2016年秋季新版湘教版八年级数学上学期1.3.3、整数指数幂的运算法则导学案1

合集下载

新湘教版初中数学八年级上册1.3.3整数指数幂的运算法则1公开课优质课教学设计

新湘教版初中数学八年级上册1.3.3整数指数幂的运算法则1公开课优质课教学设计

1.33 整数指数幂的运算法则1.理解整数指数幂的运算法则;2.会用整数指数幂的运算法则进行计算.(重点,难点)一、情境导入1.请同学们回顾,我们学过的正整数指数幂的运算法则有哪些?2.我们在前面还学过,可以把幂的指数从正整数推广到整数.这时我们怎样理解这些运算法则呢?二、合作探究探究点一:整数指数幂的运算【类型一】乘积形式的整数指数幂的运算计算:(1)(-a)3÷a-1÷(a-2)-2;(2)(a-2b-3)-3·(a2b)-2;(3)(2-3y2z-2)-2(3y-3z2)2;(4)(-2a-3)2b3÷2a-6b-2解:(1)原式=-a3÷a-1÷a4=-a4÷a4=-1;(2)原式=a6b9·a-4b-2=a2b7;(3)原式=(2-26y-4z4)(322y-6z4)=2-2·328y-10z8=错误!;(4)原式=4a-6b3÷2a-6b-2=2b5方法总结:整数指数幂的运算要注意运算顺序:先算乘方,再算乘除.最后结果要化为正整数指数.【类型二】商形式的整数指数幂的运算计算:(1)(错误!)-1÷(错误!)-2;(2)[(错误!)-1]-2;(3)[错误!]-2解:(1)原式=[错误!]-1·(错误!)2=错误!·错误!=错误!;(2)原式=(错误!)2=错误!;(3)原式=错误!=错误!方法总结:商形式的整数指数幂的运算有两种方法:一是先把负整数指数幂转化为正整数指数幂,再约分化简;二是先计算整数指数幂,最后再把负整数指数幂化为正整数指数幂.【类型三】逆用幂的运算法则求值已知a-=3,b n=2,则(a-b-2n)-2=________.解析:(a-b-2n)-2=(a-)-2·b4n=(a-)-2(b n)4=3-2×24=错误!故填错误!方法总结:把要求的代数式逆用幂的运算法则,用已知的式子表示是解题的关键.计算:(错误!)-1·(错误!)3-4解:(错误!)-1·(错误!)3-4=(错误!)3-3·(错误!)3-4=(错误!)3-3·(错误!)3-4=(错误!)3-3+3-4=(错误!)-1=错误!方法总结:利用负整数指数幂,把底数是互为相反数的两数可以转化为相同,再根据幂的运算法则进行计算.探究点二:整数指数幂运算的实际应用某房间空气中每立方米含3×106个病菌,为了试验某种杀菌剂的效果,科学家们进行实验,发现1毫升杀菌剂可以杀死2×105个这种病菌,问要将长10,宽8,高3的房间内的病菌全部都杀死,需要多少杀菌剂?解:(10×8×3)×(3×106)÷(2×105)=(720×106)÷(2×105)=360×10=36×103(毫升).答:需要36×103毫升杀菌剂才能将房间中的病菌全部杀死.方法总结:科学记数法在实际生活中应用广泛,在运用科学记数法解题时要注意a×10-n中n的值.三、板书设计整数指数幂的运算法则:(1)同底数幂的乘法:a·a n=a+n(a≠0,,n都是整数);(2)幂的乘方:(a)n=a n(a≠0,,n都是整数);(3)积的乘方:(ab)n=a n·b n(a≠0,b≠0,n是整数).本节课通过把正整数指数幂的五个运算法则,推广到整数范围内,从而可用三个运算法则概括.整数指数幂的运算是学生学习过程中的一个难点,也是易错点,在教学过程中,可让学生把典型错误展示在黑板上,引导学生分析产生错误的原因.。

湘教版八年级数学上册1.3.3

湘教版八年级数学上册1.3.3

这些公式中的m、n都要求是正整数,能否是所有 的整数呢?这5个公式中有没有内在联系呢?这节课 我们来探究这些问题.
板书课题:整数指数幂的运算法则
1.公式的内在联系
做一做:用不同的方法计算: 解: 23
(1)
24
2 3 4
3 1 2 1 1 3 4 3 ( 4 ) 1 2 , 4 2 .2 2 2 2 2 2
(1)2 2 2
3
2 3
3
3 ( 3)
2 1
0
1 3 1 1 2 3 ( 2 )3 6 (2)( 3 ) ( 2 ) 6 , (3 ) 3 3 6 3 3 3
通过上面计算,你发现了什么?
幂的运算公式中的指数m、n也可以是 负数.也就是说,幂的运算公式中的指数m 、n可以是整数,二不局限于正整数.我们 把这些公式叫整数指数幂的运算法则.
(1)知道了整数指数幂的运算法则只需要三个就可
以了. (2)正整数指数幂的运算法则可以推广到整数指数幂.
am a n m n m( n) 1 n a . a a , ( ) ( a . b ) n a b n 1 a a n .b n a n . n n b b
2.正整数指数幂是否可以推广到整数指数幂 做一做 计算:(1)23·2-3;(2)(3-2)3. 解:
3 1 2 3 3 3 3 3 0 (1)2 2 2 3 3 2 2 1, 2 2
重点:熟练掌握整数指数幂的运算法则. 难点:准确熟练地运用整数指数幂运算法则解
题,弄清公式的形式及成立的条件.
1.正整数指数幂有哪些运算法则? (1)am·an=am+n(m、n都是正整数);(2)(am)

指数幂运算.3.3 整数指数幂的运算法则

指数幂运算.3.3 整数指数幂的运算法则

②ห้องสมุดไป่ตู้
(ab)n=anbn(a≠0,b≠0,n是整数).

实际上,对于a≠0,m,n是整数,有
a m = a m · a -n = a m+(-n) = a m-n . bn
因此,同底数幂相除的运算法则被包含在公式①中.
am ·an=am+n(a≠0,m,n都是整数)
而对于a≠0, b≠0, n是整数,有

a b

n
=(a· b )
-1 n
= a · ( b ) =a
n
-1 n
n
·
b
-n
n a = n. b
因此,分式的乘方的运算法则被包含 在公式③中.
(ab)n=anbn(a≠0,b≠0,n是整数) ③
典例解析
例1
设a≠0,b≠0,计算下列各式 (1)a7 ·a-3; (2)(a-3)-2;
-1 4 5 x y ; (1) 4x2 y
3 5 y 答案: 3 . 4x
(2) y 4 3x

-2

-3
.
答案: 27 x12 y 6.
课堂小结
通过这节课的学习活动, 你有什么收获?
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
我们全都要从前辈和同辈学习到一些 东西。就连最大的天才,如果想单凭他 所特有的内在自我去对付一切,他也决 不会有多大成就。 —— 歌德
2 x (2) y .
-3
3 y -2 2 x 解 (1) 3 x -1 y
= 2 x 3-(-1)y -2-1 3
= 2 x 4 y -3 3

湘教版8上数学1.3.3整数指数幂的运算法则

湘教版8上数学1.3.3整数指数幂的运算法则

(一)自主学习 例1 设a≠0,b≠0,计算下列各式:
(1)a7 ·a-3; (2)(a-3)-2; (3)a3b(a-1b)-2.
解:(1) a7·a-3= a7+(-3) = a4;
(2)(a-3)-2 = a(-3)×(-2) = a6 ;
(3) a3b(a-1b)-2 = a3b·a2b-2
算,但要注意结果中不能含有负整数指数幂的形 式.
检测反馈
1. 设a≠0,b≠0,计算下列各式:
(1)a a3 ___a_4___;
(2)a3. a1 2 _____a___;
(3)(a)2
1
___a__2__;
(4)a-5(a2b-1)3=___a_b__3___;
2. 计算下列各式:(1)(二)合作探究 学习上面例题的计算,你发现了什么?
在前面我们已经把幂的指数从正整数推广到了 整数,可以说明:当a≠0,b≠0时,正整数指数幂 的运算法则对于整数指数幂也成立.
归纳
aamn =am·a1n=am·a-n=am+(-n)=am-n; abn=(a·b-1)n=an·(b-1)n=an·b-n=abnn.
我们可以把正整数指数幂的5个运算法则推广并 归纳为整数指数幂的以下3个运算法则:
am an am(n a 0,m,n都是整数), ① (am)n am(n a 0,m,n都是整数), ② (ab)n anb(n a 0,b 0,n是整数). ③
练习
1.设a≠0、b≠0,计算下列各式(结果不含负指数):
(2)(3x-2y-3)·(-2x2y)-3·-16xy2-2.
3
1
36
解:原式=x2y3·(-8x6y3)·x2y4
27 =-2x10y10.

湘教版数学八年级上册1.3.3《整数指数幂的运算法则》说课稿1

湘教版数学八年级上册1.3.3《整数指数幂的运算法则》说课稿1

湘教版数学八年级上册1.3.3《整数指数幂的运算法则》说课稿1一. 教材分析湘教版数学八年级上册1.3.3《整数指数幂的运算法则》这一节主要介绍了整数指数幂的运算法则。

这部分内容是初中学段数学知识的重要组成部分,对于学生来说,掌握这部分内容对于提高他们的数学素养和解决实际问题具有重要意义。

本节内容主要包括整数指数幂的乘法、除法和幂的乘方等运算法则。

这些法则不仅为学生提供了解决相关问题的方法,而且也为进一步学习指数幂的性质和运用打下了基础。

二. 学情分析学生在学习这一节内容之前,已经学习了有理数的乘方、负整数指数幂等知识,对于幂的运算已经有了一定的了解。

但是,整数指数幂的运算法则较为抽象,学生可能难以理解。

因此,在教学过程中,需要结合学生的实际情况,采用生动形象的教学手段,帮助学生理解和掌握这部分内容。

三. 说教学目标1.知识与技能:让学生掌握整数指数幂的运算法则,能够运用这些法则解决实际问题。

2.过程与方法:通过自主学习、合作交流等方法,培养学生探究问题和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心和克服困难的勇气。

四. 说教学重难点1.教学重点:整数指数幂的运算法则。

2.教学难点:整数指数幂的运算法则的应用。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解等教学方法,引导学生主动探究和解决问题。

2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,生动形象地展示教学内容。

六. 说教学过程1.导入:通过复习有理数的乘方、负整数指数幂等知识,引出整数指数幂的运算法则。

2.自主学习:让学生自主探究整数指数幂的运算法则,引导学生发现规律。

3.合作交流:学生分组讨论,分享各自的学习心得和解决问题的方法。

4.教师讲解:针对学生的讨论,教师进行讲解和总结,引导学生掌握整数指数幂的运算法则。

5.巩固练习:布置一些相关的练习题,让学生运用所学的知识解决问题。

6.课堂小结:教师引导学生总结本节课所学的内容,帮助学生巩固记忆。

湘教版-数学-八年级上册-1.3.3 整数指数幂的运算法则2 教案

湘教版-数学-八年级上册-1.3.3 整数指数幂的运算法则2 教案

整数指数幂的运算法则教学目标1 通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则;2 会用整数指数幂的运算法则熟练进行计算。

重点、难点重点:用整数指数幂的运算法则进行计算。

难点:指数指数幂的运算法则的理解。

教学过程一 创设情境,导入新课1 正整数指数幂有哪些运算法则?(1)m n m n a a a +⋅=(m 、n 都是正整数);(2)()m n mn a a =(m 、n 都是正整数)(3)()nn n a b a b⋅=, (4)m m nn a a a -=(m 、n 都是正整数,a ≠0)(5) ()nn na a bb =(m 、n 都是正整数,b ≠0) 这些公式中的m 、n 都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题. 板书课题:整数指数幂的运算法则 二 合作交流,探究新知 1 公式的内在联系做一做 (1) 用不同的方法计算:342(1)2 , ()3223⎛⎫ ⎪⎝⎭解:3341421(1)2323--===;3343(4)1421(1)222323-+--=⋅=== ()33322823327⎛⎫== ⎪⎝⎭,()331332182323832727--⎛⎫=⋅=⋅=⨯= ⎪⎝⎭通过上面计算你发现了什么?幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算。

()m m n m n m nn a a a a a a -+--=⋅==,()11nn n n a a a b a b a b b b --⎛⎫=⋅=⋅=⋅= ⎪⎝⎭因此上面5个幂 的运算法则只需要3个就够了:1)m n m n a a a +⋅=(m 、n 都是正整数);(2)()m n mn a a =(m 、n 都是正整数)(3)()nn na b a b ⋅=,2 正整数指数幂是否可以推广到整数指数幂做一做 计算:()()()3332122,23--⋅,解:(1)3333330333(3)033122222212222122---+-⨯=⨯====⨯===,(2)()3322611333-⎛⎫== ⎪⎝⎭,()32(2)36613323--⨯-===()()()333311113232382721623-⨯====⨯⨯⨯()3333311111232323827216---⨯=⨯=⨯=⨯=通过上面计算,你发现了什么?幂的运算公式中的指数m 、n 也可以是负数。

湘教版数学八年级上册1.3.3《整数指数幂的运算法则》教学设计2

湘教版数学八年级上册1.3.3《整数指数幂的运算法则》教学设计2

湘教版数学八年级上册1.3.3《整数指数幂的运算法则》教学设计2一. 教材分析湘教版数学八年级上册1.3.3《整数指数幂的运算法则》是学生在学习了有理数的乘方、实数的乘方的基础上进行学习的。

本节课主要让学生掌握整数指数幂的运算法则,包括同底数幂的乘法、除法、乘方以及幂的乘方与积的乘方。

这些知识是初中数学中的重要内容,对于学生后续学习代数、几何等知识有着重要的作用。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方、实数的乘方,对于乘方的概念和运算法则有一定的了解。

但是,对于整数指数幂的运算法则,特别是幂的乘方与积的乘方,可能还存在一定的困惑。

因此,在教学过程中,需要引导学生通过观察、思考、归纳等方法,自主探索并掌握整数指数幂的运算法则。

三. 教学目标1.理解整数指数幂的运算法则,包括同底数幂的乘法、除法、乘方以及幂的乘方与积的乘方。

2.能够运用整数指数幂的运算法则进行计算和解决问题。

3.培养学生的观察能力、思考能力、归纳能力以及运用数学知识解决实际问题的能力。

四. 教学重难点1.教学重点:整数指数幂的运算法则的掌握和运用。

2.教学难点:幂的乘方与积的乘方的理解和运用。

五. 教学方法1.启发式教学:通过提问、引导学生观察、思考、归纳等方法,激发学生的学习兴趣,培养学生的自主学习能力。

2.小组合作学习:学生进行小组讨论、交流,培养学生的合作能力和团队精神。

3.案例教学:通过具体的例子,让学生理解和掌握整数指数幂的运算法则。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)通过提问方式复习实数和有理数的乘方,引导学生思考整数指数幂的运算法则。

2.呈现(15分钟)呈现整数指数幂的运算法则,包括同底数幂的乘法、除法、乘方以及幂的乘方与积的乘方。

通过具体的例子,让学生观察和思考,引导学生自主探索并归纳出运算法则。

3.操练(15分钟)让学生进行相关的计算练习,巩固所学的整数指数幂的运算法则。

湘教版数学八年级上册1.3.3《整数指数幂的运算法则》教学设计1

湘教版数学八年级上册1.3.3《整数指数幂的运算法则》教学设计1

湘教版数学八年级上册1.3.3《整数指数幂的运算法则》教学设计1一. 教材分析《整数指数幂的运算法则》是湘教版数学八年级上册1.3.3的内容,本节课主要让学生掌握整数指数幂的运算法则,并能运用所学知识解决实际问题。

教材通过引入实例,引导学生发现并总结整数指数幂的运算法则,进而巩固已学的有理数指数幂的知识。

本节课的内容是初等数学中的重要组成部分,也是学习高中数学的基础。

二. 学情分析八年级的学生已经学习了有理数指数幂的知识,对幂的运算有一定的了解。

但是,对于整数指数幂的运算法则,学生可能存在理解上的困难。

因此,在教学过程中,需要教师通过生动的实例,引导学生发现并总结运算法则,帮助学生理解和掌握知识。

三. 教学目标1.知识与技能:让学生掌握整数指数幂的运算法则,能运用所学知识解决实际问题。

2.过程与方法:通过实例引导学生发现并总结整数指数幂的运算法则,培养学生的观察、分析和归纳能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 教学重难点1.重点:整数指数幂的运算法则。

2.难点:理解和运用整数指数幂的运算法则解决实际问题。

五. 教学方法采用问题驱动的教学方法,通过实例引导学生发现并总结整数指数幂的运算法则。

同时,运用小组合作学习的方法,培养学生的团队合作精神和自主学习能力。

六. 教学准备1.教师准备:教材、PPT、实例题、练习题。

2.学生准备:笔记本、笔、学习资料。

七. 教学过程1.导入(5分钟)教师通过提问方式复习有理数指数幂的知识,引导学生思考整数指数幂的特点。

2.呈现(10分钟)教师通过PPT呈现实例,引导学生观察和分析实例中整数指数幂的运算规律。

例如,展示实例:( (23)2 ),引导学生发现运算结果为 ( 2^6 )。

3.操练(10分钟)教师学生进行小组讨论,让学生通过实际操作,运用所学的运算法则解决问题。

例如,让学生计算 ( (32)3 ) 和 ( 2^4 2^2 ) 等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.3 整数指数幂的运算法则
学习目标:
1通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则。

2会用整数指数幂的运算法则,熟练进行计算。

重点:整数指数幂的运算法则 预习导学
学一学:阅读教材的内容。

说一说:
1.正整数指数幂的运算法则有哪些?
2.上节课我们已经把幂的指数从正整数推广到了整数,于是,当0,0≠≠b a 时,你写的运算法则对于整数指数幂成立吗?如果成立,请写出来。

【归纳总结】整数指数幂的运算法则:
【课堂展示】设0,0≠≠b a ,计算下列各式:
(1)51a a ∙- (2)2)3(
--a
b
(3)3
223)()(--∙-x x (4)233
232b a b a -
合作探究
互动探究一:
计算:(1)2323--∙ab b a (2))2(6122---÷z xy yz x
【当堂检测】练习1、2。

相关文档
最新文档