是10 km/ hC. 乙比甲晚出发1 hD. 甲比乙晚到B地3 h二、填空题(共10题;共30分)13.圆周长C与圆的半径r之间的关系为C=2πr,其中变量是________ ,常量是________ .14.一块长方形花圃,长为x米,宽为y米,周长为18米,那么y与x的函数关系式为________.15.等腰△ABC的周长为10厘米,底边BC长为y厘米,腰AB长为x厘米,则y与x的关系式为:________.当x=2厘米时,y=________厘米;当y=4厘米时,x=________厘米.16.定义:数x、y、z中较大的数称为max{x,y,z}.例如max{﹣3,1,﹣2}=1,函数y=max{﹣t+4,t,}表示对于给定的t的值,代数式﹣t+4,t,中值最大的数,如当t=1时y=3,当t=0.5时,y=6.则当t=________ 时函数y的值最小.17.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,________ 随________ 变化而变化,其中自变量是________ ,因变量是________ .18.函数中,自变量x的取值范围是________.19.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为________;当x=500时,y=________;当y=16时,x=________.20.一个反比例函数的图象位于第二、四象限.请你写出一个符合条件的解析式是________ .21.圆的面积计算公式S=πR2中________ 是变量,________ 是常量.22.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是________ (填写序号).三、解答题(共4题;共34分)23.已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.24.如图,一次函数y=x+1的图象与反比例函数y=(k为常数,且k≠0)的图象都经过点A(m,2).(1)求点A的坐标及反比例函数的表达式;(2)设一次函数y=x+1的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.25.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,12),点C的坐标为(﹣4,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)26.如图,一次函数的图象与反比例函数的图象交于A(﹣3,1)、B(m,3)两点,(1)求反比例函数和一次函数的解析式;(2)写出使一次函数的值大于反比例函数的x的取值范围;(3)连接AO、BO,求△ABO的面积.参考答案一、选择题D C C A A B A A B D D C二、填空题13.C,r;2π14.y=9﹣x15.y=10﹣2x(0<x<5);6;316.217.温度;时间;时间;温度18.x≥319.y=23﹣0.007x;19.5;100020.y=﹣,答案不唯一21.S和R;π22.①②③④三、解答题23.解:(1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量;(2)当底面半径为2.4cm时,易拉罐的用铝量为5.6cm3(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝较少,成本低(4)当易拉罐底面半径在1.6~2.8cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm 间变化时,用铝量随半径的增大而增大.24.解:(1)∵一次函数图象过A点,∴2=m+1,解得m=1,∴A点坐标为(1,2),又反比例函数图象过A点,∴k=1×2=2,∴反比例函数解析式为y=.(2)∵S△ABP=×PB×y A=2,A(1,2),∴2PB=4,∴PB=2,由y=x+1可知B(﹣1,0),∴点P的坐标为(1,0)或(﹣3,0).25.解:(1)过点A作AD⊥x轴于D,∵C的坐标为(﹣4,0),A的坐标为(n,12),∴AD=12,CD=n+4,∵tan∠ACO=2,∴==2,解得:n=2,∴A(2,12),把A(2,12)代入y=,得m=2×12=24,∴反比例函数表达式为:y=,又∵点A(2,12),C(﹣4,0)在直线y=kx+b上,∴2k+b=12,﹣4k+b=0,解得:k=2,b=8,∴一次函数的表达式为:y=2x+8;(2)由方程组,解得:,,∵A(2,12),∴B(﹣6,﹣4);(3)分两种情况:①当AE⊥x轴时,即点E与点D重合,此时E1(2,0);②当EA⊥AC时,此时△ADE∽△CDA,则=,DE==24,又∵D的坐标为(2,0),∴E2(26,0).综上所述,所求点E的坐标为E1(2,0),E2(26,0).26.(1)解:设一次函数的解析式为y=kx+b(k≠0),反比例函数的解析式为y= (a≠0),把A(﹣3,1)代入y= 得:a=﹣3,即反比例函数的解析式为y=﹣,把B(m,3)代入y=﹣得:3=﹣,解得:m=﹣1,即B的坐标为(﹣1,3),把A、B的坐标代入y=kx+b得:,解得:k=1,b=4,即一次函数的解析式为y=x+4(2)解:∵函数y=﹣和y=x+4的交点为A(﹣3,1)、B(﹣1,3),∴使一次函数的值大于反比例函数的x的取值范围是﹣3<x<﹣1或x>0(3)解:设一次函数y=x+4和x轴的交点为N,和y轴的交点为M,当x=0时,y=4,当y=0时,x=﹣4,即OM=4,ON=4,∵A(﹣3,1)、B(﹣1,3),∴△ABO的面积为S△MON﹣S△BOM﹣S△AON= ×4×4﹣×4×1﹣×4×1=4。
第十八章 正比例函数和反比例函数数学八年级上册-单元测试卷-沪教版(含答案)

第十八章正比例函数和反比例函数数学八年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个2、一列火车由甲市驶往相距600km的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A. B. C. D.3、圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常数B.C、R为变量,2、π为常数C.R为变量,2、π、C为常数D.C为变量,2、π、R为常数4、张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A. B. C. D.5、如图,点A是反比例函数图象上的一点,过点A作轴,垂足为点C,D为AC的中点,若的面积为1,则k的值为()A. B. C.3 D.46、P1(x1, y1),P2(x2, y2)是正比例函数图象上的两点,下列判断中,正确的是A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y27、如图,已知三角形的面积一定,则其底边a和该底边上的高h之间的函数关系图象大致是()A. B. C. D.8、小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A. B. C. D.9、已知 k1<0<k2,则函数 y=k1x 和的图象大致是()A. B. C. D.10、已知二次函数y=2x2+9x+34,当自变量x取两个不同的值x1、x2时,函数值相等,则当自变量x取x1+x2时的函数值与()A. x=1时的函数值相等B. x=0时的函数值相等C. x=时的函数值相等D. x=-时的函数值相等11、如图,在平面直角坐标系中,点O为坐标原点,平行四边形的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形的面积是()A.2B.3C.4D.512、一次函数y=kx+b和反比例函数的图象如图所示,则有()A.k>0,b>0,a>0B.k<0,b>0,a<0C.k<0,b>0,a>0 D.k<0,b<0,a>013、若点,,在反比例函数的图像上,则的大小关系是()A. B. C. D.14、如图,正比例函数的图象和反比例函数的图象交于两点,分别过点作轴的垂线,垂足为,则与的面积之和为()A. B. C.1 D.15、若是反比例函数,则a的取值为()A.1B.-1C.±1D.任意实数二、填空题(共10题,共计30分)16、若点A(-3,y1)、B(0,y2)是二次函数y=-2(x-1)2+3图像上的点,那么y1与y2的大小关系是:y1 ________y2(填“>”,“<”或“=”)17、正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=________.18、如图,反比例函数的图象与直线交于,两点(点在点右侧),过点作轴的垂线,垂足为点,连接,,图中阴影部分的面积为12,则的值为________.19、已知点A为双曲线y= 图象上的点,点O为坐标原点,过点A作AB⊥x轴于点B,连接OA.若△AOB的面积为5,则k的值为________.20、已知一个函数,当x>0时,函数值y随着x的增大而减小,请写出这个函数关系式________ (写出一个即可)21、反比例函数y1= (a>0,a为常数)和y2= 在第一象限内的图象如图所示,点M 在y2= 的图象上,MC⊥x轴于点C,交y1= 的图象于点A;MD⊥y轴于点D,交y1=的图象于点B,当点M在y2= 的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积为2﹣a;③当a=1时,点A是MC的中点;④若S四边形OAMB=S△ODB+S△OCA,则四边形OCMD为正方形.其中正确的是________.(把所有正确结论的序号都填在横线上)22、在平面直角坐标系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三点,其中t>0,函数的图象分别与线段BC,AC交于点P,Q.若S△PAB-S△PQB=t,则t的值为 ________.23、如图,点A在双曲线y=第三象限的分支上,连结AO并延长交第一象限的图象于点B,画BC∥x轴交反比例函数y=的图象于点C,若△ABC的面积为6,则k的值是________24、在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是________ (填写序号).25、在函数y= 中,自变量x的取值范围是________.三、解答题(共5题,共计25分)26、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.27、如图,已知点A(1,a)是反比例函数y1= 的图象上一点,直线y2=﹣与反比例函数y1= 的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x, 0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.28、已知正比例函数y=(3k﹣1)x,若y随x的增大而增大,求k的取值范围.29、如图,直线y=x+2与y轴交于点A,与反比例函数的图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,求反比例函数的解析式.30、已知直线y=k1x+b与双曲线y=相交于点A(2,4),且与x轴、y轴分别交于B、C 两点,AD垂直平分OB,垂足为D,求直线和双曲线的解析式参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、D6、D7、D9、D10、B11、C12、B13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、29、30、。
沪教版(上海市)八年级(上)学 第18章 正比例函数与反比例函数 单元测试卷 (含解析)

第18章 正比例函数与反比例函数 单元测试卷一.选择题(共6小题)1.一辆汽车以50/km h 的速度行驶,行驶的路程()s km 与行驶的时间()t h 之间的关系式为50s t =,其中变量是( )A .速度与路程B .速度与时间C .路程与时间D .三者均为变量2.八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h 的体温和时间的关系,可选择的比较好的方法是( ) A .列表法 B .图象法C .解析式法D .以上三种方法均可3.在函数5x y x+=中,自变量x 的取值范围是( ) A .0x >B .5x -C .5x -且0x ≠D .0x 且0x ≠4.已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为( ) A .3y x=-B .3y x=C .13y x=D .13y x=-5.在2(1)1y k x k =-+-中,若y 是x 的正比例函数,则k 值为( ) A .1-B .1C .1±D .无法确定6.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:)A 与电阻R (单位:)Ω是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为( )A .24I R=B .36I R=C .48I R=D .64I R=二.填空题(共12小题) 7.如果1()1f x x =-,那么(2)f = . 8.已知变量s 与t 的关系式是232s t t =+,则当2t =-时,s = . 9.若函数21my mx -=是正比例函数,且图象在二、四象限,则m = .10.若正比例函数y kx =的图象经过点(2,4),则该函数的解析式是 . 11.已知反比例函数8k y x-=的图象位于第一、第三象限,则k 的取值范围是 . 12.若点(,)A a b 在双曲线3y x=上,则代数式4ab -的值为 . 13.如果函数(0)y kx k =≠的图象经过第二、四象限,那么y 的值随x 的值增大而 .(填“增大”或“减小” )14.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为 小时.15.已知1(2,)A y ,2(3,)y 是反比列函数(0)ky k x=<的两点,则1y 2y . 16.小玲家购买了一张面值600元的天燃气使用卡,这些天燃气所够使用的天数t 与小玲家平均每天使用天燃气的钱数m (元)之间的函数关系式为 . 17.如图,已知点A 在反比例函数(0)ky k x=≠的图象上,过点A 作AB y ⊥轴于点B ,OAB ∆的面积是2.则k 的值是 .18.如图,在双曲线16y x=的一支上有点1A ,2A ,3A ,⋯,正好构成图中多个正方形,点2A 的坐标为 .三.解答题(共7小题)19.已知一个正比例函数的图象与反比例函数6y x=的图象都经过点(,3)A m -.求这个正比例函数的解析式.20.正比例函数y hx =和反比例函数ky x=的图象相交于A ,B 两点,已知点A 的坐标(1,3).写出这两个函数的表达式.21.已知12y y y =-,1y 与x 成反比例,2y 与2x 成正比例.并且,当2x =时,6y =-; 当1x =时,2y =.求y 与x 之间的函数解析式.22.已知x 与y 成反比例,且当34x =-时,43y =(1)求y 关于x 的函数表达式; (2)当23x =-时,y 的值是多少?23.已知正比例函数的图象过点P (3,3)-. (1)求这个正比例函数的表达式;(2)已知点2(A a ,4)-在这个正比例函数的图象上,求a 的值.24.已知近视眼镜片的度数y(度)是镜片焦距()(0)x cm x>的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若近视眼镜镜片的度数为500度,求该镜片的焦距.25.某公交车每天的支出费用为600元,每天的乘车人数x(人)与每天利润(利润=票款收入-支出费用)y(元)的变化关系如下表所示(每位乘客的乘车票价固定不变):根据表格中的数据,回答下列问题:(1)在这个变化关系中,自变量是什么?因变量是什么?(2)若要不亏本,该公交车每天乘客人数至少达到多少?(3)请你判断一天乘客人数为500人时,利润是多少?(4)试写出该公交车每天利润y(元)与每天乘车人数x(人)的关系式.第18章 正比例函数与反比例函数 单元测试卷参考答案与试题解析一.选择题(共6小题)1.一辆汽车以50/km h 的速度行驶,行驶的路程()s km 与行驶的时间()t h 之间的关系式为50s t =,其中变量是( )A .速度与路程B .速度与时间C .路程与时间D .三者均为变量解:由题意的:50s t =,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量; 故选:C .2.八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h 的体温和时间的关系,可选择的比较好的方法是( ) A .列表法 B .图象法C .解析式法D .以上三种方法均可解:护士为了较直观地了解这位同学这一天24h 的体温和时间的关系,可选择的比较好的方法是图象法,有利于判断体温的变化情况, 故选:B .3.在函数y =中,自变量x 的取值范围是( ) A .0x >B .5x -C .5x -且0x ≠D .0x 且0x ≠解:根据题意得:500x x +⎧⎨≠⎩,解得:5x -且0x ≠. 故选:C .4.已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为( ) A .3y x=-B .3y x=C .13y x=D .13y x=-解:设该反比例函数的解析式为:(0)ky k x=≠. 把(1,3)代入,得 31k =,解得3k =.则该函数解析式为:3y x=. 故选:B .5.在2(1)1y k x k =-+-中,若y 是x 的正比例函数,则k 值为( ) A .1- B .1C .1±D .无法确定解:2(1)1y k x k =-+-,y 是x 的正比例函数,210k ∴-=,且10k -≠,解得:1k =-. 故选:A .6.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:)A 与电阻R (单位:)Ω是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为( )A .24I R= B .36I R=C .48I R=D .64I R=解:设KI R=,把(8,6)代入得: 8648K =⨯=,故这个反比例函数的解析式为:48I R=. 故选:C .二.填空题(共12小题) 7.如果1()1f x x =-,那么(2)f = 21+ .解:1()1f x x =-, (2)2121f ∴==-;21+.8.已知变量s 与t 的关系式是232s t t =+,则当2t =-时,s = 2 .解:当2t =-时,23(2)2(2)682s =⨯-+⨯-=-+=, 故答案为:2.9.若函数21my mx -=是正比例函数,且图象在二、四象限,则m =解:由题意得:211m -=,解得:m =, 图象在二、四象限, 0m ∴<,m ∴=,故答案为:10.若正比例函数y kx =的图象经过点(2,4),则该函数的解析式是 2y x = . 解:正比例函数y kx =的图象经过点(2,4), 42k ∴=,解得2k =,∴这个正比例函数的解析式为2y x =,故答案为:2y x =. 11.已知反比例函数8k y x-=的图象位于第一、第三象限,则k 的取值范围是 8k > . 解:反比例函数8k y x-=的图象位于第一、第三象限, 80k ∴->,解得8k >, 故答案为8k >.12.若点(,)A a b 在双曲线3y x =上,则代数式4ab -的值为 1- . 解:点(,)A a b 在双曲线3y x=上, 3ab ∴=,4341ab ∴-=-=-.故答案为:1-.13.如果函数(0)y kx k =≠的图象经过第二、四象限,那么y 的值随x 的值增大而 减小 .(填“增大”或“减小” )解:函数(0)y kx k =≠的图象经过第二、四象限,那么y 的值随x 的值增大而减小, 故答案为:减小.14.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为 213小时.解:沙漏漏沙的速度为:1569-=(克/小时),∴从开始计时到沙子漏光所需的时间为:215913÷=(小时). 故答案为:21315.已知1(2,)A y ,2(3,)y 是反比列函数(0)ky k x=<的两点,则1y < 2y . 解:反比列函数ky x=的0k <, 0x ∴>时,y 随着x 的增大而增大,23<,12y y ∴<,故答案为:<.16.小玲家购买了一张面值600元的天燃气使用卡,这些天燃气所够使用的天数t 与小玲家平均每天使用天燃气的钱数m (元)之间的函数关系式为 t m= . 解:600tm =, 600t m∴=. 故答案为:600t m=. 17.如图,已知点A 在反比例函数(0)ky k x=≠的图象上,过点A 作AB y ⊥轴于点B ,OAB ∆的面积是2.则k 的值是 4 .解:设点A 的坐标为(A x ,)A y ,AB y ⊥, 由题意可知:11222OAB A A S OB AB y x ∆===,4A A y x ∴=,又点A 在反比例函数图象上, 故有4A A k x y ==. 故答案为:4. 18.如图,在双曲线16y x=的一支上有点1A ,2A ,3A ,⋯,正好构成图中多个正方形,点2A 的坐标为 (225+,225)-+ .解:双曲线16y x=的一支上有点1A ,正好构成正方形, ∴点1A 的坐标为(4,4),双曲线16y x=的一支上有点2A ,正好构成正方形, ∴设构成的正方形边长为m ,则点2A 的坐标为(4,)m m +,164m m∴=+, 解得:1225m =-+2225m =--(不合题意舍去), ∴点2A 的坐标为(25+,225)-+;故答案为;(225+,225)-+.三.解答题(共7小题)19.已知一个正比例函数的图象与反比例函数6y x=的图象都经过点(,3)A m -.求这个正比例函数的解析式.解:把点(,3)A m -的坐标代入6y x=得2m =- ∴点A 的坐标为(2,3)--(2分)设正比例函数的解析式为(0)y kx k =≠(1分) 把(2,3)--代入上式,得32k =(2分) 所以这个正比例函数的解析式为32y x =(1分) 20.正比例函数y hx =和反比例函数ky x=的图象相交于A ,B 两点,已知点A 的坐标(1,3).写出这两个函数的表达式.解:把(1,3)A 代入y hx =中,得31h =⨯, 3h ∴=,∴正比例函数的解析式为:3y x =;把(1,3)A 代入ky x=中,得133k =⨯=, ∴反比例函数的解析式为:3y x=. 21.已知12y y y =-,1y 与x 成反比例,2y 与2x 成正比例.并且,当2x =时,6y =-; 当1x =时,2y =.求y 与x 之间的函数解析式. 解:设出反比例函数与正比例函数的解析式分别为11k y x=,222y k x =, 又知12y y y =-, 则212k y k x x=-, 根据题意当2x =时,6y =-; 当1x =时,2y =,可得:12124622k k k k ⎧-=-⎪⎨⎪-=⎩,解得1242k k =⎧⎨=⎩.242y x x∴=-. 22.已知x 与y 成反比例,且当34x =-时,43y =(1)求y 关于x 的函数表达式; (2)当23x =-时,y 的值是多少?解:(1)x 与y 成反比例,∴可设(xy k k =为常数,0)k ≠,当34x =-时,43y =,∴解得1k =-,所以y 关于x 的表达式1y x=-; (2)当23x =-时,32y =.23.已知正比例函数的图象过点P (3,3)-. (1)求这个正比例函数的表达式;(2)已知点2(A a ,4)-在这个正比例函数的图象上,求a 的值. 解:(1)把(3,3)P -代入正比例函数y kx =, 得33k =-, 1k =-,所以正比例函数的解析式为y x =-;(2)把点2(A a ,4)-代入y x =-得, 24a -=-,解得2a =±.24.已知近视眼镜片的度数y (度)是镜片焦距()(0)x cm x >的反比例函数,调查数据如表:(1)求y 与x 的函数表达式;(2)若近视眼镜镜片的度数为500度,求该镜片的焦距.解:(1)根据题意得:y与x之积恒为10000,则函数的解析式是10000yx =;(2)令500y=,则10000 500x=,解得:20x=.即该镜片的焦距是20cm.25.某公交车每天的支出费用为600元,每天的乘车人数x(人)与每天利润(利润=票款收入-支出费用)y(元)的变化关系如下表所示(每位乘客的乘车票价固定不变):根据表格中的数据,回答下列问题:(1)在这个变化关系中,自变量是什么?因变量是什么?(2)若要不亏本,该公交车每天乘客人数至少达到多少?(3)请你判断一天乘客人数为500人时,利润是多少?(4)试写出该公交车每天利润y(元)与每天乘车人数x(人)的关系式.解:(1)在这个变化关系中,自变量是每天的乘车人数x(人);变量是每天利润y(元);(2)当0y=时,300x=因此要不亏本,该公交车每天乘客人数至少达到300人;(3)500400 20010040050-+⨯=元,因此当一天乘客人数为500人时,利润是400元;(4)300100260050xy x-=⨯=-。
上海教育版数学八上第18章《正比例函数和反比例函数》单元测试

5x(B)y = 2.若反比例函数 y = k(D)函数 y = - 3 x ;5.点(3、4)是反比例函数 y = k()()) 9.已知 f (x )= 1x 的图像上,则 k =______________.上海教育版数学八上第 18 章《正比例函数和反比例函数》单元测试一、选择题(2 分×6=12 分)1.下列函数中的正比例函数是().(A) y = 13 x x (C) y = 3 (D) y = 6 x - 1 .x 的图像在每个象限内,y 随 x 的增大而减小,则 k ((A) k ≥0;(B)k >0 ;(C)k ≤0 ; (D)k <0.3.下列说法中,错误的是().(A) 函数 y=kx(k <0)的图像经过第二、四象限;(B)正方形的周长与它的边长成正比例;(C)2x+1 是 x 的函数;x y随 x 的增大而减小.4.下列函数图像过一三象限的是().).(A) y = 3(B)y=x 2 ; (C)y=-2x ; (D)y = - 7x .x 图像上一点,则此函数图像经过点((A)(2,-6);(B)(2,6);(C)(4,-3; (D)(3,-4).6.下列函数中,y 随 x 的增大而增大的是().(A) y = k 2 + 1 x ;(B) y = - k 2 + 1 x ;).(C) y = k 2 + 1 x; (D) y = - k 2 + 1x .二、填空题(3 分×12=36 分)7.已知 y=(k -1)x 是正比例函数,则 k 满足条件_______________.8.函数 y =x - 3 的定义域是____________.x ,则 f ( 2 )=________________.10.如果点 A (2,3)在反比例 y = k11.已知一正比例函数图像上有一点(1,3),则其解析式为____________.1 / 419.若 y 与 2x +1 成反比例,当 x =1 时, y = 4x 交于 M 、N 点,点 M 的横坐标是 2.80012.点 A (3,-1)B (n ,3)都在同一个正比例函数的图像上,则 n = ___________.13.函数 y=(2a -3)x 的图像过二四象限,则 a 的取值范围是______________.14.如果函数 y=2x 自变量 x 的取值范围是 -3<x <0,那么 y 的取值范围是___________.15.写出一个图像过一三象限的反比例函数解析式___________.16.如果 y=(m-2)x +m 2-4 是正比例函数,那么 m= ____________.17.如图,△OPQ 是边长为 2 的等边三角形,O 为坐标原点,点 Q 在 x 轴上,若反比例函数的图像过点 P ,则它的解析式是______________.18.已知 A 、B 两地相距 20 千米,某人从 A 地步行前往 B 地,步行速度是 8 千米/小时,步行 t 小时后离 B 地 S 千米,写出 S 与 t 的函数解析式及定义域______________.三、简答题(5 分×2+6 分×2=22 分)3 ,求 y 与 x 的函数解析式.yPO Q x17题图20.若函数 y = (m - 3) x m 2-8 是正比例函数,求 m 的值并写出的解析式.21.已知直线 y=kx 与双曲线 y = 4(1)求 M 点的坐标;(2)写出正比例的函数解析式.22.某水库有水 Q (m 3)与排水时间 t (时)的Q(m3)函数图像如图所示,根据图像回答问题.6004002 / 4 200O10 20 30 40 t(时) 22题图(1)排水前,水池内有多少立方米水?(2)排水10小时后,水池还剩多少水?(3)剩水400m3时,已排水几小时?(4)写出Q与t的解析式及定义域.四、解答题(7分×2+8分×2=30分)23.已知y=y1+y2,y1与x+1成反比例,y2与x-1成正比例,且当x=0时,y=-1,当x=2时,y=3.(1)求y与x之间函数解析式;(2)判断A(2,-1)是否在这个图像上.24.如图,长方形ABCD的边AB=4,BC=5,点P、Q分别从A、C出发向D、B以相同的速度运动,设AP的长为x,四边形BPDQ的面积为y.(1)写出y关于x的函数解析式;(2)写出函数的定义域.A P DB Q C24题图25.正比例函数的图像经过点(-3,5),过图像上另一点A作y轴的垂线,垂足B点的坐标是(0,4),求点A的坐标与△AOB的面积.3/4y =- 3 1.26. 点 C 的坐标分别为 ,0 ⎪, ,0 ⎪, - ,0 ⎪, - ,0 ⎪26.已知 Rt ⊿ABC ,∠A =90°,∠B=60°,AB =1,将它放在直角坐标系中,使斜边 BC 在 x轴上,直角顶点 A 在反比例函数 y = 3 x的图像上,求点 C 的坐标.yO x正比例函数与反比例函数 单元测试1.C2.B3.D4.A5.B6.A7.k ≠ 18. x ≥ 39.2 226题图10.6 11.y=3 x12.-9 13. a < 3 1 314.-6<y <0 15. y = 等 16.-2 17. y = 18.S=20-8 t2 x x( 0 ≤ t ≤ 5 4) 19. y = . 20. m =-3, y=-6x . 21. M (2,2). y=x .2 2 x + 122.(1)800m 3; (2)600m 3;(3)20 小 时 ;(4)q =800-20t ( 0 ≤ t ≤ 40 ) .23.(1)12- ( x - 1) . (2)点 A 在图像上.24. y=20-4x 0≤x ≤5. 25. A(- ,4)2( x + 1) 2 5S⎛ 1 ⎫ ⎛7 ⎫⎛ 1 ⎫⎛ 7 ⎫ 5 ⎝ 2 ⎭ ⎝ 2 ⎭⎝ 2 ⎭⎝ 2 ⎭4 / 4。
第十八章 正比例函数和反比例函数数学八年级上册-单元测试卷-沪教版(含答案)

第十八章正比例函数和反比例函数数学八年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、下列函数中,是关于的反比例函数的是( ).A. B. C. D.2、下列函数中,y与x成反比例的是()A.y=B.y=C.y=3x 2D.y= +13、如图,等腰直角△ABC沿MN所在的直线以2cm/min的速度向右作匀速运动.如果MN=2AC=4cm,那么△ABC和正方形XYMN重叠部分的面积S(cm2)与匀速运动所用时间t (min)之间的函数的大致图像是()A. B. C. D.4、如图,P(m,m)是反比例函数y= 在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A. B.3 C. D.5、已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A. B. C. D.6、二次函数()的图像如图所示,反比列函数与正比列函数在同一坐标系内的大致图像是()A. B. C. D.7、函数y= 的自变量x的取值范围是()A.x≥1且x≠2B.x≥2且x≠1C.x>2且x≠1D.x>28、函数的自变量的取值范围是()A. B. C. D. 且9、函数y=ax2+1与y= (a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.10、如图,函数与的图象相交于点两点,则不等式的解集为()A. B. 或 C. D. 或11、一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是()A.b=2a+kB.a=b+kC.a>b>0D.a>k>012、反比例函数y= 图象上的两个点为( )、( ),且,则下列式子一定成立的是( )A. B. C. D.不能确定13、若定义f(x)=3x﹣2,如f(﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f (x)=1时,x=1;②对于正数x,f(x)>f(﹣x)均成立;③f(x﹣1)+f(1﹣x)=0;④当a=2时,f(a﹣x)=a﹣f(x).其中正确的是()A.①②B.①③C.①②④D.①③④14、下列函数中,既是一次函数,又是正比例函数的是().A.y=15x 2B.y=x( x-5)-x 2C.y=D.y=5x-115、在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是()体积 x(mL) 100 80 60 40 20压强 y(kPa) 60 75 100 150 300A. 000xB. 000xC.D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系xOy中,点B在y轴上,AB=AO,反比例函数的图象经过点A,若△ABO的面积为2,则k的值为________.17、如图,函数y= (x>0)的图象与矩形OABC的边BC交于点D,分别过点A,D作AF ∥DE,交直线y=k2x(k2<0)于点F,E.若OE=OF,BD=2CD,四边形ADEF的面积为12,则k1的值为________。
沪教版(上海) 八年级数学(上)学期 第18章 正比例函数与反比例函数 单元测试卷 (含解析)

八年级(上)数学第18章正比例函数与反比例函数单元测试卷一.选择题(共6小题)1.已知与成反比例,与成正比例,则与的关系是A.成正比例B.成反比例C.既成正比例也成反比例D.以上都不是2.下列函数中,随着的增大而减小的是A.B.C.D.3.关于函数,下列说法中错误的是A.函数的图象在第二、四象限B.的值随的值增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称4.已知反比例函数的图象经过点,则这个反比例函数的表达式为A.B.C.D.5.已知点,和点,在反比例函数的图象上,若,则A.B.C.D.6.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离(千米)与离家的时间(分钟)之间的函数关系的是A.B.C.D.二.填空题(共12小题)7.在函数中,自变量的取值范围是.8.若函数是正比例函数,则常数的值是.9.请写出一个过第二、四象限的正比例函数的解析式.10.假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为(填“常量”或“变量”.11.若正比例函数为常数,且的函数值随着的增大而减小,则的值可以是.(写出一个即可)12.函数中自变量的取值范围是.13.某款宝马汽车的油箱一次加满汽油50升,可行驶千米,设该汽车行驶百公里耗油升,假设汽车能行驶至油用完,则关于的函数解析式为.14.反比例函数的图象如图所示,则的取值范围为.15.已知正比例函数与反比例函数图象的一个交点坐标是,则另一个交点坐标是.16.一天,小明从家里骑自行车到图书馆还书,小明离家的路程(米关于时间(分的函数图象如图所示.若去图书馆时的平均车速为180米分,则从图书馆返回时的平均车速为米分.17.如图,正比例函数,,在同一平面直角坐标系中的图象如图所示.则比例系数,,的大小关系是.(按从大到小的顺序用“”连接)18.如图,在平面坐标系中,点是函数图象上的点,过点作轴的垂线交轴于点,点在轴上,则的面积为.三.解答题(共7小题)19.已知正比例函数的图象经过第一、三象限,且过点,求这个正比例函数的解析式.20.已知,与成反比例,与成正比例,且当时,,.求关于的函数解析式.21.已知反比例函数,当时,.(1)求关于的函数表达式.(2)当时,求自变量的值.22.已知正比例函数的图象过点.(1)求这个正比例函数的表达式;(2)已知点,在这个正比例函数的图象上,求的值.23.老李想利用一段5米长的墙(图中,建一个面积为32平方米的矩形养猪圈,另外三面(图中,,需要自己建筑.老李准备了可以修建20米墙的材料(可以不用完).(1)设,,求关于的函数关系式.(2)对于(1)中的函数的值能否取到8.5?请说明理由.24.已知正反比例函数的图象交于、两点,过第二象限的点作轴,点的横坐标为,且,点在第四象限.(1)求这两个函数的解析式;(2)求这两个函数的图象的交点坐标;(3)若点在坐标轴上,联结、,写出当时的点坐标.25.如图,直线与双曲线交于、两点,且点的坐标为,点的坐标为.(1)求,的值;(2)若双曲线的上点的纵坐标为8,求的面积.参考答案一.选择题(共6小题)1.已知与成反比例,与成正比例,则与的关系是A.成正比例B.成反比例C.既成正比例也成反比例D.以上都不是解:与成反比例,与成正比例,设,,故,则,故(常数),则与的关系是:成反比例.故选:.2.下列函数中,随着的增大而减小的是A.B.C.D.解:、中,随着的增大而增大,不符合题意;、中,在每个象限内随着的增大而减小,不符合题意;、中,随着的增大而减小,符合题意;、中,在每个象限内随着的增大而增大,不符合题意;故选:.3.关于函数,下列说法中错误的是A.函数的图象在第二、四象限B.的值随的值增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称解:函数,该函数的图象在第二、四象限,故选项正确;在每个象限内,随的增大而增大,故选项错误;函数的图象与坐标轴没有交点,故选项正确;函数的图象关于原点对称,故选项正确;故选:.4.已知反比例函数的图象经过点,则这个反比例函数的表达式为A.B.C.D.解:设该反比例函数的解析式为:.把代入,得,解得.则该函数解析式为:.故选:.5.已知点,和点,在反比例函数的图象上,若,则A.B.C.D.解:反比例函数的图象分别在第一、三象限,在每一象限,随的增大而减小,而,点,和点,在第一象限,.故选:.6.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离(千米)与离家的时间(分钟)之间的函数关系的是A.B.C.D.解:小李距家3千米,离家的距离随着时间的增大而增大,途中在文具店买了一些学习用品,中间有一段离家的距离不再增加,综合以上符合,故选:.二.填空题(共12小题)7.在函数中,自变量的取值范围是.解:由题意得,,解得.故答案为:.8.若函数是正比例函数,则常数的值是.解:依题意得:,解得:.9.请写出一个过第二、四象限的正比例函数的解析式(答案不唯一).解:正比例函数的图象经过第二、四象限.故答案为:(答案不唯一).10.假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为常量(填“常量”或“变量”.解:假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为常量,故答案为:常量.11.若正比例函数为常数,且的函数值随着的增大而减小,则的值可以是.(写出一个即可)解:正比例函数为常数,且的函数值随着的增大而减小,,则.故答案为:.12.函数中自变量的取值范围是且.解:由题意得,且,解得且.故答案为:且.13.某款宝马汽车的油箱一次加满汽油50升,可行驶千米,设该汽车行驶百公里耗油升,假设汽车能行驶至油用完,则关于的函数解析式为.解:汽车行驶每100千米耗油升,升汽油可走千米,.故答案为:14.反比例函数的图象如图所示,则的取值范围为.解:反比例函数的图象在第二象限,,.故答案为:.15.已知正比例函数与反比例函数图象的一个交点坐标是,则另一个交点坐标是.解:正比例函数与反比例函数图象都是关于原点对称的,另一个交点与一个交点也关于原点对称,另一个交点坐标为,故答案为:16.一天,小明从家里骑自行车到图书馆还书,小明离家的路程(米关于时间(分的函数图象如图所示.若去图书馆时的平均车速为180米分,则从图书馆返回时的平均车速为200米分.解:根据去图书馆时的平均车速为180米分,可得:从家里到图书馆的距离为米;所以从图书馆返回时的平均车速为米分,故答案为:20017.如图,正比例函数,,在同一平面直角坐标系中的图象如图所示.则比例系数,,的大小关系是.(按从大到小的顺序用“”连接)解:正比例函数,的图象在一、三象限,,,的图象比的图象上升得快,,的图象在二、四象限,,,故答案为:.18.如图,在平面坐标系中,点是函数图象上的点,过点作轴的垂线交轴于点,点在轴上,则的面积为.解:设点的坐标为、,点是函数图象上,,则的面积,故答案为:.三.解答题(共7小题)19.已知正比例函数的图象经过第一、三象限,且过点,求这个正比例函数的解析式.解:正比例函数的图象经过第一、三象限,把代入得,整理得,解得,,,这个正比例函数的解析式为.20.已知,与成反比例,与成正比例,且当时,,.求关于的函数解析式.解:根据题意,设,、.,,当时,,,.,..21.已知反比例函数,当时,.(1)求关于的函数表达式.(2)当时,求自变量的值.解:(1)根据题意,得,解得,;该反比例函数的解析式是;(2)由(1)知,该反比例函数的解析式是,当时,,即.22.已知正比例函数的图象过点.(1)求这个正比例函数的表达式;(2)已知点,在这个正比例函数的图象上,求的值.解:(1)把代入正比例函数,得,,所以正比例函数的解析式为;(2)把点,代入得,,解得.23.老李想利用一段5米长的墙(图中,建一个面积为32平方米的矩形养猪圈,另外三面(图中,,需要自己建筑.老李准备了可以修建20米墙的材料(可以不用完).(1)设,,求关于的函数关系式.(2)对于(1)中的函数的值能否取到8.5?请说明理由.解:(1)依题意,得:,.(2)当时,,解得:,.又,对于(1)中的函数的值不能取到8.5.24.已知正反比例函数的图象交于、两点,过第二象限的点作轴,点的横坐标为,且,点在第四象限.(1)求这两个函数的解析式;(2)求这两个函数的图象的交点坐标;(3)若点在坐标轴上,联结、,写出当时的点坐标.解:(1)如图,点的横坐标为,且轴,,,,则点,将点代入得:,则正比例函数解析式为;将点代入得:,则反比例函数解析式为;(2)由得:或,所以点坐标为.(3)若点在轴上,设,由可得,解得:或,此时点坐标为或;若点在轴上,设,由可得,解得:或,此时点坐标为或;综上,点的坐标为或或或.25.如图,直线与双曲线交于、两点,且点的坐标为,点的坐标为.(1)求,的值;(2)若双曲线的上点的纵坐标为8,求的面积.解:(1)直线与双曲线交于、两点,,解得,;(2)双曲线经过点,,双曲线的上点的纵坐标为8,点的坐标为,如图,作轴于,轴于,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018--2019学年度第一学期 沪教版八年级数学单元测试题 第十八章正比例函数和反比例函数
做卷时间100分 满分120分
班级 姓名 一、选择题(每小题3分计30分)
1、若点(3,6)在反比例函数x
k
y =
(k ≠0)的图象上,那么下列各点在此图象上的是( ) (A )(3-,6) (B ) (2,9) (C )(2,9-) (D )(3,6-)
2. 已知反比例函数的图象过(2,-2)和(-1,n ),则n 等于 ( ) (A )3 (B )4
(C )6
(D )12
3、点A 为反比例函数图象上一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内.则这个反比例函数的解析式为 ( ) (A ) 12y x =
(B ) 12y x =- (C ) 112y x = (D ) 1
12y x
=- 4、已知点(11,y x )和(22,y x )是直线y =-3x 上的两点,且21x x >,则1y 与2y 的大小 关系是( )
A .1y >2y ;
B .1y <2y ;
C .1y ≥2y ;
D .1y ≤2y . 5、下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6)
C .(-2,-3),(4,-6)
D .(2,3),(-4,6)
6、若函数2(26)(1)y m x m x =++-是正比例函数,则m 的值是( )
A 、m = -3
B 、m =1
C 、m = 3 C 、m > -3 7、已知11(,)x y 和22(,)x y 是直线3y x =-上的两点,且12x x >,则1y 与2y 的大小关系
是( )
A 、1y >2y
B 、1y <2y
C 、1y =2y
D 、以上都不可能 8. 已知12y y y =+,其中1y 与
1x
成反比例且比例系数为1k ,2y 与2
x 成正比例且比例系数为2k ,若1-=x 时,0=y ,则1k 与2k 的关系为 ( )
(A )12k k =- (B ) 12k k ≠ (C ) 12
1
k k =- (D ) 1k =2k 9.函数kx y =与x
k
y -
=在同一坐标系内的大致图像是…( )
(1) (2) (3) (4)
(A )(1)和(2); (B )(1)和(3); (C )(2)和(3); (
10.如图,是一台自动测温记录仪的图像,它反映了某市冬季
某天气温T 随时间t 变化而变化的关系,观察图像得到下 列信息,其中错误的是…( ) A .凌晨4时气温最低为3-℃
B .14时气温最高为8℃
C .从0时至14时,气温随时间增长而上升
D .从14时至24时,气温随时间增长而下降
二、填空题(每小题4分,计32分)
1、已知y 与x 成反比例,当1=y 时,4=x ,则当2=x 时,_____=y ;
2. 反比例函数和正比例函数的图象都经过点A(1-,2-),则这两个函数的解析式分别是_________和_________;
3. 某厂有煤1500吨,求这些煤能用的天数y 与每天用煤的吨数x 之间的函数关系式为_________; 4、函数y =
x 的取值范围是 . 5、如果函数23y mx m =+-是正比例函数,则m =
6、如果正比例函数x k y )3-=(的图像经过第一、三象限,那么k 的取值范围是 .
7、已知1122(,),(,)P x y Q x y 在反比例函数(0)k
y k x
=的图像上,若12
0x x ,
则1y
2y 。
(填“>”“<”或“=”).
8.在课堂小结描述每一个反比例函数的性质时,甲同学说:“从这个反比例函数图像上任意一点向x 轴、y 轴作垂线,与两坐标轴所围成的矩形面积为2016.”乙同学说:“这个反比例函数在相同的象限内,y 随着x 增大而增大.”根据这两位同学所描述,此反比例函数的解析式是 .
三、解答题(计58分)
1、已知12y y y =+,其中1y 与2
x 成正比例,2y 与x 成正比例,并且当1
2
x =
时5y =,当1x =时1y =-,求y 与x 之间的函数关系式。
2、在函数3y x =-的图像上取一点P ,过P 点作PA ⊥x 轴A 为垂足,己知P 点的横坐标为- 2,
求ΔPOA 的面积.(O 为坐标原点)
3、 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x (度)与
应付电费y (元)的关系如图所示. (1)根据图像,请求出当050x ≤≤时,y 与x 的函数关系式; (2)请回答:
① 当每月用电量不超过50度时,收费标准是多少? ② 当每月用电量超过50度时,收费标准是多少?
4、正比例函数)0(≠=k kx y 与反比例函数x
y 2
-=的图像交于点),1(m A -和点B .求点B 的坐标.
5、已知:点P (m ,4)在反比例函数x
y 12
-
=的图像上,正比例函数的图像经过点P 和点 Q (6,n ).
(1)求正比例函数的解析式;
(2)在x 轴上求一点M ,使△MPQ 的面积等于18.
6、弹簧挂上物体后会伸长(物体重量在0~10千克范围内),测得一弹簧的长度y (厘米)与所挂物体的质量x (千克)有如下关系:
(1)此弹簧的原长度是________厘米;
(2)物体每增加一千克重量弹簧伸长________厘米;
(3)弹簧总长度y (厘米)与所挂物体的重量x (千克)的函数关系式是_____________.
7、某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人
服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当≤≤时,y与x成反比例).
x
410
(1)根据图像分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?。