幂的运算测试题
七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)

七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)一.选择题(共7小题,满分21分)1.若a•2•23=26,则a等于()A.4B.8C.16D.322.已知a≠0,下列运算中正确的是()A.a2•a3=a6B.a5﹣a3=a2C.(﹣a3)2=a5D.a•a3=a43.若10m=5,10n=3,求102m﹣3n的值()A.B.C.675D.4.若(2x﹣1)0有意义,则x的取值范围是()A.x=﹣2B.x≠0C.x≠D.x=5.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3且x≠﹣2D.x≠3且x≠2 6.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.102×108元资金.数据1.102×108用科学记数法可表示为()A.1102亿B.1.102亿C.110.2亿D.11.02亿7.嫦娥五号返回器携带月球样品安全着陆,标志着中国航天业向前又迈出了一大步.嫦娥五号返回器在接近大气层时,飞行1m大约需要0.0000893s.数据0.0000893s用科学记数法表示为()A.8.93×10﹣5B.893×10﹣4C.8.93×10﹣4D.8.93×10﹣7二.填空题(共7小题,满分21分)8.将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为.9.新型冠状病毒直径约为100nm,计m(用科学记数法表示).10.若有意义,则x的取值范围是.11.若a2n=2(n为正整数),则(4a3n)2÷4a4n的值为.12.目前全国疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约7.5×105个,则科学记数法数据7.5×105的原数为.13.已知x2n=5,则(3x3n)2﹣4(x2)2n的值为.14.已知m x=2,m y=4,则m x+y=.三.解答题(共6小题,满分58分)15.计算:(1)2+(﹣2)×3+(﹣7)0;(2)×12.16.在数学中,我们经常会运用逆向思考的方法来解决一些问题,例如:“若a m=4,a m+n =20,求a n的值.”这道题我们可以这样思考:逆向运用同底数幂的乘法公式,即a m+n =a m•a n,所以20=4•a n,所以a n=5.(1)若a m=2,a2m+n=24,请你也利用逆向思考的方法求出a n的值.(2)下面是小贤用逆向思考的方法完成的一道作业题,请你参考小贤的方法解答下面的问题:小贤的作业计算:89×(﹣0.125)9.解:89×(﹣0.125)9=(﹣8×0.125)9=(﹣1)9=﹣1.①小贤的求解方法逆用了哪一条幂的运算性质,直接写出该逆向运用的公式:.②计算:52023×(﹣0.2)2022.17.(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.18.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).19.如表是某河流今年某一周内的水位变化情况,上周末(星期六)的水位已经达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降).(单位:米)星期日一二三四五六水位变化+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?本周末的水位是多少?(3)若水位每下降1厘米,就有2.5×102吨水蒸发到大气中,请计算这个星期共有多少吨水蒸发到大气中?20.已知10﹣2α=3,,求106α+2β的值.参考答案一.选择题(共7小题,满分21分)1.解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.2.解:A、原式=a5,故不符合题意;B、a5与a3不是同类项,故不能合并,故不符合题意;C、原式=﹣a6,故不符合题意;D、原式=a4,故符合题意.故选:D.3.解:∵10m=5,10n=3,∴102m﹣3n=102m÷103n=.故选:D.4.解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.5.解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.6.解:1.102×108=1.102亿.故选:B.7.解:0.0000893=8.93×10﹣5,故选:A.二.填空题(共7小题,满分21分)8.解:原式=•=.故答案为:.9.解:新型冠状病毒的直径约为100nm=100×10﹣9m=1×10﹣7m,故答案为1×10﹣7.10.解:∵有意义,∴0.∴x+2≠0,x﹣2≠0,∴x≠±2.故答案为:x≠±2.11.解:当a2n=2时,(4a3n)2÷4a4n=16(a2n)3÷4(a2n)2=16×23÷(4×22)=16×8÷(4×4)=16×8÷16=8.故答案为:8.12.解:7.5×105=750000,故答案为:750000.13.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.14.解:∵m x=2,m y=4,∴m x+y=m x•m y=8,故答案为:8.三.解答题(共6小题,满分58分)15.解:(1)原式=2﹣6+1=﹣3;(2)原式=×12+=5+8﹣1616.解:(1)∵a m=2,∴a2m+n=24,∴a2m×a n=24,(a m)2×a n=24,22×a n=24,∴4a n=24,∴a n=6;(2)①逆用积的乘方,其公式为:a n•b n=(ab)n,故答案为:a n•b n=(ab)n;②52023×(﹣0.2)2022=5×52022×(﹣0.2)2022=5×(﹣0.2×5)2022=5×(﹣1)2022=5×1=5.17.解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=﹣;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.18.解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f(a+a)=f(a)•f(a)=3×3=31+1=32,f(3a)=f(a+a+a)=f(a)•f(a)•f(a)=3×3×3=31+1+1=33,…,f(10a)=310,∴f(a)•f(2a)•f(3a)•…•f(10a)=3×32×33×…×310=31+2+3+…+10=355.19.解:(1)周日:33+0.2=33.2(米),周一:33.2+0.8=34(米),周二:34﹣0.4=33.6(米),周三:33.6+0.2=33.8(米),周四:33.8+0.3=34.1(米),周五:34.1﹣0.5=33.6(米),周六:33.6﹣0.2=33.4(米).答:周四水位最高,最高水位是34.1米,周日水位最低,最低水位是33.2米;(2)33.4﹣33=0.4>0,答:与上周末相比,本周末河流的水位上升了,水位是33.4米;(3)100×(0.4+0.5+0.2)×2.5×102吨=2.75×104(吨),答:这个星期共有2.75×104吨水蒸发到大气中.20.解:∵10﹣2α==3,10﹣β==﹣,∴102α=,10β=﹣5,∴106α+2β=(102α)3•(10β)2,=()3×(﹣5)2,=×25,=.。
八年级数学幂的运算测试题

精心整理幂的运算测试一、选择题(30分)1.下列各式运算正确的是()A .2a 22422246322352.若A .5B 3A .a 7B 4A .5B 5④(A .46.A C 7.下列等式中正确的个数是( )①5510a a a +=②6310()()a a a -⋅-=③4520()a a a -⋅-=④556222+=A .0个B .1个C .2个D .3个8.计算(a-b)n ·(b-a)n-1等于()A.(a-b)2n-1B.(b-a)2n-1C.+(a-b)2n-1D.非以上答案9.下列各式中计算错误的是( )A .3422(231)462x x x x x x -+-=+-B .232(1)b b b b b b -+=-+ C .x x x +-=-22)22(x 21- D .342232(31)2323x x x x x x -+=-+10.如图14-2是L 形钢条截面,它的面积为( )A .C .11()3x y -12.(a )3=________13.14.若15.1617.若18.19.(1)(-a 3)2·(-a 2)3;(2)-t 3·(-t )4·(-t )5;(3)(p -q )4÷(q -p )3.(p -q )2;(4)(-3a )3-(-a )·(-3a )220.(8分)先化简,再求值:①a 3·(-b 3)2+(-12ab 2)3,其中a =14,b =4。
②22(69)(815)2(3)x x x x x x x x -----+-,其中16x =-。
21.(5分)如果a 2+a=0(a≠0),求a 2005+a 2004+12的值.22.(5分)已知x 3=m ,x 5=n ,用含有m 、n 的代数式表示x 14.23.(5分)已知整数a 、b 、c 满足2089431516a b c⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求a 、b 、c 的值.24.((25.56×5-374÷7-2(1)(2)(3)26.())猜想:当n>2)应用上述猜想填空:20082009_________20092008.27.(9分)阅读下列一段话,并解决后面的问题.观察下面一列数:1,2,4,8,…,我们 发现,这列数从第二项起,每一项与它前一项的比值都是2,我们把这样的一列数叫做等比数 列,这个共同的比值叫做等比数列的公比。
完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299 B。
-2 C。
299 D。
22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。
4个 B。
3个 C。
2个 D。
1个3.下列运算正确的是()A。
2x+3y=5xy B。
(-3x^2y)^3=-9x^6y^3C。
D。
(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXX^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1) D。
a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。
0个 B。
1个 C。
2个 D。
3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。
幂的混合运算50道计算题

幂的混合运算50道计算题幂的混合运算计算题一、不带解析的30道计算题1. a^2 · a^3 div a^42. (b^3)^2 · b^4 div b^53. (-2a^2)^3 div (2a^2)4. 3x^2y · (-2xy^2)^35. (m^3n)^2 · (-m^2n^3)6. (-3a^3b^2)^2 div (-a^2b)^37. a^5 · a^3 - a^4 · a^48. (2x^3)^2 - 3x^3 · x^39. (-a^2)^3 + (-a^3)^210. 4y^2 · (y^3)^2 div 2y^511. (a^4)^3 div a^6 · a^212. (-2x^2y^3)^2 · (xy)^313. 5m^2n · (-3mn^2)^214. (3a^2b^3)^2 div (a^3b^4)15. (-x^3)^2 · (-x^2)^316. 2a^3 · (a^2)^3 div a^517. (4b^3)^2 · b div 2b^718. (-3m^2)^3 div m^319. a^2 · (a^3)^2 div (a^4)^220. (-2x^3y)^3 · (x^2y^2)^221. 3a^4 · a^2 - 2(a^3)^222. (5y^4)^2 · y div 5y^923. (-a^3)^2 · (-a^2)^3 div a^524. 2x^5 · (x^3)^2 div x^1025. (3m^3n^2)^2 · (-mn)26. (-2a^2b^3)^3 div (2a^3b^2)27. a^6 div a^3 · a^2 - a^528. (4x^4)^2 - 2x^3 · x^529. (-m^3)^2 · m · (-m^2)^330. 3y^3 · (y^2)^3 div y^7二、带解析的20道计算题(一)1. 计算:a^2 · a^3 div a^4解析:根据同底数幂相乘,底数不变,指数相加,可得a^2 · a^3=a^2 + 3=a^5;再根据同底数幂相除,底数不变,指数相减,所以a^5div a^4=a^5 - 4=a。
2练习:幂的运算(经典——含单元测试题)

幂的运算1.填空:(1)—23的底数是,指数是,幂是.(2) a5·a3·a2= 10·102·104=(3)x4·x2n—1= x m·x·x n—2=(4)(-2) ·(-2)2·(-2)3= (-x)·x3·(—x)2·x5=(x-y)·(y-x)2·(x-y)3=(5)若b m·b n·x=b m+n+1 (b≠0且b≠1),则x= 。
(6) -x·()=x4 x m-3· ( )=x m+n『检测』1.下列运算错误的是()A。
(-a)(-a)2=—a3 B。
–2x2(-3x) = -6x4C。
(—a)3(—a)2=-a5 D。
(—a)3·(—a)3 =a62.下列运算错误的是()A. 3a5—a5=2a5B. 2m·3n=6m+n C。
(a—b)3(b-a)4=(a—b) D. –a3·(—a)5=a83.a14不可以写成()A.a7+a7B. a2·a3·a4·a5C.(-a)(-a)2·(—a)3·(-a)3 D。
a5·a94.计算:(1)3x3·x9+x2·x10-2x·x3·x8(2)32×3×27-3×81×3同底数幂的乘法『基础过关』1.3n·(-9)·3n+2的计算结果是 ( )A.—32n-2 B。
-3n+4 C.—32n+4 D.—3n+62.计算(x+y-z)3n·(z-x—y)2n·(x-z+y)5n (n为自然数)的结果是( )A.(x+y-z)10nB.—(x+y-z)10n C。
幂指数运算(中难150题)

幂指数运算(中难150题)一.解答题(解答应写出文字说明.证明过程或演算步骤)1. (本小题8.0分)已知4m+3⋅8m+1÷24m+7=16.求m 的值.2. (本小题8.0分)先化简.再求值:(2x −y)13÷[(2x −y)3]2÷[(y − 2x)2]3.其中x =2.y =−1. 3. (本小题8.0分)若3n =2.3m =5.求3m+2n−1的值.4. (本小题8.0分)已知a m =2.a n =4.a k =32(a ≠0).(1)求a 3m+2n−k 的值.(2)求k −3m −n 的值.5. (本小题8.0分)已知2m =6.4n =2.求22m−2n+2的解.6. (本小题8.0分)已知2m =3,2n =5.(1)求 2m+n 的值. (2)求 22m−n 的值.7. (本小题8.0分)若5x −3y −2=0.求105x ÷103y 的值. 8. (本小题8.0分)按要求解答下列问题.(1)已知10m =12.10n =3.求10m−n 的值.(2)已知8×2m ÷16m =26.求m 的值.9. (本小题8.0分)(1)已知2x =3.2y =5.求2x−2y+1的值.(2)x −2y −1=0.求2x ÷4y ×8的值. 10. (本小题8.0分)如果a ∗b =c .则a c =b .例如:2∗8=3.则.23=8. (1)根据上述规定.若3∗27= x .求x 的值. (2)记3∗5=a,3∗6=b,3∗2=c .求32a+b−c 的值.11. (本小题8.0分)已知a m =2.a n =5.求下列各式的值:(1)a m+n .(2)(2a m )2.(3)a 3m−2n . 12. (本小题8.0分)若a m =a n (a >0,a ≠1,m,n 都是正整数).则m =n .利用上面结论解决下面问题: (1)已知a 6÷a m =a 2.求m 的值. (2)已知2x +5y −3=0.求4x ⋅32y 的值.13. (本小题8.0分)已知5a =3.5b =8.5c =72.(1)求(5a )2的值.(2)求5a−b+c 的值.(3)直接写出字母a .b .c 之间的数量关系为 .14. (本小题8.0分)已知x a =3.x b =6.x c =12.x d =18.(1)求证: ①a +c =2b . ②a +b =d .(2)求x 2a−b+c 的值.15. (本小题8.0分)已知3y −5x +2=0.求(10x )5÷[(110)−3]y的值.16. (本小题8.0分)已知a m =3.a n =5.求a 3m−2n 的值. 17. (本小题8.0分)已知x m =3.x n =6.求x m−2n 的值. 18. (本小题8.0分)(1)若3x =4.3y =6.求92x−y +27x−y 的值。
幂的运算评估测试题及答案

七(下)数学第八章幕的运算评估测试卷(时间:90分钟满分:100分)、选择题(每小题2分,共50分)1 •下列计算不正确的是1A. 3°+2 —1=1 丄B. 10_4十10_2=0 .0122.下列计算不正确的是A. a m- a m=a°=1C. (-x) 5-(-x) 4= -xC. a 2n十an= a2 D . 2ab 1 3b38a3( ) B. a m-(a —a p)=a m - n- pD . 9-3- (3- 3 1 2=lA . x8十x4=x2B . a8十a -8=1C . 3100十399=3D . 510-5s-5-2=534. 10C T十10001的计算结果是()A . 10000旷nB . 1刊-3nC . 10CTD . 100(T15.若一=2,则-2的值是()xA . 4B . 4-C . 0D . 一4 43.下列计算正确的是6 .在等式a m+n宁A=a m- 2中A的值应是( )7.8.9.10 .11 .A m+n+2 .aa2m+4等于A . 2 am+2B.B.a n—2m、2 4(a ) gax m+1g x m-J(x m) 2的结果是F列等式正确的是①0. 000126=1.③ 1. 1X 10一5=0 .A .①②(―I x 伪x(1.A. - 1 . 5X101126X 10- 4000011B.②④5X 104) 2的值是B .1014F列各式中-定正确的是A. (2x—3)0=1B . 0=0C m+n+3 aC . a2. a m+4C. 0D n+2.aD2 m 4.a ga + a② 3. 10X 104=31000④ 12 600000=1C.①②③C.C.26X 10D .①③④-4X 1014 D . - 1014(a2- 1)0=1D. (m2+1) 0=1200812 .计算122009的结果是2009A . 1 -22009B . 12C.200812009D .丄213.若 26m >2x >23m,m 为正整数,则 x 的值是A .4mB .3mC .314•在算式a m+n 宁()=a m -2中括号内的式子应是m+n+2A . a15. (2X 3- 12- 2) 0结果为A .016. 结果为a 2的式子是A . a 6-a 317.下面计算正确的是A .a 4ga 2= a818.(-2a 3) 2等于A .4a 519.下列运算正确的是A .x 5g x=x 520.下列运算正确的是n -2 B .am+n - 2C .aB .1C .12B .a 4ga -2C .(a -1) 2B .b 3+b 3=b 6C .x 5+x 2=x 7B .4a 6C .4a 9B .x 5- x 2=x3 C .(-y) 2 (-y)7=y 9D .2m( )D .an+2( )D .无意义( )D . a 4 - a 2( )D .x g x 7=x 8( )D .- 4a 6( )3 7 10D . - y • (- y) =y()B . (xy)6十(xy) 2=(xy) 3=x 3y3C . x n+2 十 x n+1 =x —n21.计算25m- 5m得A .5B .204n 2n 3n - n.x k x g x =x( )C .5mD . 20m22.1 纳米=0 .000 000 001米,则 2.5纳米应表示为国家游泳中心——“水立方”是北京 2008奥运会场馆之一,它的外层膜的展开面积约科学记数法表示为 (结果保留两个有效数字 )、填空题 (每小题 2分,共 44分)26. a 2 - (- a )2= ___________DA . x 10十(x 4十 x 2)=x 8A . 2. 5X 1(T 8米B . 2. 5X 10-9米C . 2. 5X 10一10米D . 2. 5X 109米23.24. 25.260 000平方米,将A .0.26X 106列运算正确的是A . a 2ga 3= a6260 000用科学记数法表示应为 B .26X 1042 36B .(-y 2)C . 2. 6X 105D .2.6X 106C . (m 2n) 3=m 5n 3D .- 2x 2+5x 2=3x 2国家教育部最近提供的数据娃示, 2008 年全国普通高考计划招生 667万人,这一数据 A . 6 . 6X 106B . 66X 106C . 6. 7X 106D . 67X 106(x 2)_3 • (x 3)-1十 x= ____ •—b 2 • (-b) 2 (- b 3)= ______ .(x -y)2 (y -x) 3= ________0. 125?008X 82009= _________ .—4n+ 8n —1= _________ .3 m+1 2m+4a g _____ ga = a已知 10a=5 , 1C F =25,则 1(fa - b= ________已知 Ax n+1=x2n+1,则 A= __________ .0. 258x 643x 258x 48= _________- 52x (-5)2x 5-4= __________(a 2) 2 (a b) 3-(- a 2b) 3(- a )= ______(-a )6r - a )3= __________ .a 2ga 5* a 6= _________ .50x 5-2+25-1= ___________3 2 6 10m • (m) = m = ________ .27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.m+1 . m —1—x = x = _________ .(a m —1) n 十 a mn= ______ .若 22n=4,贝U n= ___ .若 64X 83=2x,贝U x= _____ .若 x 3=( — 2) 5-』)—2,则 x= ______ .2用科学记数法表示0. 000 000 125= ________计算题(48〜51题每小题4分,52、53题每小题5分,共26分)(—3a 3) 2- a 2x n+1g + x n —1(x n ) 2(X M 0)x 5 g x 4— x 6 • x 2 • xg ( — 3) 0+(—丄)3—(】)—22 33x 2 • x n —2+3( — x) 2 • x n —3 - (— x)(—3X 3—2)—3 — (— 32) 2-32X 2000参考答案42.43.44.45.46.47.三、48.49.50.51.52.53.1.C 2. B 3. C 4. B 5. B 6.D 7. B 8. B 9. C 10. B 11. D12. D 13. A 14. D 15. D 16. B17. D 18. B19. D 20. A 21. C22. B23.C24. D 25. C26. a 427.1 1028. b 729. (y — x)5 30. 8 31. —2n32. a mx33. 5 34. nx 35. 436.— 1 37. 0 38. — a 39. a 40.1 41. 5 m 2142.— x 2 43.44.a45. 154 6 --2 47. 1. 25X 10一748.解: (— 3a 3) 2十 a 2=9a 6十 a 2=9a 6—2=9 a 449.解: n+1x•x n—1 十(x n )2 =x (n+1)+(n —1)— 2n=x 0=150.解: x 5•x 4—x 6g x 2g x=x 9 — x 29=0.3 21951.解:3 0丄11 81238852.解: 原式=3x n— 3x n=0 .53.解: (—3X 3—2)—3— (— 32) 2- 3X 2000= — 27— 9X 1=— 36。
幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂的运算检测题
一.选择题:
1.下列运算正确的是 ( )
A .a 5·a 2=a 10
B .(a 2)4=a 8
C .a 6÷a 2=a 3
D .a 3+a 5=a 8 2.下列各式(1)55b b ∙52b = (2) (-2a 2)2=4-4a
(3) (1-n a )3=13-n a (4) 963
321256454y x y x =⎪⎭⎫
⎝⎛,
其中计算错误的有 ( )
A.1个
B.2个
C.3个
D.4个
3.若a m =2,a n =3,则a m+n 等于 ( )
A .5
B .6
C .8
D .9
4.在等式a 3
·a 2
·( )= a 11
中,括号里面代数式应当是 ( ) A .a 7 B .a 8 C .a 6 D .a 3
5.下列四个算式:(-a )3
·(-a 2
) 3
=-a 7
;(-a 3
) 2
=-a 6
;
(-a 3)3÷a 4=a 2;(-a )6÷(-a )3=-a 3.其中正确的有( )
A .1个
B .2个
C .3个
D .4个
6.计算99
10022)()(-+-所得的结果是( )
A.-2 B.2 C.-99
2
D.99
2
7.当m 是正整数时,下列等式一定成立的有( )
(1)22)(m m a a =(2)m m a a )(22=(3)22)(m m a a -=(4)m m a a )(22-= A.4个 B.3个 C.2个 D.1个 8.连接边长为1的正方形对边中点,可将一个正方形分成4个大小相同的小正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成4个更小的小正方形……重复这样的操作,则5次操作后右下角的小正方形面积是 ( )
A .5)21(
B 、5)4
1
( C 、51 D 、5)41(1-
9.计算()
73
4
x x ∙的结果是 ( )
A. 12x
B. 14x
C. x 19
D.84x
二、填空题
9.计算:102·108 = ; (m 2)3= ; (-a )4÷(-a )= ;
(-b 3)2= ; (-2xy )3= ; =-⋅-22)(x x ;
()()=-⋅-32a b b a
; 2332)()(a a -+-= ; (-t 4)3÷t 10=______;
10.(a +b) 2
·(b+a )3
=__________;(2m -n) 3
·(n -2m) 2
=___________. 11.若3n
=2,3m
=5,则3
2m+3n -1
=______.
若a m
=2,a n
=6,则a
m +n
=_______;a m -n =__________.
若52=m ,62=n ,则n m 22+= . 12.0.25
×55
=_______;0.125
2008
×(-8)2009=________.
200820074)25.0(⨯-=______
13.如果x+4y-3=0,那么2x ·16y
=
14.已知3×9m ×27m =321
,则m 的值 .
15.16a 2b 4
=(_______)2
; ()(2⋅-m )=m 7
;
×2 n -1=2 2n +3;
三、解答题
16、计算与化简:(要写出规范的过程)
(1)(-3pq) 2; ⑵ ()3
242a a a -+⋅
⑶()()5
24
232)(a a a -÷⋅ ⑷ ()()()3
48
4
3222b a b a ⋅-+-
(5)(a 2)3-a 3·a 3+(2a 3)2 ; ⑹ 23
×8×16×32 (用幂的形式表示)
⑺ (x -y)2
(y -x)3
(8)
17.先化简,再求值:32233)21()(ab b a -+-⋅,其中44
1
==b a ,.
19.
20.比较大小223344555,4,32, 614131
92781
,,
21、 已知453)5(31+=++n n x x x ,求x 的值.
22、 已知2x +5y -3=0,求y x 324∙的值.
23、
已知472510225∙=∙∙n m ,求m 、n .
24、 已知y x y x x a a a a +==+求,25,5的值.
25、 若n m n n m x x x ++==求,2,162的值.
26、如果的值求12),0(020*******++≠=+a a a a a .
27、已知723921=-+n n ,求n 的值.。