旋转基础
讲解顺时针旋转的基本方法并通过例题演示顺时针旋转的具体步骤

讲解顺时针旋转的基本方法并通过例题演示顺时针旋转的具体步骤顺时针旋转是一种基本的运动方式,在生活中,我们常常需要进行物体的旋转。
本文将为大家详细讲解顺时针旋转的基本方法,并通过例题演示顺时针旋转的具体步骤。
一、顺时针旋转的基本方法顺时针旋转是指物体按顺时针方向进行旋转的动作。
要实现顺时针旋转,以下是基本方法和步骤:1. 确定旋转的物体:首先要确定需要旋转的物体,可以是实体物体、图形或模型等。
在讲解方法时,我们将以一个正方形为例进行演示。
2. 确定旋转中心:旋转中心是物体旋转的基点,也是旋转的轴心。
要确定旋转中心,需要考虑物体的对称性和旋转效果。
在例题中,我们将以正方形的中心点为旋转中心。
3. 确定旋转角度:旋转角度是指物体绕旋转中心旋转的角度大小。
根据实际需求,可以确定旋转角度。
在例题中,我们将以90度为旋转角度。
4. 进行顺时针旋转:根据旋转中心和旋转角度,按照顺时针方向进行旋转。
具体方法是将旋转中心固定,然后将物体沿顺时针方向旋转指定角度。
在例题中,我们将正方形绕中心顺时针旋转90度。
二、例题演示顺时针旋转的具体步骤以下是一个例题,通过具体步骤演示如何进行顺时针旋转:例题:将一个正方形顺时针旋转90度。
步骤1:确定旋转的物体。
我们选择一个边长为10厘米的正方形作为需要旋转的物体。
步骤2:确定旋转中心。
由于正方形具有对称性,我们选择正方形的中心点作为旋转中心。
步骤3:确定旋转角度。
在本例中,我们将旋转角度设定为90度。
步骤4:进行顺时针旋转。
固定旋转中心,将正方形沿顺时针方向旋转90度。
旋转后,原先正方形的上边变为右边,右边变为下边,下边变为左边,左边变为上边。
通过以上步骤,我们成功地将正方形顺时针旋转了90度。
三、结语顺时针旋转是一种常见的物体旋转方式,在实际应用中非常重要。
本文通过讲解顺时针旋转的基本方法,并通过例题演示了具体步骤,希望能给大家提供一些帮助。
在实际操作中,可以根据需求确定旋转物体、旋转中心和旋转角度,并进行顺时针旋转。
九年级数学: 旋转基础知识及专题练习(含答案)

旋转及综合专题一、旋转相关定义1、定义:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角。
2、如果图形上的点 P 经过旋转变为 P 1 ,那么这两个点叫做这个旋转的对应点。
3、(1)对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上;(2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后图形全等。
4、把一个图形绕着某一点旋转180︒ ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形的对称点叫做关于中心的对称点。
5、(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分;(2)关于中心对称的两个图形是全等图形。
6、把一个图形绕着某一点旋转180︒ ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
二、旋转相关结论如 图 , 将 ∆ABC 绕 点 A 逆 时 针 旋 转 α 角 到∆AB 1C 1 。
点 B 和点 B 1 为对应点,点 C 和C 1 为对 应点。
结论 1:旋转中心为对应点所连线段垂直平分 线的交点,也即对应点所连线段的垂直平分线 均经过旋转中心。
如图,线段 BB 1 的垂直平分 线l 1 、线段CC 1 的垂直平分线l 2 都经过旋转中心点 A 。
利用这个结论我们可以利用对应点坐标 求出旋转中心的坐标。
由于对应点所连线段的 垂直平分线均经过旋转中心,因此只需求出两 组对应点所连线段的垂直平分线解析式,然后 联立即可求出旋转中心坐标。
结论 2:对应点与旋转中心所构成的三角形均为等腰三角线,且等腰三角形顶角均等于旋转角α。
如图, ∆ABB 1 和 ∆ACC 1 均为等腰三角形, ∠BAB 1 = ∠CAC 1 = α。
结论 3:对应点与旋转中心所构成的三角形均相似。
如图, ∆BAB 1 ∽ ∆CAC 1 。
九年级上册旋转知识点总结

九年级上册旋转知识点总结旋转是几何学中非常基础且重要的一个概念,它涉及到平面和立体图形的旋转变换以及相关定理。
在九年级上册的学习中,我们学习了有关旋转的知识点,下面就对这些知识点进行总结和归纳。
1. 旋转的定义和基本概念旋转是指以某一点为中心,将图形按照一定的角度绕着这个中心点旋转,得到新的图形。
在旋转中,我们需要明确旋转中心、旋转角度和旋转方向等概念。
旋转中心通常表示为点O,旋转角度用θ表示,旋转方向可以是顺时针或逆时针。
2. 旋转的记法和表示方法为了方便表达和书写,我们引入了旋转的记法和表示方法。
一种常见的表示方式是使用记号Rθ(O)来表示围绕点O逆时针旋转θ度,而顺时针旋转则用R-θ(O)表示。
3. 点的旋转点是最基本的几何要素,它也可以进行旋转。
对于一个给定的点P(x, y),围绕旋转中心O旋转θ度后的新坐标可由以下公式得到:x' = (x - a)·cosθ - (y - b)·sinθ + ay' = (x - a)·sinθ + (y - b)·cosθ + b其中(a, b)是旋转中心的坐标。
4. 图形的旋转除了点的旋转,我们还可以将整个图形进行旋转。
对于平面图形的旋转,我们可以通过以下步骤进行:- 标明旋转中心O和旋转角度θ;- 计算每个顶点的新坐标,利用点的旋转公式得到;- 连接各个新顶点,得到旋转后的图形。
5. 旋转的相关定理在学习旋转的过程中,我们还了解了一些旋转相关的重要定理。
- 旋转保形定理:旋转变换保持图形的形状不变。
- 旋转角度相等定理:对于两个旋转相等的图形,它们之间的对应点的连线的夹角等于旋转的角度。
- 旋转对称定理:旋转对称是指图形以旋转中心为对称中心进行旋转180度后,与原图形重合。
6. 立体图形的旋转除了平面图形的旋转,我们还可以对立体图形进行旋转变换。
立体图形的旋转除了要考虑平面旋转的相关知识外,还需要注意旋转轴的选择和方向的确定。
人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
中考数学 专题22 图形的旋转(知识点串讲)(解析版)

专题22 图形的旋转考点总结【思维导图】【知识要点】知识点一旋转的基础旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P',那么这两个点叫作这个旋转的对应点.如图所示,A OB''∆绕定点O逆时针旋转45︒得到的,其中点A与点A'叫作对应点,线段OB与∆是AOB线段OB'叫作对应线段,OAB∠与OA B'∠)的度数叫∠叫作对应角,点O叫作旋转中心,AOA'∠(或BOB'作旋转的角度. 【注意】1.图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2.旋转中心可以是图形内,也可以是图形外。
【图形旋转的三要素】旋转中心、旋转方向和旋转角. 旋转的特征:➢ 对应点到旋转中心的距离相等;➢ 对应点与旋转中心所连线段的夹角等于旋转角; ➢ 旋转前、后的图形全等. 旋转作图的步骤方法:➢ 确定旋转中心、旋转方向、旋转角; ➢ 找出图形上的关键点;➢ 连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点; ➢ 按原图的顺序连接这些对应点,即得旋转后的图形. 平移、旋转、轴对称之间的联系:变化后不改变图形的大小和形状,对应线段相等、对应角相等。
平移、旋转、轴对称之间的区别: 1) 变化方式不同:平移:将一个图形沿某个方向移动一定距离。
旋转:将一个图形绕一个顶点沿某个方向转一定角度。
轴对称:将一个图形沿一条直线对折。
2) 对应线段、对应角之间的关系不同平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。
旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。
轴对称:对应线段或延长线如果相交,那么交点在对称轴上。
3)确定条件不同A平移:距离与方向旋转:旋转的三要素。
线段绕点旋转知识点

线段绕点旋转知识点是几何学中的重要概念之一,常见于三维空间中的旋转变换问题。
本文将从基础概念、旋转方向及旋转角度等方面进行介绍,帮助读者理解线段绕点旋转的相关知识点。
1. 基础概念在线段绕点旋转的理解之前,我们首先需要了解几个基础概念。
1.1 线段线段是由两个端点所确定的直线部分。
在二维空间中,我们可以用两个坐标点表示一个线段。
例如,线段AB可以表示为A(x1, y1)到B(x2, y2)。
1.2 旋转旋转是一种基本的几何变换,它将一个图形绕固定点旋转一定角度,并保持图形的形状不变。
对于线段绕点旋转,我们需要指定旋转的中心点和旋转的角度。
2. 旋转方向线段绕点旋转有两个基本的旋转方向:顺时针和逆时针。
2.1 顺时针顺时针旋转是指线段在平面内绕中心点逆时针方向旋转。
在二维平面中,顺时针旋转的角度是正的。
2.2 逆时针逆时针旋转是指线段在平面内绕中心点顺时针方向旋转。
在二维平面中,逆时针旋转的角度是负的。
3. 旋转角度线段绕点旋转的角度可以用角度制或弧度制来表示。
3.1 角度制角度制是一种以360度作为一个圆周的单位制。
线段绕点旋转的角度可以用度数来表示,例如30度、45度等。
3.2 弧度制弧度制是一种以半径长度等于弧长的单位制。
线段绕点旋转的角度可以用弧度来表示,例如π/6、π/4等。
4. 线段绕点旋转的过程线段绕点旋转的过程可以分为以下几个步骤:4.1 计算旋转后的端点坐标首先,需要根据给定的旋转角度和旋转方向计算旋转后的线段端点坐标。
对于顺时针旋转,旋转角度为正;对于逆时针旋转,旋转角度为负。
4.2 确定旋转中心点确定线段旋转的中心点。
中心点可以是线段的一个端点,也可以是线段上的任意一点。
4.3 绘制旋转后的线段根据计算得到的旋转后的端点坐标,绘制旋转后的线段。
5. 应用场景线段绕点旋转的知识点在计算机图形学、机器人控制、三维建模等领域有广泛的应用。
例如,在计算机图形学中,线段绕点旋转可以用来实现物体的旋转动画效果;在机器人控制中,线段绕点旋转可以用来控制机器人的运动轨迹;在三维建模中,线段绕点旋转可以用来生成复杂的几何体。
初中几何旋转知识点总结

初中几何旋转知识点总结一、基本概念1. 旋转的基本概念旋转是一种平移,比如将一张纸围绕桌子中心旋转,不移动位置但是角度改变。
可以定义一个点O为旋转中心,角度为θ,则旋转变换R(O,θ)将点P绕点O旋转θ度。
2. 旋转的表示方法通常用旋转中心和旋转的角度来表示一个旋转变换,如R(O,θ)表示以点O为旋转中心,按照角度θ进行旋转变换。
3. 旋转的方向根据旋转的角度正负可以表示旋转的方向,当角度为正时,表示顺时针旋转;当角度为负时,表示逆时针旋转。
二、旋转的性质1. 旋转中心的不变性对于任意一个固定的点P,在平面上做旋转变换后,点P相对于旋转中心O的距离不变,即OP'=OP。
2. 旋转中心的互易性两点围绕各自为中心的旋转之后,它们的连接线也围绕旋转后的两个点为中心进行旋转。
3. 旋转的对称性对于一个平面图形,绕着一个点做旋转变换之后,原来的平面图形与旋转后的图形具有对称性。
4. 旋转的组合性对于两个旋转变换R(O1,θ1)和R(O2,θ2),它们的组合旋转变换是R(O1,θ1) ◦R(O2,θ2)=R(O1O2,θ1+θ2),即先以O2为中心旋转θ2度,再以O1为中心旋转θ1度,等效于以点O1O2为中心旋转θ1+θ2度。
三、旋转的定理1. 旋转角度的性质(1)相等角度的旋转等效于一次旋转;(2)逆时针旋转θ度等效于顺时针旋转360-θ度;(3)旋转360度等效于不旋转。
2. 旋转的运动规律旋转的运动规律由旋转角度的规律和旋转方向的规律组成,它描述了一个点或者平面图形在旋转中的变化规律。
3. 旋转的应用(1)旋转的应用:如地球自转产生了昼夜交替、太阳绕地球公转产生了四季交替等;(2)旋转对称性:通过旋转对称性,可以简化问题的解决和推理过程。
四、常见问题解析1. 旋转的基本操作(1)绕平面上任一点旋转θ度的变换,可以用旋转矩阵R来表示,即对任意点(A, B),有(A', B') = R(A, B)。
九年级旋转知识点梳理

九年级旋转知识点梳理在九年级的学习过程中,我们已经学习了许多不同的知识点。
为了更好地巩固所学的知识,并为即将到来的中考做好准备,我们有必要对这些知识点进行整理和梳理。
接下来,我将为大家梳理一些重要的旋转知识点。
一、坐标系和旋转我们先来回顾一下坐标系和旋转的基本概念。
在平面直角坐标系中,我们可以通过横坐标和纵坐标来表示一个点的位置。
而旋转是指将一个图形按照某个点为中心进行旋转,通常我们称这个点为旋转中心。
旋转可以按照顺时针或逆时针的方向进行,旋转角度可以是任意角度。
二、基本旋转公式在进行旋转的计算中,我们需要掌握一些基本的旋转公式。
其中,顺时针旋转公式和逆时针旋转公式分别为:1. 顺时针旋转公式:旋转后的横坐标 = 旋转中心横坐标 + (原点横坐标 - 旋转中心横坐标) * cosθ - (原点纵坐标 - 旋转中心纵坐标) * sinθ旋转后的纵坐标 = 旋转中心纵坐标 + (原点横坐标 - 旋转中心横坐标) * sinθ + (原点纵坐标 - 旋转中心纵坐标) * cosθ2. 逆时针旋转公式:旋转后的横坐标 = 旋转中心横坐标 + (原点横坐标 - 旋转中心横坐标) * cosθ + (原点纵坐标 - 旋转中心纵坐标) * sinθ旋转后的纵坐标 = 旋转中心纵坐标 - (原点横坐标 - 旋转中心横坐标) * sinθ + (原点纵坐标 - 旋转中心纵坐标) * cosθ这些公式可以帮助我们在旋转图形时计算出旋转后的坐标。
三、旋转的性质旋转具有一些特殊的性质,我们可以通过这些性质来解决与旋转相关的问题。
下面列举几个常见的旋转性质:1. 旋转180°:图形绕旋转中心旋转180°后,各点对应的坐标变为相反数。
2. 旋转90°或270°:图形绕旋转中心旋转90°或270°后,各点的横纵坐标交换,并且横坐标的符号取反。
3. 旋转60°或300°:图形绕旋转中心旋转60°或300°后,各点对应的坐标可以通过一定的规律得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是( )
A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC 2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )
A.120°B.90°C.60°D.30°
图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4
二、填空题(每小题4分,共8分)
3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A 的对应角是__________,∠B=________,AB=________,AC=________.
4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC 可以看作是△ABC绕点________按________方向旋转了__________度而得到的.
三、解答题(共11分)
5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)AC与EF的关系如何?
图J23-1-5
1.下列图形绕某点旋转180°后,不能与原来图形重合的是( )
2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是( )
A.OC=OC′B.OA=OA′
C.BC=B′C′D.∠ABC=∠A′C′B′
图J23-2-1 图J23-2-2 图J23-2-3
二、填空题(每小题4分,共8分)
3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.
4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:
①四边形ABCD是菱形;②四边形ABCD是中心对称图形;
③四边形ABCD是轴对称图形;④AC=BD.
其中正确的是________(写上正确的序号).
三、解答题(共11分)
5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.
图J23-2-4
1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=( ) A.-1 B.-5
C.1 D.5
2.点P关于原点的对称点为P1(3,4),则点P的坐标为( ) A.(3,-4) B.(-3,-4)
C.(-4,-3) D.(-3,4)
3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是( )
A.(2,2) B.(-2,2)
C.(-1,-1) D.(-2,-2)
二、填空题(每小题4分,共8分)
4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.
5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.
三、解答题(共8分)
6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.。